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Abstract
In this paper, the nonlocal boundary value problems for a class of nonlinear functional
convection reaction-diffusion equations with the singular reaction function are
studied by using the method of upper and lower solutions and monotone iterative
technique. Some of sufficient results on the existence and uniqueness of positive
global solutions or positive solutions for the boundary value problems are presented,
which are a generalization of some recent results in the area.

MSC: 35B09; 35K57; 35R10; 35J57; 35K67

Keywords: positive global solution; nonlocal boundary value problems; functional
convection reaction-diffusion equation; monotone iterative; upper-lower solutions

1 Introduction
Convection reaction-diffusion equations arised from various fields of applied sciences and
have received extensive attentions during the past several decades and many topics in the
mathematical analysis are well developed and applied to various fields of applied sciences.
Much of the developed theory in the earlier years can be found in [–] and the references
therein. However, most of the main concerns in the literature were the global existence of
the solutions, blow-up property of the solutions, the qualitative property of the solutions,
asymptotic behavior of global solutions and stability or instability of steady-state solutions.
In recent years, some attention on positive solutions has been developed (for examples to
see [–]). This paper is mainly aimed to study the existence and uniqueness of the
positive global solutions or positive solutions for a class of nonlinear nonlocal functional
convection reaction-diffusion problems with a singular reaction function which depends
on both the u and functional value K ∗ u, in which the boundary value problem under
consideration is as follows:

⎧
⎪⎪⎨

⎪⎪⎩

ut – ∇ · (D(x, t)∇u) + b(x, t) · ∇u = f (x, t, u, K ∗ u) in Q,

Bu = g(x, t) on ∂Q,

u(x, ) = u(x) in �.

(.)

Here Q := � × (, T], ∂Q := ∂� × (, T], in which � is a bounded domain in R
n with

smooth boundary ∂� and ∇ · (D(x, t)∇)+b(x, t) ·∇ := A is a second order uniformly elliptic
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operator which the coefficients are assumed to be smooth (say Hölder continuous). The
elements aij(x, t) of uniformly positive definite matrix D(x, t) := (aij(x, t)) (also called the
diffusion coefficient matrix) are in C(Q) and the vector b(x, t) := (b(x, t), . . . , bn(x, t)) is
the convection coefficient in which bi(x, t) ∈ C(Q) ( ≤ i ≤ n). By the uniform ellipticity of
A, there exists a positive constant a such that

aii(x, t) ≥ a for all x ∈ Q (i = , , . . . , n). (.)

B is one of the boundary operators

Bu = u on ∂Q,

Bu = αuν + βu, on ∂Q,

where uν denotes the outward normal derivative of u on �, α := α(x, t), β := β(x, t) are
both bounded nonnegative function everywhere on the boundary ∂Q, g := g(x, t) is a non-
negative function and the reaction function f (x, t, u, v) is, in general, a nonlinear function
of (u, v). The functional value K ∗ u is given by

K ∗ u :=
∫

�

k(x)u(x, t) dx.

The initial function u(x) is smooth, nonnegative and satisfies the compatibility condition
u(x) =  on ∂�. In addition, we impose the following main hypothesis on the function
k(x) and the function f (x, t, u, v) := f (x, t, u, K ∗ u).

Hypothesis (H) (i) The function k(x) is continuous nonnegative on � and possesses the
following property:

k =
∫

�

k(x) dx ≤ .

(ii) f (x, t, , ) ≥  and there exists a constant m >  such that f (x, t, u, v) is a C-function
in (u, v) and fv(x, t, u, v) ≥  for u, v ∈ [, m).

As in many other cases the existence or nonexistence of positive solutions for (.) is
closely related to the existence or nonexistence of positive solutions of the corresponding
the steady-state problems, so that we consider first the following nonlinear elliptic bound-
ary value problem:

⎧
⎨

⎩

–Au = f (x, u, K ∗ u) in �,

Bu = g(x) on ∂�.
(.)

Clearly, it is well known that if f = f (u, K ∗u) is independent of K ∗u and u(x) = . Then
by the condition (ii) of Hypothesis (H) there exist a parameter p >  and a domain �p such
that the problem

⎧
⎨

⎩

–Eu = f (u, K ∗ u) in �p,

u(x) =  on ∂�p,
(.)
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(here Eu := Au –
∑n

i= biuxi ) has a positive solution (cf. []). Furthermore, if f (, ) > 
and limu→m f (u, v) = ∞, then a unique global solution up of the following problem:

⎧
⎪⎪⎨

⎪⎪⎩

ut – Eu = f (u, K ∗ u) in �p ×R
+,

u(x, t) = , on ∂�p ×R
+,

u(x, ) = u(x) in �p,

(.)

exists and converges to a positive solution of (.) for a certain domain �p′ ⊂ �p (cf. [–
]). Here �p is a family of smooth bounded domains in R

n with p as the parameter such
that

�p ⊂ �q (p < q),
⋃

α

�p = R
n, and dia(�p) →  (p → ),

where dia(�p) denotes the diameter of the domain �p.
The purpose of this study is to establish the existence and uniqueness of the positive

global solutions or positive solutions for problems (.) or problem (.). This paper is
organized as follows. In Section , the discussion focuses on the positive solutions of non-
local nonlinear functional elliptic boundary value problems (.), we first present the max-
imal and minimal solutions and C+α nonnegative solutions by monotone iterative tech-
nique and Schauder estimates; lastly, some results on a positive local solution and the
uniqueness of positive solutions for problem (.) are derived. In Section , the discus-
sion focuses on the positive global solutions for nonlocal nonlinear convection reaction-
diffusion boundary value problems (.), we present some results on the unique fixed so-
lution, a strong solution for problem (.) by the means of Collatz monotone operator,
and we show that every smooth upper solution of the elliptic problem (.) gives rise to
a nonincreasing solution of the nonlocal convection reaction-diffusion problem (.) and
ut ≤  in � provided Hypothesis (H) holds; lastly, the sufficient and necessary conditions
of positive global solutions and the uniqueness of positive global solutions for problem
(.) are both given.

2 Positive solutions of nonlocal nonlinear functional elliptic boundary value
problems

It is well known that various assumptions in the previous literature have been made on
the reaction term f (x, t, u, K ∗ u) (we have K ∗ u = , t, or (x, t)) such as monotonicity,
positivity, convexity, concavity, or boundedness, etc., but these assumptions can be relaxed
considerably (if not altogether) by using the iteration scheme (cf. [, , ]). One of the
contributions in this paper, of course, in this section will be to emphasize the importance
of the applications of upper and lower solutions (cf. [, , , ]), which are defined by
the following.

Definition . A function ǔ in C(�) ∩ C(�) is called an upper solution of (.) if ǔ sat-
isfies the following inequalities:

⎧
⎨

⎩

–Aǔ ≥ f (x, ǔ, K ∗ ǔ) in �,

Bǔ ≥ g on ∂�.
(.)



Ma and Yan Boundary Value Problems  (2017) 2017:9 Page 4 of 13

Similarly, û in C(�) ∩ C(�) is called a lower solution of (.) if it satisfies the inequalities
(.) in reversed order. The pair û, ǔ are said to be ordered if û ≤ ǔ on �.

Now we suppose that there exist a pair of ordered upper and lower solutions ǔ, û to (.)
and define

〈û, ǔ〉 :=
{

u ∈ C(�̄); û ≤ u ≤ ǔ
}

,

γ :≥ max
{

–fu(x, t, u, v) – fv(x, t, u, v)k; u, v ∈ 〈û, ǔ〉}.
(.)

By using either u() = ǔ or u() = û as the initial iteration we can construct a sequence {u(k)}
from the following linear iteration process:

⎧
⎨

⎩

–(A – γ )u(k) = f (x, u(k–), K ∗ u(k–)) + γ u(k–) in �,

Bu(k) = g on ∂�.

Then we have an existence theorem of the maximal and minimal solutions first as follows.

Theorem . Let Hypothesis (H) hold, and let ǔ, û be a pair of ordered upper and lower
solutions of (.). If f (x, u, K ∗ u) is a smooth function on min û ≤ u ≤ max ǔ. Then there
exist two nonnegative solutions ū and u of the problem (.) such that û ≤ u ≤ ū ≤ ǔ.

Proof It is clear that û =  is a lower solution of (.) for domain � by Hypothesis (H).
We can assume fu(x, u, K ∗ u) is bounded below for x ∈ � and min û ≤ u ≤ max ǔ, so that
fu(x, u, v) + fv(x, u, v)k + γ >  for all x ∈ �, u in that interval and for given γ . Now we
define the mapping T as follows: w = Tu if

⎧
⎨

⎩

–(A – γ )w = f (x, u, K ∗ u) + γ u in �,

Bw = g on ∂�.

T is completely continuous, since it takes space Cα into C+α by the Schauder estimates
for elliptic equations. Furthermore, it is monotone in the sense of Collatz [], i.e., u ≤ u

implies Tu < Tu, provided that u and u are restricted to the set min û ≤ u, u ≤ max ǔ.
In fact, if u ≤ u then

⎧
⎨

⎩

–(A – γ )(Tu – Tu) = f (x, u, K ∗ u) – f (x, u, K ∗ u) + γ (u – u) in �,

B(Tu – Tu) =  on ∂�.
(.)

Define F(x, u, v) = f (x, u, v) + γ u. Then Fu(x, u, v) = fu(x, u, v) + fv(x, u, v)k + γ > . This im-
plies that F(x, u, K ∗ u) is strictly increasing on u, so

⎧
⎨

⎩

–(A – γ )(Tu – Tu) ≥  in �,

B(Tu – Tu) =  on ∂�.

Therefore, Tu < Tu in � by the strong maximum principle for elliptic operators.
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Now let u() = ǔ or u() = û be as the initial iteration and construct a sequence {u(k)} :=
{Tu(k–)} from the following linear iteration process:

⎧
⎨

⎩

–(A – γ )u(k) = f (x, u(k–), K ∗ u(k–)) + γ u(k–) in �,

Bu(k) = g on ∂�.

Denoting the sequence by {ū(k)} when u() = ǔ and by {u(k)} when u() = û. Then the se-
quence {ū(k)} converges monotonically from above to a maximal solution ūmax and {u(k)}
converges monotonically from below to a minimal solution umin by the continuity of T (cf.
[]). Thus ū := ūmax and u := umin are two fixed points of T , and furthermore, they are of
class C+α if f satisfies Hypothesis (H) for  < α < . This proves Theorem .. �

Corollary . If solutions {ūmax} and {umin} are constructed in the proof of Theorem ..
Then, for any solution w of the problem (.), which satisfies û ≤ w ≤ ǔ, we have umin ≤ w ≤
ūmax.

Proof In view of the proof of Theorem ., we have w = Tw, ū = Tǔ; since w ≤ ǔ, Tw < Tǔ,
or w < ū. By induction, w ≤ ū(k) for all k, hence w ≤ ūmax. Similarly, w ≥ umin, so umin ≤
w ≤ ūmax. �

Hypothesis (H) implies that û =  is a lower solution of (.) for domain �. In order to
find a positive solution, we thus only to find a positive upper solution. To do this, we have
a result which is similar to [] as follows.

Theorem . Let Hypothesis (H) hold. Then the problem (.) has at least one positive
local solution u+(x).

Proof Following the idea of the proof of Lemma . in [] (it is noticed that there Lu =
Au –

∑n
i= biuxi ), we may find a small smooth bounded domain �′ ⊂ � such that d =

dia(�′) satisfies the following inequality:

d
∣
∣
∣
∣
∂aii

∂xi
+ b

∣
∣
∣
∣ ≤ aii –

a


, x ∈ �′, i = , , . . . , n,

where a >  is a constant that appeared in (.). Without any loss of generality we may
assume that x′ = (, , . . . , ) and x′′ = (d, , . . . , ) are the two boundary points of �′ along
the x-axis. Let M be any constant satisfying M ≥ (f (x, , ) + γ )/a, and let ǔ(x) := M(d –
x

 ). Then ǔ ≥  on �′ and

–Aǔ = M
[

a + x

(
∂a

∂x
+ b

)]

≥ M
(

a – d
∣
∣
∣
∣
∂a

∂x
+ b

∣
∣
∣
∣

)

≥ Ma

≥ f (x, , ) + γ .
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Since ǔ ≤ Md and K ∗ ǔ ≤ Mkd there exists a constant δ >  such that

f (x, ǔ, K ∗ ǔ) = fU (x, ξ ,η)U + fV (x, ξ ,η)V + f (x, , )

≤ f (x, , ) + γ as d ≤ δ,

where U := ǔ, V := K ∗ ǔ, ξ := ξ (x) and η := η(x) are some intermediate values between ǔ
and  and between (K ∗ ǔ) and , respectively. This proves that, for some small d, ǔ(x) =
M(d – x

 ) is a positive upper solution of (.). Combining with the fact that û := u =  is
a lower solution of (.), it follows from Theorem . that there exists at least one positive
local solution u+(x) of the problem (.). �

As is well known, the monotone iterative scheme for elliptic boundary value problems is
based on a positivity lemma which plays a fundamental role in nonlinear elliptic boundary
value problems. A lemma (cf. []) under consideration is introduced here for the sake of
discussing the uniqueness of the positive solutions.

Lemma . Let c, α, β be bounded nonnegative functions which are not both identically
zero, and let w ∈ C(�) satisfy the following inequalities:

⎧
⎨

⎩

–Aw + cw ≥  in �,

Bw ≥  on ∂�.

Then w ≥  in �. Moreover, w >  in � unless w ≡ .

Now if u, u ∈ 〈û, ǔ〉, there exist two bounded nonnegative functions c(x), c(x) in �

such that function f (x, u, K ∗ u) satisfies the following inequality:

f (x, u, K ∗ u) – f (x, u, K ∗ u) ≥ –c(x)(u – u) – cK ∗ (u – u) in �. (.)

Then we have the following uniqueness result of positive solutions for problem (.).

Theorem . Let β be a function which not identically zero, and let ǔ(x), û(x) be a pair of
ordered nonnegative upper and lower solutions of (.). If the function f (x, u, K ∗ u) satisfies
(.), then the positive solution of the problem (.) in 〈û, ǔ〉 is unique.

Proof It is clear that positive solutions exist from Theorem .. Let u, u ∈ 〈û, ǔ〉 be two
positive solutions with u ≤ u. Suppose w = u – u, then w ≤  and by (.)

⎧
⎨

⎩

–Aw = f (x, u, K ∗ u) – f (x, u, K ∗ u) ≥  in �,

Bw = g(x) – g(x) =  on ∂�.

Applying Lemma . we then have u = u in �. The uniqueness of the positive solutions
is proved. �
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3 Positive global solutions of nonlocal functional reaction-diffusion boundary
value problems

In this section we go back to the problem (.) and devote ourselves to a discussion of
the existence and uniqueness of the positive global solutions or positive solutions. The
boundary operator Bu is one of the operators

Bu(x, t) = u(x, t) on ∂Q,

Bu(x, t) = αuν(x, t) + βu(x, t) on ∂Q, and

u(x, ) = u(x) in �.

(.)

Now we hereafter use Lu = ut – Au and recall the definition of a pair of ordered upper
and lower solutions on problem (.) first as follows.

Definition . For every finite T , a function ǔ(x, t) ∈ C(Q) ∩ C,(Q) is called an upper
solution of (.) if ǔ satisfies the following inequalities:

⎧
⎪⎪⎨

⎪⎪⎩

Lǔ ≥ f (x, t, ǔ, K ∗ ǔ) in Q,

Bǔ ≥ g(x, t) on ∂Q,

u(x, ) ≥ u(x) in �.

(.)

A lower solution û(x, t) ∈ C(Q) ∩ C,(Q) can be defined by reversing the inequalities in
(.), and the pair û, ǔ are said to be ordered if û ≤ ǔ on Q. The set of functions u ∈ C(Q)
such that û ≤ u ≤ ǔ in Q is again denoted by 〈û, ǔ〉.

Clearly, every solution of (.) is an upper solution as well as a lower solution. Given a pair
of upper and lower solutions ǔ(x, t), û(x, t), we choose γ as in (.) such that fu(x, t, u, v) +
fv(x, t, u, v)k + γ >  on the sector min û(x, t) ≤ u, v ≤ max ǔ(x, t). Defining ū() by

⎧
⎪⎪⎨

⎪⎪⎩

Lū() + γ ū() = f (x, t, ǔ, K ∗ ǔ) + γ ǔ in Q,

Bū() = g on ∂Q,

u()(x, ) = u(x) in �.

By the maximum principle for a parabolic equation it is easily seen that ū()(x, t) < ǔ(x, t)
in �. The mapping ǔ(x, t) → ū()(x, t) is denoted by ū() = J ǔ. J again is a monotone
operator in the sense of Collatz, and similarly doing u() = J û, by using the monotone ar-
guments go through exactly as before (cf. []), then we can obtain the following theorem.

Theorem . Let Hypothesis (H) hold, and let ǔ(x, t), û(x, t) in Q be a pair of upper and
lower solutions. Defining sequences {ū(m)} and {u(m)} by ū(m) := J ū(m–) and u(m) := J u(m–),
respectively, in which ū() := J ǔ and u() := J û. If there exists γ such that

fu(x, t, u, v) + fv(x, t, u, v)k + γ >  in min
�

û < u, v < max
�

ǔ,
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then the sequences {ū(m)} and {u(m)} are monotone decreasing and increasing, respectively,
and a unique fixed solution u satisfying

lim
m→∞ ū(m) = J u = u = J u = lim

m→∞ ū(m) (.)

is a strong solution of problem (.).

The following corollary is immediate from Theorem ., if g is time independent.

Corollary . Let Hypothesis (H) hold, and let ū(x) and u(x) be a pair of upper and lower
solutions of the following elliptic boundary value problem:

⎧
⎨

⎩

–Au = f (x, u, K ∗ u) in �,

Bu = g on ∂�.

Then, for any solution u(x) ∈ 〈u, ū〉, we can obtain a global regular solution u(x, t) which
satisfies u(x) ≤ u(x, t) ≤ ū(x) for all t > .

Now if u(x) is an upper solution of the elliptic problem (.), then as we have seen, it
can be made the starting point of a monotone decreasing sequence of iterates and we may
obtain the corresponding construction solution u(x, t) which is monotone decreasing on
time t. Thus we have the following result.

Theorem . Let Hypothesis (H) hold, and let ū(x) be an upper solution of the following
problem:

⎧
⎨

⎩

–Au = f (x, u, K ∗ u) in Q,

u =  on ∂�.
(.)

If u(x, t) is a solution of the following problem:

⎧
⎪⎪⎨

⎪⎪⎩

Lu = f (x, u, K ∗ u) in Q,

u =  on ∂Q,

u(x, ) = ū(x) in �.

(.)

Then ut ≤  in Q, i.e., u(x, t) is nonincreasing on t.

Proof Defining a sequence of functions {u(n)} in Q by u()(x, t) = ū(x) := ū, and for n ≥ 

⎧
⎪⎪⎨

⎪⎪⎩

Lu(n) + γ u(n) = f (x, u(n–), K ∗ u(n–)) + γ u(n–) in Q,

u(n) =  on ∂Q,

u(n)(x, ) = ū(x), in �.

(.)

Then the function sequence {u(n)(x, t)} is nondecreasing and

ū(x) ≥ u()(x, t) ≥ · · · ≥ u(n–)(x, t) ≥ u(n)(x, t) ≥ · · · . (.)
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In fact, we first have

⎧
⎨

⎩

L(u() – ū) + γ (u() – ū) = –[f (x, ū, K ∗ ū) – Aū] ≥ 

B(u() – ū) = g(x, t) – Bū ≤ .

This gives ū ≥ u() by the strong maximum principle. Furthermore, we can easily prove
u(n–)(x, t) ≥ u(n)(x, t) by induction for n ∈ N, the inequality (.) comes into existence.
Suppose u(n)(x, t) → v(x, t) (n → ∞), then the limit function v(x, t) must be a solution of
the following problem:

⎧
⎪⎪⎨

⎪⎪⎩

Lv = f (x, v, K ∗ v) in Q,

v =  on ∂Q,

v(x, ) = ū(x), in �.

Thus, by uniqueness, v(x, t) = u(x, t) in Q. Now we find by differentiating (.) with respect
to t,

⎧
⎨

⎩

L(u(n))t + γ (u(n))t = fU (x, U , V )Ut + fV (x, U , V )Vt in Q,

(u(n))t =  on ∂Q,

where U := u(n–), V := K ∗ u(n–). Clearly, the right hand side of the first equality above is
a bounded function in Q. Define, if δ > ,

wn =
u(n)(x, δ) – u(n)(x, )

δ
, x ∈ �,

then wn ≤  from (.) and (.), hence (u(n)(x, ))t ≤ , x ∈ �. Therefore (u(n))t ≤ 
(x ∈ �) by the strong maximum principle for parabolic equations. Similar to the proof of
Theorem ., we can show that u(n)(x, t) tends to u(x, t) in C+α on t in Q, thus ut(x, t) ≤ 
in Q. The proof is completed. �

Remark . Theorem . illustrates that every smooth upper solution ū(x) of the elliptic
problem (.) gives rise to a nonincreasing solution u(x, t) of the convection reaction-
diffusion problem (.), and ut ≤  in � provided Hypothesis (H) holds.

It is well known that the maximum principle of parabolic or elliptic boundary value
problems in the method of upper and lower solutions of convection reaction-diffusion
boundary value problems plays a fundamental role, especially in the construction of
monotone sequences. This role is reflected in Lemma . which is called the positive
lemma (see []), for the time-dependent and the steady-state problem, respectively.

Lemma . Let w ∈ C(Q) ∩ C,(Q) be such that

⎧
⎪⎪⎨

⎪⎪⎩

Lw + cw ≥  in Q,

Bw ≥  on ∂Q,

w(x, ) ≥  in �,

(.)
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where α,β ≥ , α +β >  on ∂Q, and c := c(x, t) is a bounded function in Q. Then w(x, t) ≥ 
in Q. Moreover, w(x, t) >  in Q unless w(x, t) ≡ .

In many convection reaction-diffusion boundary value problems as (.), if the reaction
term f (x, t, u, K ∗ u) is a C-function on u and K ∗ u, and if the following data possesses
the nonnegative property:

f (x, t, , ) ≥ , g(x, t) ≥ , u(x) ≥ , (.)

then combining with the fact every solution of the problem (.) is an upper solution as
well as a lower solution, as a result the existence of a bounded global solution in � × R

+

follows (cf. []).

Theorem . If there exist two positive constants c, c with c < c such that f (x, t, u, K ∗u)
is a C-function on u, K ∗ u ∈ [c, c], and

f (x, t, c, K ∗ c) ≥ , f (x, t, c, K ∗ c) ≤  in � ×R
+,

cβ(x, t) ≤ g(x, t) ≤ cβ(x, t) on ∂� ×R
+.

(.)

Then, for any u ∈ [c, c], problem (.) has a unique bounded global solution u(x, t) in
� ×R

+ such that u(x, t) ∈ [c, c].

Proof Let ǔ = c, û = c, then by (.)

⎧
⎪⎪⎨

⎪⎪⎩

Lǔ =  ≥ f (x, t, c, K ∗ c) = f (x, t, ǔ, K ∗ ǔ) in � ×R
+,

Bǔ = αǔν + βǔ = cβ(x, t) ≥ g(x, t) on ∂� ×R
+,

ǔ = c in �.

This shows that ǔ = c is an upper solution when u ≤ c. The same reasoning shows that
û = c is a lower solution when u ≥ c. The result of the theorem follows from Theo-
rem .. �

Remark . We see, from the proof of Theorem ., that the condition (.) shows that
the pair c, c is a pair of positive upper and lower solutions. So, as a result, Theorem .
may be given in another form as follows.

Corollary . If there exist ǔ, û which are a pair of positive upper and lower solutions such
that f (x, t, u, K ∗ ǔ) is a C-function in u, K ∗ ǔ ∈ [û, ǔ] and

ûβ(x, t) ≤ g(x, t) ≤ ǔβ(x, t) on ∂� ×R
+,

then, for any u ∈ 〈û, ǔ〉, problem (.) has a unique bounded global solution u(x, t) in � ×
R

+ such that u(x, t) ∈ 〈û, ǔ〉.

Clearly, in this situation û =  is a lower solution of the problem (.). An immediate
consequence from Theorem . is the following sufficient and necessary conditions for
the existence of positive solutions.
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Theorem . Let Hypothesis (H) hold, and let condition (.) hold and not all the three
functions are identically zero. If f (x, t, u, K ∗ u) is a C-function on u, K ∗ u ∈ R

+. Then
problem (.) has a unique positive solution if and only if there exists a positive upper solu-
tion.

We are now in a position to give the uniqueness result of positive global solution for
problem (.) as follows.

Theorem . Under Hypothesis (H), let function f (x, t, u, K ∗ u) be a C-function in u,
K ∗ u ∈ R

+, and let the condition (.) hold and not all the three functions are identically
zero. If for every finite time T there is a bounded function M(x, t) such that for u ≥ 

fu(x, t, u, v)u + fv(x, t, u, v)v ≤ M(x, t)u in Q, (.)

then for problem (.) there exists a unique positive global solution.

Proof By Hypothesis (H), the mean-value theorem gives

f (x, t, u, K ∗ u) = fu(x, t, ξ ,η)u + f(K∗u)(x, t, ξ ,η)(K ∗ u) + f (x, t, , )

≥ fu(x, t, ξ ,η)u in Q,
(.)

where ξ := ξ (x, t) and η := η(t) are some intermediate values between u and  and between
t and , respectively.

Now if we write c(x, t) := –fu(x, t, ξ ,η). Then the solution u satisfies the inequalities (.),
which implies that either u =  or u >  in Q. Since u is positive in Q, otherwise u = 
only if the three functions in (.) all are identically zero. Thus u := û may be referred to
a positive lower solution of problem (.). Suppose that w is a solution of the following
problem:

⎧
⎪⎪⎨

⎪⎪⎩

Lw = Mw + f (x, t, , ) in Q,

Bw = g(x, t) on ∂Q,

w(x, ) = u(x) in �.

Then w must be a positive upper solution of the problem (.). In fact, writing ǔ := w and
applying the mean-value theorem, ǔ satisfies

f (x, t, ǔ, K ∗ ǔ) = fǔ(x, t, ξ ,η)ǔ + f(K∗ǔ)(x, t, ξ ,η)(K ∗ ǔ) + f (x, t, , ),

where ξ := ξ (x, t) and η := η(t) are some intermediate values between ǔ and  and between
K ∗ ǔ and , respectively. Combining with Hypothesis (H) and the inequality (.) we have

f (x, t, ǔ, K ∗ ǔ) ≤ M(x, t)ǔ + f (x, t, , ) in Q.
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Hence

⎧
⎪⎪⎨

⎪⎪⎩

Lǔ = Mǔ + f (x, t, , ) ≥ f (x, t, ǔ, K ∗ ǔ) in Q,

Bǔ = g(x, t) ≥  on ∂Q,

ǔ(x, ) = u(x) ≥  in �.

That is, ǔ is a positive upper solution of the problem (.). Therefore, a unique positive
global solution is found immediately from Theorem .. This proves the theorem. �

Remark . The condition (.) in Theorem . ensures the existence of a unique posi-
tive global solution in �×R

+ but is not necessarily uniformly bounded. As for the discus-
sion of bounded positive global solutions of the problem (.) will be still a very interesting
work.
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