Li and Gao Boundary Value Problems 2014, 2014:77 0 BOU nda ry Va I ue PrOblemS

http://www.boundaryvalueproblems.com/content/2014/1/77 a SpringerOpen Journal

RESEARCH Open Access

Existence of nonnegative nontrivial periodic
solutions to a doubly degenerate parabolic
equation with variable exponent

Zhongging Li" and Wenjie Gao

“Correspondence: zqli_jlu@163.com
College of Mathematics, Jilin
University, Changchun, 130012, PR
China

@ Springer

Abstract

The authors investigate a degenerate parabolic equation with delay and nonlocal
term, which describes slow diffusive processes in physics or biology. The existence of
a nonnegative nontrivial periodic solution is obtained through the use of the
Leray-Schauder degree method.

MSC: Primary 35D05; secondary 35K55

Keywords: degenerate parabolic equation; periodic solution; variable exponent;
topological degree; De Giorgi iteration

1 Introduction

In this paper, we are interested in the following evolutional p(x)-Laplacian equation:

3 _ div(| V™ P2V )

=[axt) - [ K& Ou?(E,t - 1) dElu, (xt) € Qr,
u(x,t) =0, (x,t) eI,
u(x,0) = ulx, T), xeQ.

(1.1)

Here, Q is a bounded simply connected domain with smooth boundary 92 in RN, Q7 =
Qx(0,T), T =032 x(0,T), T>0,and 7 € (0,+00). We assume m > 1, p € C*(RQ), with
p’i=maxg p(x), p~ := mingp(x), p* > p~ >2 and that a € L*°(Qr) and K € L*(Qr) can be
extended as T-periodic functions to 2 x R. Furthermore, we assume that K > 0 for a.e.
(x,t) € Qr.

Equation (1.1) is a doubly degenerate parabolic equation with delay and nonlocal term,
which models diffusive periodic phenomena in physics and mathematical biology. In bi-
ology, it arises from population model, where u(x,t) denotes the density of population
at time ¢ located at x € 2, a is the natural growth rate of the population, the nonlocal
term |, o K, t)u?(£,t — t) d€ evaluates a weighted fraction of individual, and the delayed
density u at time ¢ — T appearing in the nonlocal term represents the time needed to an
individual to become adult. In physics, problem (1.1) is proposed based on some evolu-
tion phenomena in electrorheological fluids [1]. It describes the ability of a conductor to
undergo significant changes when an electric field is imposed on. This model has been
©2014 Li and Gao; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-

tion License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.


http://www.boundaryvalueproblems.com/content/2014/1/77
mailto:zqli_jlu@163.com
http://creativecommons.org/licenses/by/2.0

Li and Gao Boundary Value Problems 2014, 2014:77 Page 2 of 21
http://www.boundaryvalueproblems.com/content/2014/1/77

employed for some technological applications, such as medical rehabilitation equipment
and shock wave absorber.

When p(x) is a constant and m > 1, p > 2, the model describes the slow diffusion process
in physics, which has been extensively investigated; see [2—7]. For example, in [5], the
authors studied the following doubly degenerate parabolic equation with logistic periodic

sources:
Z—IZ — div(|vu™ |p_2Vum) =u*(a-buP).

They proved the existence of a nontrivial nonnegative periodic solution via monotonicity
method. Using a Moser iterative method (see [8—11]), they also obtained some a priori
bounds and asymptotic behaviors for the solutions.

Recently, the variable exponent Sobolev space and its applications have attracted consid-
erable interest; see [1, 12—14] and the references therein. When p* > p~ > 2 and m > 1, the
doubly degenerate parabolic equation (1.1) is a more realistic model which describes the
rather slow diffusion process. In our models, the principal term div(|Vu” [P®-2Vy™), in
place of the usual term Au™ or div(|Vu|P~2Vu™), represents nonhomogeneous diffusion
that depends on the position x € €2 and thus gives a better description of nonhomogeneous
character of the process.

There are many differences between Sobolev spaces with constant exponent and those
with variable exponent; many powerful tools applicable in constant exponent spaces are
not available for variable exponent spaces. For instance, the variable exponent spaces are
no longer translation invariant and Young’s inequality ||f *g|| ,) < C||flls()llgll1 holdsif and
only if p is constant (see monograph [12]). As we all know, the frequently used Holder’s
inequality, Poincaré’s inequality, etc., will be presented in new forms for variable exponent
spaces.

The presence of the nonlocal term and p(x)-Laplacian term makes the sup-solution and
sub-solution method (as in [5]) in vain. In our paper, we adopt the topological degree
method (as in [8—10]) to show the existence of nontrivial periodic solutions to problem
(1.1). However, the method employed in the variable exponent case [13] or in the con-
stant exponent case [8—11] cannot be directly used to derive the uniform upper bound for
solutions, which is a crucial step in applying the topological degree method. We apply a
modified De Giorgi iteration to establish the crucial uniform bound. We believe that the
modified De Giorgi iteration used in this paper can be employed to other types equations
with nonstandard growth conditions.

We now discuss the main plan of the paper. In Section 2, we review some preliminaries
concerning the variable exponent Sobolev spaces and introduce a family of regularized
problems for problem (1.1). We regularize the degenerate part through replacing the term
div(|Vu" [P@-2v ™) by

px)-2

div{(|V(ocu™ + eu)|2 +n) 2 V(ou" +eu)}, €n>0.

In Section 3, in order to apply the topological degree method, we combine these regular-
ized problems with a relatively simpler equation and derive some a priori estimates. By
virtue of the De Giorgi iteration technique, we deduce an a priori L bound for solutions
to the regularized problems in Proposition 3.2; and the uniform lower bound estimate is
obtained in Proposition 3.5. In Section 4, we establish the existence of nonnegative non-
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trivial solution of (1.1) through the limit process as € and 5 tend to zero. Finally, in the
Appendix, we give a proof of the iteration lemma (Lemma 3.1) for the sake of readability.

2 Preliminaries and the regularized problems of (1.1)
First of all, for the reader’s convenience, we recall some preliminary results concerning the
variable exponent Sobolev spaces. One may find these standard results in monographs [1,
12].

Let p be a continuous function defined in , p(x) > 1, for any x € Q.

1. LPW(Q) space: We have

IP9(Q) = {u : u is measurable in € and / |u(x)|p(x) dx < oo},
Q

equipped with the following Luxemburg norm:

|M|Lp(x)(Q) = inf{)\. >0: /
Q

The space (L?¥(R),] - | 17 (q)) is a separable, uniformly convex Banach space.
2. W@(Q) space: We have

u(x) p(x)

dx < 1}.

W(Q) = {u e [FY(Q) : | Vu| € L/ (Q)},

endowed with the norm || 1,69 = | Vel o)) + |4l 1)y We denote by Wé’p(x)(Q) the
closure of C3°(£2) in WP®)(Q). In fact, the norm |Vu| 1@ (o) and |U]y1p0) q) are equivalent
norms in Wé’p (x)(Q). Wre)(Q) and Wé’p (x)(Q) are separable and reflexive Banach spaces
with the above norms.

3. Frequently used relationships in the estimate:

L

min{(/!u(x)’p(x)dx>p+,(/’u(x)‘p(x)dx>p }
Q Q

< Ul pw(q)

< max{ (/ |u(x)|p(x) dx)p
Q

4. p(x)-Holder’s inequality:

L

,(/ |u(x)|p(x)dx)p }
Q

For any u € I’¥(Q) and v € LW (Q), with [ﬁ + ﬁ =1, we have

/ uvdx
Q

5. Embedding relationships:

+|*“

1 1 )
<\ — + — Nulpw o Vlaw@)-
(p— q () ()

If p; and p, are in C(R2), and 1 < p;(x) < p,(x), for any x € ©, then there exists a positive
constant C, (x)p,(x) such that

1] 110 (@) = Cpr ()2 | 8] 120 ()

i.e. the embedding L7>™(Q) < [/1¥(Q) is continuous.
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If g € C(Q) and 1 < g(x) < p*(x), for any x € Q, then the embedding Wé'p(x)(Q) s

L1¥(Q) is continuous and compact. Here

Np(x)
pr(x):= prﬂ(cx)’ px) <N,

+00, plx) > N.

6. p(x)-Poincaré’s inequality:
There exists a positive constant C, such that |u|;tq) < CplVit]pw (), for any u €
W,"? ().

We next define the weak solutions to problem (1.1).

Definition 2.1 u is said to be a weak periodic solution to (1.1) provided that u” €
L7 (0, T; Wé’p(x)(Q)) with |Vu™| € IP¥(Qr), u € C(Qr) and u satisfies

0= /f {—ua—(p + |V PPV
or ot
—au<p+u¢/ K(E,t)uz(“;‘,t—r)dé}dxdt, (2.1)
Q

for all ¢ € C}(Qy) satisfying ¢(x, T) = ¢(x,0) for x € Q and ¢(-, £)|3q = 0 for ¢ € [0, T].

As in [7], we introduce the following regularized problem:

-2

(x)
B div{(IV(ou™ + eu)|* + n)p(2 V(ou™ + eu))

= [a—fQK(S,t)uz(S,t—r)dé]u, a.e. (x,£) € Qr, 2.2)
u(-,t)|sq =0, ae. te(0,7), .
Ll( rO) = u('! T):

where 0 < € < %, O<n< (%)1”_-2 and o € [0,1] are given constants.

Definition 2.2 We say that i, is a weak periodic solution of (2.2), if ug, € L7 (0, T;
Wé’p(x)(Q)) with Vil | € LP9(Qr), ttey € C(Qr), and u,,, solves

px)-2

2 V(aui’; + eum)Vgo

0= f/QT{—um%—(f + (|V(ou£’; +eu€ﬂ)‘2 + n)

— Al + ugngo/;zl((é, tyu?, (&t - r)ds} dx dt, (23)

for all ¢ € C'(Qy) satisfying ¢ (x, T) = ¢(x, 0) for x €  and ¢(-, )30 = 0 for t € [0, T].

Remark 2.3 For any p € C*¥(Q), the set {9 € C'(Qy) : ¢(, T) = ¢(-,0)} is dense in {p €
C(Qy)NLF (0, T; Wé’p(x)(Q)) V™| € LP)(Q7), (-, T) = ¢(-,0)}, thus in the sense of the

definition of weak solution above, u., can be chosen as test function.
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We investigate problem (2.2) extensively before studying the limit process as €, — 0.
Define a map G, : [0,1] x L*(Q7) — L>(Qr) as follows:

(U:f) = Uey = Ge?y(aif):

where u,, is a weak periodic solution of the problem:

%—’Z —div{(|V(cu™ + eu)|* + n)w Viou" + eu)} =f, ae.(x,t)€Qr,
u(-,t)|pe =0, ae te(0,7), (2.4)
u(-,0)=u(-,T).

Given a € L*®(Qr), let f = f(«) € L>°(Q7) be defined by

flx,t) =f(a)(xt) = |:a(x, t)— LI((E,t)az(é,t - t)d&]a for (x,t) € Q7.

Therefore, if a nonnegative function u, € L*(Qr) satisfies u¢, = Ge,(1,f(uey)), then u.,
is a weak solution of (2.2).
Define

Tey(o,u) = Gey(o,f(w)), (0,u) €[0,1] x L=(Qr).

Then, according to [3] or the classical regularity results from [4], one obtains the following

lemma.

t2
Lemma 2.4 Assume that 0 < € < %, 0<n< (%)5'—-2 and A € L*(Qr). Then T, is a con-
tinuous compact operator from [0,1] x L>(Qr) to L>°(Qr). Furthermore, ue, = T¢,(0, 1) €

C(Qy).

3 A priori estimates to the regularized problem
First of all, the following modified De Giorgi iteration lemma will be useful (we give a proof
in the Appendix).

Lemma 3.1 (Iteration lemma) Suppose ¢(t) is a nonnegative and nonincreasing function

on [Ky, +00), it satisfies

o) < (%) [oP () + o7 (0], (3.1)

forany h > k > ko, and for some constants M >0, >0, 8>1,y >1. Then
plko +d) =0,
where d = M251 (P (ko) + goV‘l(ko))é, and § = min{B,y}.

Next, we prove a crucial a priori L*® bound for ., via a De Giorgi iteration technique
as in [15].

Page 5 of 21


http://www.boundaryvalueproblems.com/content/2014/1/77

Li and Gao Boundary Value Problems 2014, 2014:77
http://www.boundaryvalueproblems.com/content/2014/1/77

Proposition 3.2 Let K; > 0 and assume that u., is a nonnegative T-periodic continuous

function such that

px)-2

z—?—div{(|V(um+eu)|2+n) 2 V(um+eu)} < Kyu, (3.2)
u(-,t)|se = 0. (3.3)

Then there exists a constant R > 0, such that ||uey ||~ Qy) < R, where R is independent of €

and 1.

Proof Step 1. Multiplying (3.2) by u,,, with any g > 1. Integrating over 2 and noticing that

Uen (-, )]aq = 0, we have

1 d / mq+1 dx
mq +1 dt

+ / (|V(MZ, + Euen)|2 + H)WV(MZ] + eue,])Vu:”nqu
Q

<K / wi* dx. (3.4)
Q

Since |Vuy), |Pe) > |Vul, |”” —1, we deal with the second term on the left-hand side of (3.4)

as follows.

f(‘v(u +eu€n)|2+n)WV(u + €tiey) Vulsl dx
zquug(‘f‘”wump(x) dx
> q/gug(q_l)wump_ dx—q/;zufﬁfq_l) dx

P p mp~+q-1) - "
:q<m> Q‘Vug" ’ } dx — q/ e?]q_ dx. (35)

Combining (3.4) and (3.5), we have

1 d - r mp~+q-1)
”’q"l dx +q P {Vuen |p dx
mg +1 dt p +q-1

< I(1/ u:':]q“ dx + q/ ui”n(q’l) dx. (3.6)
Q Q

We estimate the right-hand side of (3.6) by Holder’s inequality, the embedding theorem
and Young’s inequality with € to deduce

Kl/ ’”q+1dx+q/ G- gy
Q

(;nq-d 5 L

_ mp~+q— _ mq+

< [(1 (/ uz”:;ﬂ +q-1) dx> |Q|1 m(p~+q-1)
Q

q-1

_ p-+q-1 _ q-1
+ q</ u?;(p +a-1) dx) |Q|
Q

Page 6 of 21
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_ mq+1
mp~+q-1) . m(p=+q-1)
5C(/|Vue,, ¢ | dx)
Q

-1

mp”+g-1) P +q-1
+ C( \Vue, P dx)

mp”+q-1) +g-1)
<q |Vug,, ’ |p dx + C(el)C’"P 1

mp~+q-1)

+ e |Vue,, 7 |p dx+C(62)C v (3.7)

Choosing € and €, appropriately, we have from (3.6) and (3.7)

d

r u”’q“( ) dx < G, (3.8)

for any g > 1, where C; depends on ¢, p~, m, and Q.
Integrating (3.6) over [z, + T] and using the T-periodicity of u.,, we have

P 2 mp~+g-1)
q(7> // |Vuen ’ |p dxdt
p+q-1 Qr
<K /:/ mq+1 dxdt + qff uf;(q’l) dxdt. (3.9)
Qr Qr

Similarly to (3.7), we obtain

mp~+q-1)
/ |Vue, 7 [P dxdt <G, (3.10)
Qr

where C, depends on ¢, p~, m, T and Q. By Poincaré’s inequality, we have

mp~+q-1)
f f w4 dxdr < f / \Vue, | dxdt < C,. (3.11)
Qr

Recall our assumption that p~ > 2, m > 1, and thus m(p~ + g — 1) > mq + 1. Consequently,
considering (3.11), we obtain

ff uz;”l(x, t)dxdt < C,, (3.12)
Qr
which implies that there exists a ty € (7, T + T) such that
/ uz]q”(x, to) dx < C,. (3.13)
Q
From (3.8) and (3.13), we conclude
/ u’:;]q“(x, t)dx < Cy + Ci(t - tp), (3.14)
Q
for any t > ty. In view of the T-periodicity of u.,, (3.14) shows

/ uZ';q”(x,t)dx = f uzlq”(x, t+Ndx<Cy+C, T
Q Q

Page 7 of 21
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We finally arrive at

sup / ugq*l(x, tHdx <C, (3.15)
Q

te(t,t+T)

for any g > 1, where C depends on ¢, p~, m, T and Q.
Step 2. Let

Ax(t) = {x € Qe (x,t) > k}, Wk = sup ’Ak(t)|,

te(t,7+T)

where |Ax(t)| is the Lebesgue measure of the set Ax(t). Multiplying (3.2) by (ue, —
k)7 Xi21,5,)(t) on both sides, where x[;, 1,1(t) represents the characteristic function of the

interval [#;, £;], and integrating over Qr, we have

1 L d
— o, — k)™ dxdt
m+1/;1 dt/gz(u€7 JiTdx
plx)-2

t:
+/2/(|V(M?,,+eue,,)|2+n)TV(u:’;+eu€n)V(uen—k):”dxdt
t Q

t
51(1/ / Uen(Uhey — k) dx dt.
f Q

Let Ii(¢) := [o,(ther — k)1 dx. We assume that the absolutely continuous function I(¢) at-
tains its maximum at ¢ € [7,7 + T]. Take t; = 0 -0, £, = 0 and 0 small enough so thatt; > 7.
(In fact, this is always possible because of the periodicity of u.,; for example, if o = 7, we
take o =t + T, then ¢ > t and #; > t.) Then we have [;(0) > I;(0 — 0) and

px)-2

g /g:-e /Q(|V(u€,7 +€tten)| + 1) 2 V(ul) + €tten)V (they — k)7 dxcdt
1 0
< —1(1[ / Uen(Uen — k) dx dt. (3.16)
0 0-0JQ
Letting 6 — 0% yields

px)-2

2 V(u:’:7 + eue,,)V(ué,7 - k) dx

vz, a4 )
= 1(1/ uen(uen _k)T dx. (3.17)
Q

After a direct computation, we obtain an estimate for the left-hand side of (3.17) as follows:

px)-2

/ (|V (w2, + euf,])|2 +1) 2 V(uly + €they) V(then — k)7 dx
Q
> f ’m(ue,] - k)T_IV(uE,] - k)+‘p(x) dx
Q
_ / IV (e — k)" dix
Q

> / V(e = 0" dx - |Ar(0)]. (3.18)
Axlo)
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Substituting (3.18) into (3.17), we have

/ V(e - k)" dx < K / Uen(they — k)™ dx + i (3.19)
Aglo) Axle)

We now deal with (3.19). On one hand, by the embedding theorem

(/ (theyy — )™ dx)
Axlo)

where S is the Sobolev embedding constant, and

r_
r

< f |V (e - k)" d, (3.20)
Aglo)

Np~ co -

~ N_L;,, ifp~ <N,
2p~(N+p~ Y-
2 ) ifp > N.

On the other hand, from (3.15), where we may fix a special ¢, using Holder’s inequality, we
obtain

K / Uey(Uen — k)™ dx
Ai(0)

_ r_ _N
N+p N+p~ N+p~ N+p~
<K (/ Ueh dx) (/ (Uey — k)" N dx)
Ax(o) Ax(o)
N
N+p~ N+p~
< C(/ (Ueny — k)" N dx)
Ax(o)
1

Nr-N-p~ r
o) ( / (they — K™ dx) . (3.21)
Ar(o)

Let Jx(0) = fAk(g)(uE,, — k)™ dx. Then (3.19), (3.20), and (3.21) imply

< C|Ak(o)

Nr-N-p~ 1

<Cu™" [Ji@)]” + . (3.22)

r_
r

1
S []k(Q)]

Utilizing Young’s inequality with €, we obtain from (3.22)

- Nr-N-p 1 r

Je =27 (SCrpl NI 4 STl

Nr-N-p~

<C(eJi + C(e)u,f”_’l)ww_)) +Cul.

Upon choosing € appropriately, one obtains

Nr-N-p~ r

Je@) < C(wd "7+ ul7). (3.23)
For any & > k > 0, it is easy to see

Ji(@) = |An(0)|(h = k)™ (3.24)

Page 9 of 21
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The relationships (3.23) and (3.24) above imply that

M \™, LNt
o < (m) (g "7 ). (3.25)
Noticing that % >0and .= > 1, by the iteration Lemma 3.1, we obtain 1z = 0 and

thus ||zey l|l20(Qp) < R, where

Nr-p~(N+p~)

A 2 gL
R = M23 (|Qr| w007 +|Qr|P” )™,
with

Nr-N-p~ r
O

A zmi“{@—nww)’p_ ‘

Theorem 3.3 Assume K > 0, for a.e. (x,t) € Qr. Then there exists a positive constant R
such that

deg(u — Tey(1,u"), Bg,0) =1,
where u* = max{u, 0}.

Proof From Proposition 3.2, we take Kj = ||@||z(q,), it implies that there exists a positive
constant R > 0 independent of € and 7, such that u, # G, (1, ,of(u:n)), for any u, € 9Bg,
p € [0,1]. Hence the topological degree deg(u — G, (1, pf (")), Bz, 0) is well defined in Bp.
Thanks to the homotopy invariance property of the Leray-Schauder degree, we have

deg(u — Gey(L,f(u")), Br, 0) = deg(u — G,y (1,0), Bg, 0). (3.26)
Using the fact that G, (1,0) = 0, one has
deg(u — G¢,(1,0),Bg,0) = deg(l, Bx,0) = 1. (3.27)
From (3.26) and (3.27), we get deg(u — T, (1, u*), Bg,0) = 1. a
Using the standard method, similar to that in [3] or [13], one can prove the following.
Proposition 3.4 Assume that a € L°(Qr), K € L*(Qr). If u., solves u = G, (o, pf (u*) +
1-o0),forsomeo € [0,1] and p € [0,1], then u.,, > 0 for any (x,t) € Qr. Moreover, if u¢, # 0,
then ue, >0 in Q7.
In what follows, we prove a lower bound for the regularized problem.

Proposition 3.5 Let 111 be the first eigenvalue of

-Au=uu, xe€g,
u=0, x €082,
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and let e) be the associated positive eigenfunction such that |lei|l;2q) = 1. Assume that

7 [fo, aei dxdt > 11,0 <€ < 3 and 0 <n < (3 )ﬁ Ifuf,?;!Osatzsﬁesug,,_ng( Sut)+

1-o0) for some o € [0,1], then ||uc, |l Qp) = 7o, Where

_ 1\t [fo, aet dxdt — T\ %
ro =minj [ — , ,
()" (=)

px)
plx) -2’

Vp(x) =

- +

¥y =minyy(x) =
Q

14
* = max y,(x) = ,
)/p ﬁ yp( ) p+_2

p_ :2’
M = K| +20 2(—1 + —)C max |[Ve 11227 2*
14Qr) () 1

(Qr) v p p*plx

L5t
x max{(llall gy + 1QAT) % T % 1,

Cy p(x) is the embedding constant of 1P () into LPY)(2), and || is the Lebesgue measure
of the domain Q.

Proof We argue by contradiction. If not, then for each o € [0,1] and r € (0, 7o), there exists
a ey # 0 such that u,, = ng(a,f(u;n) +1—0), with ||tt¢, [l 100(@p) < r. For clarity, we divide
the proof into four steps.

Step 1. Note that, by Proposition 3.4, u., > 0 in Qr. Taking ¢ € C;°(2) and multiplying

et aiv| (|9 (outy + )| +1) V(o + )

= [ / K(E,tu 6,7(5 t)d%‘]u677 +l1-0 (3.28)

2
by lan’ integrating over Q7 and using the T-periodicity of u.,, we obtain

2

//QT[a—/QK(g,t)ufn(g,t—r)d&]&dxdﬂ/QT(1—a)%dxdt

// —d1v {(|V(oul, +eug,,)|2+n)p(x2)72V(ou£”n+euen)}dxdt
Qr

Uey

- ®). (3.29)

Step 2. Using VuenV(%) =|Ve|> - uf“V(%})F, we have

px)-2 2
(R) = // (|V(oull + cuey)|” +1) E V(oul, + euen)V<¢—) dx dt
Qr

Uey
2

(x)—
= // (\V(ou:';] + eug,])|2 + n)p(z : (amue”;)’l + e)Vue,,V<¢—
Qr

Uey

)dxdt

= f/ (‘V(ouf; + eueﬂ)‘z + n)p(xz)_ (omul’,‘;l + 6)|V¢|2dxdt
Qr

Page 11 of 21
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2
dxdt

()=
S (amui’f{l +€)u

2
€n

~ || (V(outy+euey)[*+n) v ui
Qr e
< [, (5w vl en) ™

T (omulit +€) |V dxdt.

. 1 -
Sincer<rg < (ﬁ)m—l and 0 < € < 1, we have o mu

m-1 1
3 oy t€=<mul~ +€<;+e<l Hence

2

px)-2

(R)S// (|V(au2”n+euen)|2+n)T|V¢|2dxdt
Qr

< 2[# // (|V(oul + eug,,)ip(x)_2 + n}%)wmzdxdt
Qr

= 2p+272 // ‘V(aufﬁv + euen)|p(x)72|v¢|2dxdt
Qr

pre2 oy 2
+22 2 |Vo|° dxdt. (3.30)
Qr
Thanks to the p(x)-Holder’s inequality in variable exponent space, we have

/|V(auZ’7 +€”€n)|p(x)_2|v¢)|2dx
Q
! 2 ()2
< (V_p_ + ;)HV(UMZ’, +eten) [ |LVp(x>(g)||v¢|2|L%@ N
<<L+E>C+ H|V¢|2|| .
“\y, r p*p() 5@

X
X max{ (/ |V(0u£”n + eue,,)|p(x) dx) & } (3.31)
Q

Noting that y% <1 and using Holder’s inequality, we have
i3

T %
/ (/ |V (oull + eue,,)|p(x> dx) 7 dt
o \Ja

- - P "
<T " // \V(oull + €ucy) " dxdt )" . (3.32)
Qr

Integrating (3.31) over [0, 7] and noting (3.32), we get

f/ ‘V(Guﬁnn+euen)’pmi2lv¢|2dxdt
Qr
1 2 2
(7 )arealverz,,

(%) V% @
X max{(/:/ |V(au£’;+euen)|1’ dxdt> P } (3.33)
Qr
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Step 3. Multiplying (3.28) by o uf, + €u.,, integrating over Qr, noticing the T'-periodicity

1
of ucyand 0 <r<ry < (ﬁ)m—l < 1, we deduce

/Q |V(ou:’f7+eu€,,)|p(x)dxdt
T

(%)
< [[ (vt cnt )™
Qr
< // aum(uz] + uen) dxdt+ (1 —o)// (ug’ + ug,,) dxdt
Qr Qr

< (leten 1750 + Niten 2oy a1y

(ouls +€ucy) * dxdt

+ (1= 0) (lltten 1 o) + thenllzoeop)) 1RAT
< (" + ) lallpgp + (7" +7)1Q1T

<2r(lallp o, + 19IT).

Substituting this inequality into (3.33), we have

/Q |V(0u2”n+eu€,,)|p(x)_2|V¢>|2dxdt
T

S R L
v, P 17 (@)
R e
x max{(2r(llall oy + 1QIT)) 7 T % )
1 2 SIS
E(Zpr—)pp 1ver? ””7 2%

+
1 o

x max{(llall gy + 1QAT) " T % . (3.34)

+_ L_ "
Substituting (3.34) into (3.30) and noticing that 255007 <2772 we get

+ 1 2 L
p

+
O

xmax{(nanLl(QT)+|Q|T)ET7PF}+2’%277’¥// \Vo|>dxdt.  (3.35)
Qr

Considering that 0 < < (%)p'-2 from (3.29) and (3.35), we have

[ - [t

o1 2\ &
< /f |Vo|* dxdt +2° -2<— + —>VV" Corp [ [VOI* ]
Qr Yo P L@

+
1 o

x max{(llallpgp + 1QAT) % T % . (3.36)
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Step 4. We claim

a1
// ae; 2dxdt — T <r’® M (3.37)
Qr

from which we will derive a contradiction. First, to show (3.37), let ¢ = e in (3.36). Using
the fact that Ve, € (C}(R))N and noting leillz2) =1and fﬂ |Ver|? dx = 1, we get

/j aeldxdt — T
Qr

+ 1 2
<2¥ _Z(V—pr—) 7 Cpepi [ Ver? | R
P

+
1 L

x max{(lall gy + 1QAT) " T 7}

/ /K(E t)uen(é t— T)d&/el dxdt

" 2 2
<2/- <—+—)rP Cot pix max|VeI| |Q2|
)/p b~ Q

+
1

T 2
X max{(||a||L1(QT) + |Q|T) » T } + 1Kl gp) "

LMo ,(1 2 2
<rw |2 —+ — | Cpr i maleel| |Q2]»
v, b

Lot

e F
x max{(llall o +1QAT)? T 7 }+ ||1(||L1(QT,}

A
T
p

=r’» M.

Now the definition of ry and (3.37) yield

ae?dxdt — T\
F05<foT ! 1) <r (3.38)

M

which is clearly a contradiction to the assumption that r € (0,ry). This completes the

proof. O

Theorem 3.6 Let ry be as given in Proposition 3.5. Then deg(u — T.,(1,u*),B,,0) = 0 for

allO<r<ry.

Proof In view of Proposition 3.5, for any fixed r € (0,r9), we have proved that u #
Geylo,f(u*) +1—0) for all u € 9B,, o € [0,1]. So the Leray-Schauder topological degree
deg(u—Ge,(o,f(u*)+1-0),B,,0)is well defined for all o € [0,1]. Thanks to the homotopy

invariance of the topological degree, we have

deg(u — Gey(L,f(u")), B, 0) = deg(u — Gey (0,f (4) +1), B,,0). (3.39)
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Also, from Proposition 3.5, we infer that u = G, (0,f(x*) + 1) admits no nontrivial solution
in B,. Moreover, u., = 0 is not a solution of # = G¢,(0,f (#*) + 1). So deg(u — G, (0, f(u*) +
1), B, 0) = 0. Together with (3.39), we have deg(u — T, (1, 4*), B,,0) = 0. O

4 Existence of nontrivial nonnegative solution to (1.1)
Theorem 4.1 Assume K(x,t) > 0 for a.e. (x,t) € Qr and + ijT ae} dxdt > . Then prob-

lem (1.1) has a nontrivial nonnegative periodic solution.

Proof We consider the regularized problem (2.2). By Theorem 3.3 and Theorem 3.6, we

conclude that there exist R and r, independent of € and n, with R > r > 0, such that
deg(u — Ge(L,f(u")), Br\B,,0) =1

forO<e< % and 0 <7< (%)%. Using the solvability of the Leray-Schauder degree, we
conclude that the regularized problem (2.2) admits a nontrivial nonnegative solution i,
in Bg\B,.

We prove that u; € L7 (0, T; Wé’p(x)(ﬂ)) with |Vuf) | € LP%)(Q7) and that a solution to
problem (1.1) is obtained as a limit of u,, as €,n — 0. We proceed in several steps.

Step 1. In view of K(x,t) > 0, choosing C = ||a|| 1 (g;), we have

px)-2

aueq 2 V(u:”n + Guer])} < Cuen. (41)

at

- div{(|V(u€”;) +€lley) |2 +17)

Multiplying (4.1) by uf}, + €ue,, integrating over Qr and noting the T-periodicity of u.,

and the boundedness of #.,, we have

// |Vu6”£] |p(x) dxdt
Qr
px)-2

< // (|V(u?f7 + eufn)|2 +n) ° |V(u:';7 + eum)|2dxdt
Qr
< C// (ug',‘;'l + eug,’) dxdt <M, (4.2)
Qr

where M is a positive constant independent of € and 7. Moreover,

T _
/0 |V”Z7 |Izp(x)(sz> dt

-
/ W”Zz ‘LP(’C)(Q) dt
(0. TIN(EIVZh ) 1)

-
+ / |V”:"n |me)(9) dt
0. TINEIV ULl | pia) gy <1

)=
)
[0,71n{

5/[ |Vu2’;’p(x)dxdt+T§M+ T. (4.3)
Qr

/!Vu:’;|p(x)dxdt+ T
>1} JQ

RIV”%'LP(")(Q)
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So ul; € L7 (0,T; Wé’p(x)(Q)) and u7; is uniformly bounded in the space L” (0,7;
Wg’p (x)(Q)). Thus, up to subsequence if necessary, we may assume that uy, — u” €
L7 (0, T; W/é’P (x)(Q)). In what follows, our main goal is to prove that u is a weak solution of
problem (1.1).

Step 2. The following relation is obvious:

JE)

V(u” + eu. 2+17 a V(u” + eu. ® dxdt
Q €n n €n n
T

> / IV (" + cuey) " ddt. (4.4)
Qr
From (4.2) and (4.4), we have
/ }V("‘ZZ + eugn) ‘p(x) dxdt <C. (4.5)
Qr

Owing to the embedding results in the variable exponent space, one has

|V (), + €vter) < Copiw)| V(6 + €tter) | o )

p(*) 1’%
< Cyp(xy max / |V (s + etten) | dax ) (4.6)
Q

“LZ(Q)

Integrating (4.6) over [0, T'] and using Holder’s inequality, we have
T
19z ety

1
m ) r* -t
< Cyp(x) Mmax |V(u€,]+eue,7)| dxdt T = 3. (4.7)
Qr

From (4.5) and (4.7), there exists a positive constant C independent of € and 5, such that

// }V(u:’f7 + euen)‘zdxdt <C. (4.8)
Qr

In the following, we prove

2 px)-2 ()
// }(‘V(ui’% + eué,,)’ + 17) 2 V(uff7 + eue,,)‘ﬂ")*l dxdt <C. (4.9)
Qr
First, denote
Kip() = L k) K =minKp,(x), K, = maxKi,(®),
plx) -1 rog o}
2(p(x) - 1) .
K =—- K, = K: , K = K: ,
Zp(x) p(x) 2 mﬁln Zp(x) 2p mﬁax 2p(x)
2(p(x) - 1) .
K, (x)= 222 2 K = K, (x), Kt = K (x).
2 (%) o) -2 w mﬁm 2 (%) w mﬁax 2 (%)
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A straightforward computation shows that

px)-2 p)

/ |(|V(u£’,’7 + eue,,)|2 + 77) 2 V(ui’; + euen)|P(x>*1 dxdt
Qr

p_ -2 px)

5// |2¥(|V(u:”n+eu€,,)|p(x)_2+n+)V(uz]+euen)|m dx dt
Qr

px)

< 275 f/ ||V (s + €tter) |p(x)7zv(”g:7 + €ttey) + V(U + €ttey) |7 dxdt
Qr

v )
<2 T2 [ (19 (ut+ eue) P+ 9+ ) [ F5) i
Qr

fMp{//(; ’V(u:’; + eue,,)‘p(x) dxdt + //Q |V(u:':7 +eu5n)’1% dxdt}. (4.10)
T T

By the p(x)-Holder’s inequality, we have

px)

/ |V(u?ﬁ7 + eue,,)|P(x)*l dx
Q

(x)

p)-1 |L1<2p(x)(9) |1|L1<ép(x)

1 1
<|{—+—)|IV(4 +€u
(vt

1 de =
<(—+—= ) max{|QI">,|Q"> }

Ky, Kj,

2\
X max /|V(u£’f7 +€ley)| dx ) 7 L. (4.11)
Q

Integrating (4.11) over [0, T, using the p(x)-Holder’s inequality again, we get

(%)
V(u” + eu. P91 dxdt
Q €n n
T

11 rl e e
< —+— | max{|Q|">, Q> } max{T ">, 7" }
Ky, K,

Y
X max{ (/ ‘V(u:';] + euéﬂ)| dxdt) ? } (4.12)
Qr

Substituting (4.5), (4.8), and (4.12) into (4.10), we derive (4.9). Therefore, there exists a
)

(
He (L# (Q7))N such that

px)-2

(| v (e + eue,,)|2 +n) * V(ull +euey) =~ H, (4.13)

_px)
weakly in (LP®1(Qr))N ase,n — 0.

Step 3. Using a method analogous to [7], we get || % l22(o;) < C, where Cisindependent
of € and . Since u}, is uniformly bounded in Z*" (0, T; W, ®)()), and W, )(2) s compact
LPW(Q) — LY(R), by compactness theorem (Corollary 4 in [16]), it follows that ul, — u"
in L7 (0, T; LP™(2)). Thus, we have

O=// {—ua—(p+HV<p—au(p+u<p/K(S,t)uz(é,t—t)dé}dxdt (4.14)
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for any ¢ € CY(Qy) satisfying ¢(x, T) = ¢(x,0) for x € Q and ¢(-,£)|5q = 0 for t € [0, T]
(and hence, by density, for any ¢ € C(Q7) N L (0, T; W™ (Q)) with [Ve| € L/®(Qr) and
T -periodicity). The continuity of u follows from similar Holder estimates in [17].

Step 4. It remains to verify for any ¢ € C(Qy),

/ |V PO un g dxdt = / HVgdxdt. (4.15)
Qr Qr

(%) (%)
We consider matrix function I1(Y) = (|Y|? + )" 7 ) = (Y2 + )2 :
(p(x)-2)(|Y|? Tt yyT is a positive definite matrix. Choosing v € L? (0, T; W/é’p(x)(Q))

with |Vv| € I?®(Qr), by mean value theorem, there exists a matrix ¥ such that

(T(V (ul) + €ttey)) = TH(VY), V (Ul + €tiey) = VV) w6
S (IVY)(V(W + €iey) = VV), V(U + €ey) — V) > 0, '

which gives

(x)-2
0= [ 109Gz wn) P n) 0 (0t )
Qr

p)-2

- (IVv]* + r;) A VV}V[(MZ’ + euen) —v]|dxdt

[ (e o0

(%)~
- // (|V(u2’f7 +eu€,7)|2 + n)p 2 ZV(MZ7 + euen)Vvdxdt
Qr

(u +eu€,7)‘ dxdt

/f |Vy|? +n xg VvV[(u +eu€,,)—v]dxdt (4.17)
Qr

Multiplying the equation

0] px)-2
Zt —diV{(’V(qu7+eug,,)’2+n) 2 V(ui’f7+euen)}

= [a—/ K(E,t)ufn(“;‘,t—r)dé}uén
Q

by uf, + €uey, integrating over Qr and using T'-periodicity of u,, one has

(%)~
[ (96 e 1)
Qr

/f |: /KS t) (é,t—t)d&]( ’"+1+eu )dxdt (4.18)
Qr Q

(ully + €ttey) |2 dxdt
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Thus, (4.17) and (4.18) imply

(x)—
// (|V(u£”n + euen)|2 + n)p 2 ZV(MZ';] + €ltey) Vvdxdt
Qr

+ // (IVv)* + n)p<x2)_2 VvV [(uly + €ttey) - v] dxdt
Qr

5//@[a—/ﬁ]((é,t)ufn(é,t—r)d§i|( wli™ + eu?) dxdt.

Letting €, — 0, by (4.13), we have

/ HVvdxdt + // |Vv|p(x)_2VvV(u”’ - V) dxdt
Qr Qr

//Q|: /QK“) (5’t—f)d§}u’”“dxdt.

Let ¢ = u in (4.14) and, by the T-periodicity of u, we get

/ HVu" dxdt = // [ /KS Bul(E, t—f)dg] w1 dx dt.
Qr Qr Q

Combining (4.19) with (4.20), we obtain

0< // (H = |VvPO2V)V (4™ —v) dx dt.
Qr

Taking v = u” — Ag, with A > 0 and ¢ € C'(Qy), we get

0< //QT(H— IV (" = 20) [PV (" - 29)) Vo dx .

Letting & — 0 in (4.22) yields

0<// — [V POV Vg dxdt.
Qr

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

On the other hand, if we take v = #”” + Ap, with A > 0 and ¢ € C'(Q7) and let 4 — 0, we

get

02// (H = [Vu P2\ Vg dxdt.
Qr

From (4.23) and (4.24) we have (4.15). This completes the proof of Theorem 4.1.

Appendix
In this appendix, we prove Lemma 3.1 for the reader’s convenience.

Proof of Lemma 3.1 Define the following sequence:

d
ki=ko+d-—, s=0,12,...,
28

(4.24)

O
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where d is to be determined later. Then (3.1) implies the recursive relationship

« 2(s+1)o¢

LW (k) + 9" (k)], s=0,1,2,.... (5.1)

@ (ks+1) = 4o

By induction, one has

o(ky) < (r’j") s=0,1,2,..., (5.2)

where r > 1 is to be chosen. In fact, if (5.2) is right, then

oo (s+l)o B v
go(ks+1)§M 2 [w (ko) L ¢ (ko):|

de rsB v
_ M2 g (k) + 7 (ko)
- de 7s8

(ko) [M“2<”““ ¢ (ko) + W‘l(ko)}

rs+1 de r[S(ﬁfl)*l]

ot

We choose r = 251 and 22251 M 2L (0P (ko) + 9" ko)) < 1. Consequently, these choices guar-

(ko)
antee ‘p(ksﬂ) = wrﬁ?

duced the result. O

From (5 2) and ¢(t) is nonnegative and nonincreasing, we have de-
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