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Abstract
Fourth order eigenvalue problems with periodic and separated boundary conditions
are considered. One of the separated boundary conditions depends linearly on the
eigenvalue parameter λ. These problems can be represented by an operator
polynomial L(λ) = λ2M – iαλK – A, where α > 0,M and K are self-adjoint operators.
Necessary and sufficient conditions are given such that A is self-adjoint.
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1 Introduction
Higher order linear differential equations occur in applications with or without the eigen-
value parameter in the boundary conditions. Such problems are realized as operator poly-
nomials, also called operator pencils. Higher order eigenvalue problems are experienc-
ing slow but steady developments. Some recent developments of higher order problems
whose eigenvalue boundary conditions may depend on the eigenvalue parameter, includ-
ing asymptotics of the eigenvalues can be found in [–].

The generalized Regge problem and the small transversal vibration of a homogeneous
beam compressed or stretched problems have boundary conditions with partial first
derivatives with respect to the time variable t. The self-adjoint sixth order problem [],
the self-adjoint higher order problems [] and the fourth order Birkhoff regular problems
[] also have the same type of boundary conditions described above. The mathematical
model of these problems leads to eigenvalue problems with the eigenvalue parameter λ

occurring linearly in the boundary conditions. Such problems have an operator represen-
tation of the form

L(λ) = λM – iλK – A (.)

in the Hilbert space H = L(I) ⊕ Ck , where I is an interval, k is the number of eigenvalue
dependent boundary conditions, M, K , and A are coefficient operators.
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A classification of separated eigenvalue boundary conditions of nth order problems for
which all the coefficient operators of the operator pencil (.) are self-adjoint is given in [],
Theorem ., while an equivalent classification for fourth order problems is given in [].
The boundary conditions investigated in [, ] are all separated. Möller and Pivovarchik
[] give necessary and sufficient conditions for an operator to be self-adjoint in terms of
the null and image spaces of matrices defined by any type of boundary conditions for a
nth order differential equation.

In this paper we extend the work of [], using the same fourth order differential equation
(.), to a class of boundary conditions, where two boundary conditions are periodic or
anti-periodic at the end points, the remaining two boundary conditions are separated, one
of them depends linearly on the eigenvalue parameter λ. The genesis of this problem is the
problem studied by Möller and Pivovarchik []. In that problem the boundary condition
that has dependence on the eigenvalue parameter has a specific meaning: that the hinge
connection at the right end is subjected to a viscous friction α >  in the hinge. In keeping
with the pattern of the boundary conditions of the operator studied in [], we confine our
boundary conditions such that the two terms of the boundary condition that depends on
the eigenvalue parameter are at one end point of the interval and the order of the derivative
of the eigenvalue dependent part of this boundary condition is one less than the order of
the eigenvalue independent part. We have associated to the problem under consideration
the operator polynomial

L(λ) = λM – iαλK – A, (.)

where α > , while M and K are self-adjoint operators. We give necessary and sufficient
conditions for the operator A to be self-adjoint.

We give basic definitions and properties needed to conduct the study under inves-
tigation in Section . In Section  we prove that a particular fourth order periodic
eigenvalue problem is self-adjoint using two different characterizations of self-adjoint
operators. These characterizations are the Möller and Pivovarchik characterization for
general boundary conditions [] and the Möller and Zinsou characterization for sepa-
rated boundary conditions [, ]. In Section  we present, for the fourth order eigenvalue
problems investigated in this paper, the two different characterizations of self-adjoint op-
erators used in Section  as matrix equations. The Möller and Pivovarchik characteri-
zation is given by U(N(U)) = R(U∗), while the Möller and Zinsou characterization is
W (N(U)) = R(U∗

 ), where U is a  ×  matrix, U is a  ×  matrix, U is a  ×  ma-
trix and W a  ×  matrix of rank . Finally, in Section  we consider a class of periodic
eigenvalue problems consisting of two periodic boundary conditions and two separated
boundary conditions, one of them depends on the eigenvalue parameter. We derive nec-
essary and sufficient conditions for which the coefficient operator A is self-adjoint and we
provide the structure of the boundary conditions using singular value decomposition.

2 Preliminaries
A Sobolev space is defined as

W m
 (, a) :=

{
g ∈ L(, a) : ∀j ∈ {, . . . , m} g(j) ∈ L(, a)

}
,

where a >  and m ∈N.
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Let n = k where k ∈N. We consider an nth order differential expression � of the form

�y =
k∑

m=

(
gmy(m))(m) (.)

on an interval [, a], a > , where gm ∈ W m
 (, a), m = , . . . , k, are real valued functions

and |gk(x)| > ε for some ε >  and x ∈ [, a]. The differential expression �y is well defined
for y ∈ W n

 (, a) in which case �y ∈ L(, a). The operator L defined by

D(L) = W n
 (, a), Ly = �y, y ∈ W n

 (, a), (.)

is called the maximal operator associated with the differential expression � on [, a].

Definition . Let y ∈ W n
 (, a). For j = , . . . , n the jth quasi-derivative of y, denoted y[j],

is recursively defined by

y[j] = y(j) for j = , . . . , k – ,

y[k] = gky(k),

y[j] =
(
y[j–])′ + gn–jy(n–j) for j = k + , . . . , n.

The quasi-derivatives depend on the differential expression (.). They are convenient
for the formulation of the Lagrange identity when dealing with differential operators which
have fairly general coefficients. Let

Y =

(
y
c

)

, Z =

(
z
d

)

, W =

(
w
e

)

(.)

be elements of the Hilbert space L(, a) ⊕C, y, z, w ∈ W n
 (, a).

A formulation of the Lagrange identity and Green’s formula is quoted below from [],
Theorem ...

Theorem . For a differential expression � and y, z ∈ W n
 (, a), the Lagrange identity

(�y)z – y(�z) =
d

dx
[y, z] (.)

holds on [, a] almost everywhere, where

[y, z] =
k∑

j=

(–)j(y[j–]z[n–j] – y[n–j]z[j–]
)

(.)

and Green’s formula

(�y, z) – (y,�z) = [y, z](a) – [y, z]() (.)

is valid, where (·, ·) is the inner product in L(, a).
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Let r, q ∈ N, U a r × n matrix, U a q × n matrix, V a q × n matrix. Then the
operator A in the Hilbert space L(, a) ⊕C is defined by

D(A) =
{

Y ∈ W n
 (, a) ⊕C, UŶ = , c = UŶ

}
, (.)

AY =

(
�y

V Ŷ

)

, (.)

where

Ŷ =
(
y(), . . . , y[n–](), y(a), . . . , y[n–](a)

)ᵀ. (.)

For m ∈N define
⎧
⎨

⎩
Jm, = ((–)s–δs,m+–t)m

s,t=, Jm, =
(  Jm,

–J∗m, 
)
,

Jm =
( –Jm, 

 Jm,

)
.

(.)

Finally define

U =

⎛

⎜
⎝

J

V
–U

⎞

⎟
⎠ , (.)

U =

⎛

⎜
⎝

U  
U –I 
V  –I

⎞

⎟
⎠ . (.)

Before stipulating a criterion of self-adjointness, we give a proposition which states con-
ditions under which Z ∈ D(A∗), quoted from [], Proposition ...

Proposition . Assume that rank
( U

U

)
= r + q. Then Z ∈ D(A∗) if and only if Z ∈

W n
 (, a) ⊕C and there is e ∈ C such that

[y, z](a) – [y, z]() + d∗V Ŷ – e∗UŶ =  (.)

for all Ŷ ∈ N(U). For Z ∈ D(A∗), e is unique and

A∗Z =

(
�z
e

)

.

A criterion of self-adjointness as given by [], Theorem .., is quoted below.

Theorem . Assume that

rank

(
U

U

)

= r + q.

Then A is self-adjoint if and only if

U
(
N(U)

)
= R

(
U∗).
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In addition to determining if A is self-adjoint, we use [], Theorem .., quoted below
to conclude that A is bounded below.

Theorem . Assume that A is self-adjoint. Then A has a compact resolvent. Assume ad-
ditionally that

(i) (–)kgk > ,
(ii) each component of UŶ either contains only quasi-derivatives y[m] with m < k or

contains only quasi-derivatives m ≥ k,
(iii) each component of UŶ either contains only quasi-derivatives y[m] with m < k or

contains only quasi-derivatives m ≥ k,
(iv) for each component of UŶ which only contains quasi-derivatives y[m] with m ≥ k,

the corresponding component of V Ŷ only contains quasi-derivatives y[m] with m < k.
Then A is bounded below.

Any m × n matrix can be decomposed into a diagonal matrix of its singular values and
orthogonal matrices of order m and n as stated in [], Theorem ., quoted below as

Theorem . Any m × n real matrix �, with m ≥ n, can be factorized as

� = �

(
	



)


ᵀ, (.)

where � ∈R
m×m and 
 ∈R

n×n are orthogonal, and 	 ∈R
n×n is diagonal,

	 = diag(σ,σ, . . . ,σn),

where σ ≥ σ ≥ · · · ≥ σn ≥ .

3 A particular problem
The boundary value problem with a fourth order differential equation

y()(λ, x) –
(
gy′)′(λ, x) = λy(λ, x), (.)

together with the following boundary conditions:

y(λ, ) – y(λ, a) = , (.)

y[](λ, ) – y[](λ, a) = , (.)

y′(λ, ) = , (.)

y′′(λ, a) + iαλy′(λ, a) = , (.)

defined on the interval [, a], where a > , α > , and g ∈ C[, a] initiates the study. The
boundary conditions (.) and (.) are periodic, while the boundary conditions (.) and
(.) are separated, the boundary condition (.) is also dependent on the eigenvalue pa-
rameter λ. We will establish an operator approach to this problem by defining operators A,
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K , and M, which are coefficients of the operator polynomial in the eigenvalue parameter;
see (.) below. Then the eigenfunctions of the operator polynomial L given by

L(λ) = λM – iαλK – A (.)

correspond to the non-trivial solutions of (.)-(.), where the operators A, K , and M are
defined by

D(A) =

{

Y =

(
y
c

)

: y ∈ W 
 (, a), y(λ, ) – y(λ, a) = y′(λ, ) = ,

y[](λ, ) – y[](λ, a) = , c = y′(λ, a)

}

,

D(K) = D(M) = L(, a) ⊕C,

and

A

(
y
c

)

=

(
y() – (gy′)′

y′′(a)

)

, K =

(
 
 

)

and M =

(
I 
 

)

.

Proposition . The operators A, K , and M are self-adjoint, M and K are bounded, K
has rank , M ≥ , K ≥ , M + K � , N(M) ∩ N(A) = {} and A is bounded below and has
a compact resolvent.

Proof The statements about K and M are obvious. If (y, c)ᵀ ∈ N(M) ∩ N(A) then (y, c)ᵀ ∈
N(M) gives y = , and (y, c)ᵀ ∈ D(A) where c = y′(a) leads to c = y′(a) = . Hence N(M) ∩
N(A) = {}. We are going to use Theorem . to verify that A is self-adjoint. By the differ-
ential expression (.) with n = , g = , g = –g ∈ C[, a] and g =  one represents (.)
as

�y = (gy) +
(
gy′)′ +

(
gy′′)′′ = y() –

(
gy′)′ = L(λ)y. (.)

The quasi-derivatives associated with (.) are

y[] = y, y[] = y′, y[] = y′′, y[] = y() – gy′, y[] = y() –
(
gy′)′.

The number of eigenvalue independent boundary conditions as given by (.)-(.) cor-
responds with r = , leaving only one boundary condition dependent on the eigenvalue
parameter meaning that q = . U is a  ×  matrix and both U and V are  ×  matrices
given by

U =

⎛

⎜
⎝

    –   
       –
       

⎞

⎟
⎠ , (.)

U =
(

       
)

, (.)

V =
(

       
)

. (.)
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Then the operator A can also be defined in terms of these matrices as

AY =

(
�y

V Ŷ

)

,

D(A) =
{

Y ∈ W 
 (, a) ⊕C, UŶ = , c = UŶ

}
,

similar to (.) and (.). We now specify the matrices J, U, and U as

J =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

   –    
       
 –      
       
       
      – 
       
    –   

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (.)

U =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

   –    
       
 –      
       
       
      – 
       
    –   
       
     –  

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (.)

and

U =

⎛

⎜⎜⎜⎜⎜⎜
⎝

    –     
       –  
         
        – 
         –

⎞

⎟⎟⎟⎟⎟⎟
⎠

. (.)

J is a  ×  matrix, U is a  ×  matrix and U is a  ×  matrix where I in (.) is a
 ×  matrix.

We find N(U) and R(U∗) as

N(U) = span{e + e, e, e + e, e, e} ⊂C
 (.)

and

R
(
U∗) = span{e – e, e – e, e, e – e, e – e} ⊂ C

. (.)

Then we compare U(N(U)) with R(U∗), showing that they are equal and A is self-adjoint
as postulated by Theorem .. Lastly, A has a compact resolvent in view of Theorem ..
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The coefficient of the highest derivative in the differential component of A is g =  >  as
required by Theorem .(i). Particular values in assumptions of Theorem .(ii)-(iv) for
(.)-(.) are

UŶ =

⎛

⎜
⎝

y() – y(a)
y[]() – y[](a)

y[]()

⎞

⎟
⎠ , (.)

UŶ = y[](a), (.)

V Ŷ = y[](a). (.)

The first and third component of UŶ have quasi-derivatives of order zero and one. Hence
their order given by m is less than k = , half the order of the differential equation and the
second component has order three which is m =  ≥ k = . The component of UŶ has
order one which is less than k. A does not have components of UŶ with quasi-derivatives
that are greater than k and the condition on V Ŷ is irrelevant. Thus all the conditions of
Theorem . are fulfilled and A is bounded below. �

An alternative criterion is used to show that (.)-(.) is self-adjoint. First, define

W = J + U∗
 V – V ∗U. (.)

Then W (N(U)) and R(U∗
 ) are given by

W
(
N(U)

)
= span{e – e, e, –e + e} ⊂C

× (.)

and

R
(
U∗


)

= span{e – e, e, e – e} ⊂C
×. (.)

A comparison of W (N(U)) and R(U∗
 ) shows that W (N(U)) = R(U∗

 ), which is a necessary
and sufficient condition of self-adjointness, see Theorem . on p..

4 Periodic and a single eigenvalue dependent boundary condition
Consider on the interval [, a], where a > , the differential equation (.) with boundary
conditions

UŶ = , (.)

(V + iαU)Ŷ = , (.)

where the matrices U, U, and V are of the following form:

U =
(
u

i,j
),

i=,j=, (.)

U =
(
u

i,j
),

i=,j=, (.)

V = (vi,j),
i=,j=. (.)
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Consider a particular case where U and V contain exactly one non-zero element such
that the non-zero element of U is in a different column to the non-zero element of V and
the non-zero elements of U are positioned such that the first column of (.) has linearly
independent rows. The operator A in (.) is given by

AY =

(
�y

V Ŷ

)

,

D(A) =
{

Y ∈ W 
 (, a) ⊕C, UŶ = , c = UŶ

}
.

We recall that the dimension of the domain of a linear map between two spaces is given
by the sum of the dimension of the null space and the rank of this linear map. In addition,
two finite dimensional spaces coincide if one space is contained in the other and their
dimensions are equal. A vector space C

 acted upon by these three matrices U, U, and
V means that rank U and rank V are given by

 – dim
(
N(U)

)
=  and  – dim

(
N(V )

)
= ,

respectively.

Proposition . Let U and V contain exactly one non-zero element such that the non-
zero element in U is in a different column to the non-zero element in V . Let

W = J + U∗
 V – V ∗U. (.)

Then U∗
 V and V ∗U are  ×  matrices of rank , U∗

 V – V ∗U is an  ×  matrix of rank

 and W is an  ×  matrix of rank at least .

Proof Let the non-zero element of V be at j = p and that of U be at j = s, s �= p. Then

U∗
 V =

((
u

ij
),

i=,j=

)ᵀ(vij),
i=,j= =

(
ujvi

),
j=,i=,

has exactly one non-zero element, usvp, at j = s, i = p. The position of the only non-zero
element of V ∗U is in row p and column s, thus U∗

 V – V ∗U has rank . J in (.) is
invertible with rank  and U∗

 V – V ∗U has rank . Hence, the rank of W is at least . �

Remark . Whenever Y ∈ D(A) then Ŷ ∈ N(U), and for every u ∈ N(U) there is a
Y ∈ D(A) such that Ŷ = u.

Corollary . If A is self-adjoint then rank W =  and W (N(U)) = R(U∗
 ).

Proof Proposition . states that Z ∈ D(A∗) if and only if Z ∈ W 
 (, a) ⊕ C and there is

e ∈ C such that

[y, z](a) – [y, z]() + d∗V Ŷ – e∗UŶ =  (.)
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for all Ŷ ∈ N(U). For Z ∈ D(A∗), e is unique and

A∗Z =

(
�z
e

)

.

We use (.) for W , Z ∈ D(A) = D(A∗) and

[y, z](a) – [y, z]() = Ẑ∗JŶ

together with values of e and d as implied by (.) and (.), respectively, which we sub-
stitute into (.) to get

 = [y, z](a) – [y, z]() + d∗V Ŷ – e∗UŶ

= [y, z](a) – [y, z]() + (UẐ)∗V Ŷ – (V Ẑ)∗UŶ

= Ẑ∗JŶ + Ẑ∗U∗
 V Ŷ – Ẑ∗V ∗UŶ

= Ẑ∗(J + U∗
 V – V ∗U

)
Ŷ

= Ẑ∗W Ŷ ,

where Ŷ and Ẑ are as defined in (.). This means that W Ŷ ⊥ Ẑ, i.e. W (N(U)) ⊂
(N(U))⊥ = R(U∗

 ). We use this containment of W (N(U)) in R(U∗
 ) to compare their di-

mensions as

 = rank U∗
 ≥ dim

(
W

(
N(U)

))

≥ dim
(
N(U)

)
– ( – rank W )

= – + rank W . (.)

Hence rank W ≤ . By Proposition . rank W = , and hence all the inequalities in (.)
are equalities and dim(W (N(U))) = dim(R(U∗

 )) holds. Thus W (N(U)) = R(U∗
 ). �

Theorem . The following statements are equivalent:
(i) A is self-adjoint,

(ii) U(N(U)) = R(U∗),
(iii) W (N(U)) = R(U∗

 ).

Proof Suppose (i) holds. Then Corollary . implies (iii).
Suppose (iii) holds. Let u ∈ N(U). Then there is v ∈ D(U∗

 ) such that Wu = U∗
 v i.e.

U∗
 v = Wu =

(
J + U∗

 V – V ∗U
)
u. (.)

Consider

Uu =

⎛

⎜
⎝

J

V
–U

⎞

⎟
⎠u =

⎛

⎜
⎝

Ju
Vu

–Uu

⎞

⎟
⎠ . (.)
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Let b = –Vu and c = Uu i.e.  = Vu + b and  = Uu – c and substitute (.) below. Then

⎛

⎜
⎝

Ju
Vu

–Uu

⎞

⎟
⎠ =

⎛

⎜
⎝

Ju + U∗
 (Vu + b) – V ∗(Uu – c)

–b
–c

⎞

⎟
⎠

=

⎛

⎜
⎝

(J + U∗
 V – V ∗U)u + U∗

 b + V ∗c
–b
–c

⎞

⎟
⎠

=

⎛

⎜
⎝

U∗
 v + U∗

 b + V ∗c
–b
–c

⎞

⎟
⎠

=

⎛

⎜
⎝

U∗
 U∗

 V ∗

 –I 
  –I

⎞

⎟
⎠

⎛

⎜
⎝

v
b
c

⎞

⎟
⎠ = U∗

⎛

⎜
⎝

v
b
c

⎞

⎟
⎠ .

Thus U(N(U)) ⊂ R(U∗) and dim(U(N(U))) ≤ rank U∗. The map U : C →C
, in (.),

has dim(N(U)) = dim(C) – rank U =  –  =  as given by the rank nullity theorem. Simi-
larly U with the first column given by (.)-(.) has rank U =  thus dim(N(U)) = rank U∗.
We then conclude that U(N(U)) = R(U∗) by showing that U is injective i.e.  is the only
element in N(U). Suppose Uu = . Then

 = Uu =

⎛

⎜
⎝

Ju
Vu

–Uu

⎞

⎟
⎠ , (.)

and Ju =  implies u =  since J is invertible. Hence (ii) follows.
Suppose that (ii) holds. Then by Theorem . we have (i). �

5 Further examples of self-adjoint operators with periodic and a single
eigenvalue dependent boundary conditions

Keeping with the pattern of the boundary conditions of the operator studied in [], using
the differential equation (.) and Theorem ., we identify the boundary conditions of
the self-adjoint operators under investigation as follows:

y[β](λ, ) – εy[β](λ, a) = , (.)

y[β](λ, ) – εy[β](λ, a) = , (.)

δy[β](λ, ) + ( – δ)y[β](λ, a) = , (.)

( – δ)
(
y[β](λ, ) + εiαλy[β](λ, )

)
= δ

(
y[β](λ, a) + εiαλy[β](λ, a)

)
, (.)

where βm ∈ {, , , }, m = , , . . . , ; the βm are distinct for m = , ,  i.e. βs �= βm for s �= m
with s, m = , , . β, β, β, β are different from each other and β = β –, β < β, εj = ±
for j = , ,  and δ ∈ {, }. We give necessary and sufficient conditions for which the main
operator A is self-adjoint.
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Theorem . The quadratic operator polynomial representing the fourth order differential
equation (.) with the boundary conditions (.)-(.) is self-adjoint if and only if these
boundary conditions have the following structure:

εε = , (.)

ε = – for δ = , (.)

ε =  for δ = , (.)

β = , (.)

β = , (.)

β = , . (.)

Proof Consider the matrices U, U, and V of the form (.)-(.). Let the non-zero ele-
ments of U and V be at u

, and v,, respectively. Using the representation of (.), these
corresponds to β =  and β = . Let ε = –, β = , ε = –, β = , ε = – and β = .
Starting with this choice of U and V , which implies that δ = , U given by these param-
eters is

U =

⎛

⎜
⎝

    –   
       –
       

⎞

⎟
⎠ . (.)

Then we consider U and V where the non-zero elements are at u
, and v,, respectively,

correspond to β = , β = , δ =  and ε = . A matrix U with such periodic boundary
conditions is given by

U =

⎛

⎜
⎝

    –   
       
       

⎞

⎟
⎠ . (.)

The assumption of Theorem . is fulfilled since rank
( U

U

)
=  for both (.) and (.)

together with their corresponding U. For each U we compute U(N(U)) and the corre-
sponding R(U∗). The result is that U(N(U)) = R(U∗) for each of the two cases and any
of the combination of the parameters stated. Thus the operator A for each of the  cases
is self-adjoint. A self-adjoint quadratic operator polynomial representing the fourth order
differential equation (.) with boundary conditions that satisfy (.)-(.) satisfies

U
(
N(U)

)
= R

(
U∗).

If we represent boundary conditions with

U =

⎛

⎜
⎝

a    εa   
   b    εb
 c      

⎞

⎟
⎠ , (.)

U =
(

     εd  
)

, (.)
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V =
(

      e 
)

, (.)

such that (.)-(.) is satisfied. Then, using Matlab, we prove that if U(N(U)) = R(U∗)
then the values of parameters β , δ, and ε are as given by (.)-(.). �

We find an unifying structure of boundary conditions that are periodic or anti-periodic
at the end points of the interval and have an eigenvalue parameter dependence in one of
them as described by Theorem .. The matrix U defined below was decomposed into its
singular values and orthogonal matrices in an effort to find a relationship in all the cases.

Define a matrix

U :=

⎛

⎜
⎝

U

U

V

⎞

⎟
⎠ . (.)

All the U that result from (.)-(.) and satisfy Theorem . are such that each U column
has at most one non-zero element and each of its rows has at least one non-zero element.

Theorem . The self-adjoint quadratic operator polynomial representing the fourth or-
der differential equation (.) with boundary conditions (.)-(.) that satisfy Theorem .
has

U = 

(
	 

)
�ᵀ,

where 
 = I, 	 = diag(
√

,
√

, , , ) and �ᵀ ∈ R
×.

Proof Consider (.)-(.) with β = , β = , β = , β = , β = , δ =  and ε, ε, ε = .
This choice of parameters results in U, U, and V given in (.)-(.). We then compute
singular values of U with

Uᵀ
 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

    
    
    
    

–    
    
    
 –   

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (.)

Then

UUᵀ
 =

⎛

⎜⎜⎜⎜⎜⎜
⎝

    
    
    
    
    

⎞

⎟⎟⎟⎟⎟⎟
⎠

. (.)
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The eigenvalues of UUᵀ
 are σ =  with eigenvectors (    )ᵀ, (    )ᵀ and σ = 

with (    )ᵀ, (    )ᵀ, and (    )ᵀ. We construct a matrix C whose columns are
the eigenvectors of UUᵀ

 and order these eigenvectors by the magnitude of their eigen-
values i.e. C = (e e e e e). Then we implement the Gram-Schmidt orthonormalization
process which in this case is 
 = I×. We repeat the process with Uᵀ

 U to find �ᵀ. The
eigenvalues of Uᵀ

 U are , , and  with multiplicities of two, three and three, respectively.
We list the eigenvectors of Uᵀ

 U as columns of D = (di)
 ordered below in decreasing

magnitude of their eigenvalues as

d = –
√


(e – e),

d = –
√


(e – e),

d = e,

d = e,

d = e,

d = –
√


(e + e),

d = e,

d = –
√


(e + e).

Then we project the di and normalize them as before, which gives

�ᵀ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎝

 √
     – √

 
       
     – √

  – √


√
     – 

  


 – √
     – √

 
       
       

– √
     – 

  


⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

ᵀ

. (.)

The operators have the same 
 and 	 with �ᵀ being the only distinguishing matrix in the

decompositions of their U, where W = J + U∗
 V – V ∗U, and U =

( J
V

–U

)
. �
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