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Abstract
In this paper, we look for periodic solutions of planar Hamiltonian systems

{
x′ = f (y) + p1(t, y),
y′ = –g(x) + p2(t, x).

By using the Poincaré-Birkhoff twist theorem, we prove the existence and multiplicity
of periodic solutions of the given system when f satisfies an asymmetric condition
and the related time map satisfies an oscillating condition.
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1 Introduction
In this paper, we are concerned with the existence and multiplicity of periodic solutions
of planar Hamiltonian systems

{
x′ = f (y) + p(t, y),
y′ = –g(x) + p(t, x),

(.)

where f , g : R → R are continuous, pi : R → R (i = , ) are continuous and π-periodic
with the first variable t.

In the case when f (y) ≡ y, p(t, y) ≡  and p(t, x) = p(t), system (.) becomes

{
x′ = y,
y′ = –g(x) + p(t),

which is equivalent to the differential equation

x′′ + g(x) = p(t). (.)

The existence and multiplicity of periodic solutions of Eq. (.) have been widely studied
in the literature (see [–] and the references therein). Recently, the periodic solutions of
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planar Hamiltonian systems have been studied with an increasing interest (see [–]). In
[], Fonda and Sfecci studied the periodic solutions of the planar Hamiltonian systems of
the type

x′ = g(t, y), y′ = –g(t, x). (.)

Assume that the following conditions hold:

a+ ≤ lim inf
y→+∞

g(t, y)
y

≤ lim sup
y→+∞

g(t, y)
y

≤ a+,

a– ≤ lim inf
y→–∞

g(t, y)
y

≤ lim sup
y→–∞

g(t, y)
y

≤ a–,

and

b+ ≤ lim inf
x→+∞

g(t, x)
x

≤ lim sup
x→+∞

g(t, x)
x

≤ b+,

b– ≤ lim inf
x→–∞

g(t, x)
x

≤ lim sup
x→–∞

g(t, x)
x

≤ b–,

where a±, a±, b± and b± are positive constants. It was proved in [] that system (.) has
at least one π-periodic solution provided that there exists an integer n >  such that

(
√a+

+
√a–

)(
√
b+

+
√
b–

)
<


n

(.)

and

(
√
a+

+
√
a–

)(
√
b+

+
√
b–

)
>


n + 

. (.)

In the present paper, we shall deal with the periodic solutions of system (.) when the non-
resonant conditions (.) and (.) do not hold. Assume the following conditions hold:

(h) g satisfies lim|x|→+∞ sgn(x)g(x) = +∞;
(h) there exists a constant L >  such that, for all x, y ∈ R, |g(x) – g(y)| ≤ L|x – y|;
(h) the limits lim|y|→+∞ pi(t,y)

y =  (i = , ) hold uniformly with respect to t ∈ [, π ];
(h) there are two positive constants a and b such that

lim
y→+∞

f (y)
y

= a, lim
y→–∞

f (y)
y

= b.

It is well known that the time map plays an important role in studying the periodic so-
lutions of Eq. (.) (see [, , ] and the references therein). In this paper, we also use the
time map to study the periodic solutions of system (.). Let us set

G(x) =
∫ x


g(s) ds.
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Under condition (h), we can define the time map

τ (c) =
∫ d(c)

w(c)

ds√
(c – G(s))

for c >  large enough, where w(c) and d(c) satisfy w(c) <  < d(c) and G(w(c)) = G(d(c)) = c.
Assume that the time map τ (c) satisfies the condition:

(τ ) There exist a constant σ > , an integer n > , and two sequences {ak} and {bk} such
that limk→∞ ak = +∞, limk→∞ bk = +∞; and moreover

τ (ak) <
π

mn
– σ , τ (bk) >

π

mn
+ σ ,

where m = √
a + √

b
and a, b are given in condition (h).

We prove the following theorem.

Theorem . Assume that conditions (hi) (i = , . . . , ) and (τ ) hold. Then system (.) has
infinitely many π -periodic solutions {(xk(t), yk(t))}∞k= which satisfy

lim
k→∞

(
min
t∈R

(∣∣xk(t)
∣∣ +

∣∣yk(t)
∣∣)) = +∞.

Moreover, for each integer k ≥ , both xk(t) and yk(t) have exactly n simple zeros in [, π ).

From Theorem . we can obtain the following corollary.

Corollary . Assume that a, b are two positive constants, e, p : R → R are continuous and
conditions (hi) (i = , ) and (τ ) are satisfied. Then the same conclusions of Theorem . still
hold for the system

{
x′ = ay+ – by– + e(t),
y′ = –g(x) + p(t).

Remark . From condition (h) we know that f can be written in the form

f (y) = ay+ – by– + h(y),

where h : R → R is continuous and satisfies

lim|y|→+∞
h(y)

y
= .

Therefore, it suffices for us to prove the main theorem for the system

{
x′ = ay+ – by– + p(t, y),
y′ = –g(x) + p(t, x),

(.)′

where pi (i = , ) satisfy condition (h). In the case a = b 
= , by introducing a rescaling of
the time s = at, u(s) = x( s

a ), v(s) = y( s
a ), we find the equivalent system of (.)′ (having the
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classical form)

{
u′ = v + q(s, v),
v′ = –g̃(u) + q(s, u).

Such a rescaling cannot be easily applied in the case a 
= b because we do not know when
the solution will change its sign.

We finally stress the fact that the proofs of the above results will be given under the ad-
ditional assumptions that f and pi (i = , ) are locally Lipschitz continuous with variables
y or x. It is shown in Section  that this requirement is not restrictive and that our results
are valid for any continuous functions f and pi (i = , ).

2 Basic lemmas
At first, we consider the auxiliary autonomous system

x′ = ay+ – by–, y′ = –g(x). (.)

The orbits of system (.) are curves determined by the equation

�c:



ay+ +



by– + G(x) = c, (.)

where c is an arbitrary constant. We can easily prove the following lemma.

Lemma . Assume that condition (h) holds. Then there exists a constant c >  such that,
for any c > c, �c is a closed curve which is star-shaped around the origin O.

From Lemma . we know that, for c ≥ c, each �c intersects with the x-axis at two
points (w(c), ) and (d(c), ), where w(c) and d(c) are continuous and satisfy

w(c) <  < d(c), G
(
w(c)

)
= G

(
d(c)

)
= c.

Let (xc(t), yc(t)) be the solution of system (.) lying on the curve �c with c ≥ c. Obviously,
(xc(t), yc(t)) is periodic. Let us denote by T(c) the least period of (xc(t), yc(t)). From the first
equation of (.) and (.) we have that

T(c) =
(

√
a

+
√
b

)∫ d(c)

w(c)

ds√
(c – G(s))

.

By the definition, T(c) is continuous for c ≥ c.
Now we perform some phase-plane analysis for system (.)′. Let (x(t), y(t)) = (x(t, x, y),

y(t, x, y)) be the solution of system (.)′ satisfying the initial condition

x() = x, y() = y.

Lemma . Assume that conditions (hi) (i = , , ) hold. Then each solution (x(t), y(t)) of
system (.)′ exists uniquely on the whole t-axis.
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Proof The proof follows directly from the fact that the nonlinearities are locally Lipschitz
continuous and all have at most linear growth. �

According to Lemma ., the Poincaré map P : R → R is well defined by

P : (x, y) → (x, y) =
(
x(π , x, y), y(π , x, y)

)
.

Clearly, the Poincaré map P is an area-preserving homeomorphism. The fixed points of P
correspond to the π periodic solutions of system (.)′.

Now, we take the polar coordinates transformation x = r cos θ , y = r sin θ to system (.)′.
Under this transformation, system (.)′ becomes

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dr
dt = r(a sin+ θ – b sin– θ ) cos θ – g(r cos θ ) sin θ + p(t, r sin θ ) cos θ

+ p(t, r cos θ ) sin θ ,
dθ
dt = –(a sin+ θ – b sin– θ ) sin θ – 

r g(r cos θ ) cos θ – 
r p(t, r sin θ ) sin θ

+ 
r p(t, r cos θ ) cos θ .

(.)

Denote by (r(t), θ (t)) = (r(t, r, θ), θ (t, r, θ)) the solution of (.) with the initial value

r() = r, θ () = θ,

with x = r cos θ, y = r sin θ. Clearly, the Poincaré map P can be written in the polar
coordinate form P : (r, θ) → (r∗, θ∗) with

r∗ = r(π , r, θ), θ∗ = θ (π , r, θ) + lπ ,

where l is an arbitrary integer.
Applying the polar coordinate transformation x = ρ cosϕ, y = ρ sinϕ to system (.), we

get

{ dρ

dt = ρ(a sin+ ϕ – b sin– ϕ) cosϕ – g(ρ cosϕ) sinϕ,
dϕ

dt = –(a sin+ ϕ – b sin– ϕ) sinϕ – 
ρ

g(ρ cosϕ) cosϕ.
(.)

Denote by (ρ(t),ϕ(t)) = (ρ(t,ρ,ϕ),ϕ(t,ρ,ϕ)) the solution of (.) satisfying the initial
value

ρ() = ρ, ϕ() = ϕ.

Using conditions (hi) (i = , , ), it is not hard to prove the following lemma.

Lemma . Assume that conditions (hi) (i = , , ) hold. Then there exist constants γ > 
and R >  such that

r

γ
≤ r(t) ≤ γ r, ∀t ∈ [, π ], r ≥ R.

In particular, under conditions (hi) (i = , ), ρ(t) satisfies the inequality

ρ

γ
≤ ρ(t) ≤ γρ, ∀t ∈ [, π ],ρ ≥ R.
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Lemma . Assume that conditions (hi) (i = , , ) hold, and let


(r, θ) = ϕ(π , r, θ) – θ; �(r, θ) = θ (π , r, θ) – θ.

Then, for any sufficiently small ε, there exists a positive constant ζ such that

∣∣
(r, θ) – �(r, θ)
∣∣ ≤ ε for r ≥ ζ .

Proof Let (x̄(t), ȳ(t)) = (x̄(t, x, y), ȳ(t, x, y)) be the solution of (.) with (x̄(), ȳ()) =
(x, y). It is noted that (x(t), y(t)) = (x(t, x, y), y(t, x, y)) is a solution of system (.)′ with
(x(), y()) = (x, y). Set

u(t) = u(t, x, y) = x(t, x, y) – x̄(t, x, y),

v(t) = v(t, x, y) = y(t, x, y) – ȳ(t, x, y).

Then we have

du(t)
dt

= a
[
y+(t) – ȳ+(t)

]
– b

[
y–(t) – ȳ–(t)

]
+ p

(
t, y(t)

)
,

dv(t)
dt

= –
[
g
(
x(t)

)
– g

(
x̄(t)

)]
+ p

(
t, x(t)

)
.

Let d(t) =
√

u(t) + v(t). Then we get

d′(t) ≤ δd(t) +
∣∣p

(
t, y(t)

)∣∣ +
∣∣p

(
t, x(t)

)∣∣

with δ = 
 (μ + L), μ = max{a, b}. From condition (h) we have that, for any sufficiently

small η > , there exists cη >  such that

∣∣p(t, y)
∣∣ ≤ η|y| + cη, ∀(t, y) ∈ R

and

∣∣p(t, x)
∣∣ ≤ η|x| + cη, ∀(t, x) ∈ R.

Therefore, we obtain

d′(t) ≤ δd(t) + η
(∣∣x(t)

∣∣ +
∣∣y(t)

∣∣) + cη.

Solving this inequality, we get

d(t) ≤ ηeπδ

∫ π



(∣∣x(t)
∣∣ +

∣∣y(t)
∣∣)dt + Aη ≤ √

ηeπδ

∫ π



√
x(t) + y(t) dt + Aη,

where Aη = cηeπδ

δ
. It follows from Lemma . that, for t ∈ [, π ],

d(t) ≤ ηβr + Aη,
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where β = 
√

πγ eπδ . Write ψ(t) = ψ(t, r, θ) = ϕ(t, r, θ)–θ (t, r, θ). Clearly, if |ψ(t)| <
π , then ψ(t) is just the angle between the vectors (x(t), y(t)) and (x̄(t), ȳ(t)). Hence, we have

cosψ(t) =
r(t) + ρ(t) – d(t)

r(t)ρ(t)
≥  –

d(t)
r(t)ρ(t)

.

It follows that

sin ψ(t)


≤ d(t)
r(t)ρ(t)

.

According to Lemma ., we have that if η is sufficiently small and r is large enough, then

∣∣∣∣ sin
ψ(t)



∣∣∣∣ ≤ d(t)

√

r(t)ρ(t)
≤ γ (ηβr + Aη)

r
≤ ε


.

Since ψ() =  and ψ(t) varies continuously as t increases from  to π , we have

∣∣ψ(t)
∣∣ ≤ 

∣∣∣∣ sin
ψ(t)



∣∣∣∣ ≤ ε.

Consequently, we have that there exists ζ >  such that, for r ≥ ζ ,

∣∣
(r, θ) – �(r, θ)
∣∣ ≤ ε, ∀r ≥ ζ . �

Lemma . Assume that conditions (hi) (i = , ) and (τ ) hold. Then there exists a constant
ω >  such that, for t ∈ R and k large enough,

ϕ′(t) ≤ –ω,

with (ρ cosϕ,ρ sinϕ) ∈ �ak or (ρ cosϕ,ρ sinϕ) ∈ �bk .

Proof From the definition of T(c) and condition (τ ) we know that, for each k ∈ N,

T(ak) ≤ π

n
– mσ ; T(bk) ≥ π

n
+ mσ .

In what follows, without loss of generality, we assume that the sequence {T(bk)} is
bounded. Otherwise, we can replace the sequence {T(bk)} with a bounded one because
T(c) is continuous for c large enough. We shall only deal with the first case, and the sec-
ond one can be proved similarly. Let us set

dk = d(ak), wk = w(ak).

Obviously, dk → +∞, wk → –∞ as k → ∞. Next, we prove that there exist two positive
constants νi (i = , ) such that

lim inf
k→∞

g(dk)
dk

= ν; lim inf
k→∞

g(wk)
wk

= ν.
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Assume by contradiction that

lim inf
k→∞

g(dk)
dk

= .

Then there exists a subsequence of {dk} (we still denote it by {dk}) such that

lim
k→∞

g(dk)
dk

= .

Set

g(dk)
dk

= εk .

We have that εk →  as k → ∞. From condition (h) we know that, for  < x ≤ dk ,
∣∣∣∣g(x)

x
– εk

∣∣∣∣ =
∣∣∣∣g(x)

x
–

g(dk)
dk

∣∣∣∣ ≤ |g(dk) – g(x)|
x

+
|g(dk)(dk – x)|

dkx

≤ L(dk – x)
x

+
(

L +
|g()|

dk

)
(dk – x)

x
.

For simplicity, we assume g() = . Then we get that, for  < x ≤ dk ,

∣∣∣∣g(x)
x

– εk

∣∣∣∣ ≤ L(dk – x)
x

. (.)

Consequently, we have that, for  ≤ x ≤ dk ,

g(x) ≤ εkx + L(dk – x).

It follows that, for  ≤ x ≤ dk ,

G(dk) – G(x) =
∫ dk

x
g(s) ds ≤

∫ dk

x

[
εkx + L(dk – x)

]
dx

=


εk

(
d

k – x) + L(dk – x).

From the definition of T we have that

T(ak) = m
∫ dk

wk

dx√
(G(dk) – G(x))

≥ m
∫ dk



dx√
(G(dk) – G(x))

≥ m
∫ dk



dx√
εk(d

k – x) + L(dk – x)

= m
∫ 



dt√
εk( – t) + L( – t)

.

Since

lim inf
k→∞

∫ 



dt√
εk( – t) + L( – t)

≥ √
L

∫ 



dt
 – t

= +∞,
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we have that

lim
k→∞

T(ak) = +∞.

This is a contradiction because T(ak) is a bounded sequence. Therefore, there exists a
constant ν >  such that

lim inf
k→∞

g(dk)
dk

= ν. (.)

Similarly, there exists ν >  such that

lim inf
k→∞

g(wk)
wk

= ν.

From condition (h) and (.), (.) we know that there exists sufficiently small ε >  such
that, for k large enough and x ∈ [( – ε)dk , dk],

g(x)
x

≥ g(dk)
dk

–
L(dk – x)

x
≥ 


ν –

εL
 – ε

≥ 


ν. (.)

Therefore, if ρ(t) cosϕ(t) ∈ [( – ε)dk , dk], then we have

ϕ′(t) ≤ –
(
a sin+ ϕ(t) – b sin– ϕ(t)

)
sinϕ(t) –




ν cos ϕ(t) ≤ –ω,

where ω = min{a, b, 
ν}. Next, we deal with the case ρ(t) cosϕ(t) ∈ [, ( – ε)dk]. Set

xk = ( – ε)dk . Assume that the line x = xk intersects with the curve �ak at two points
(xk , y+

k ) and (xk , y–
k ) with y–

k <  < y+
k . Then we have




ay+
k

 + G(xk) = ak = G(dk),



by–
k

 + G(xk) = ak = G(dk).

Therefore, we get

y+
k =

√

a
(
G(dk) – G

(
( – ε)dk

))
, y–

k = –
√


b
(
G(dk) – G

(
( – ε)dk

))
.

From (.) we have

y+
k

xk
=

√

a (G(dk) – G(( – ε)dk))

( – ε)dk
≥

√
εν

a( – ε)

and

y–
k

xk
= –

√

b (G(dk) – G(( – ε)dk))

( – ε)dk
≤ –

√
εν

b( – ε)
.

Set

β+ = arctan
√

εν

a( – ε)
, β– = arctan

√
εν

b( – ε)
.
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From condition (h) we know that there exists A >  such that g(x) ≥  for x ≥ A. If
ρ(t) cosϕ(t) ∈ [A, ( – ε)dk] and ρ(t) sinϕ(t) ≥ , then we have

ϕ′(t) ≤ –a sin β+ –

ρ

g(ρ cosϕ) cosϕ ≤ –a sin β+.

If ρ(t) cosϕ(t) ∈ [, A] and ρ(t) sinϕ(t) ≥ , then we have that, for ρ large enough,

ϕ′(t) ≤ –a sin β+ –

ρ

g(ρ cosϕ) cosϕ ≤ –



a sin β+.

Similarly, we have that, if ρ(t) cosϕ(t) ∈ [A, ( – ε)dk] and ρ(t) sinϕ(t) ≤ , then we have

ϕ′(t) ≤ –b sin β– –

ρ

g(ρ cosϕ) cosϕ ≤ –b sin β–.

If ρ(t) cosϕ(t) ∈ [, A] and ρ(t) sinϕ(t) ≤ , then we have that, for ρ large enough,

ϕ′(t) ≤ –b sin β– –

ρ

g(ρ cosϕ) cosϕ ≤ –



b sin β–.

In conclusion, we have proved that there exists ω >  such that

ϕ′(t) ≤ –ω,

with (ρ cosϕ,ρ sinϕ) ∈ �ak , ρ(t) cosϕ(t) ≥  and k large enough. Similarly, we can
prove that there exists ω′

 >  such that

ϕ′(t) ≤ –ω′
,

with (ρ cosϕ,ρ sinϕ) ∈ �ak , ρ(t) cosϕ(t) ≤  and k large enough. Let us set ω =
min{ω,ω′

}. Then we have that

ϕ′(t) ≤ –ω,

with (ρ cosϕ,ρ sinϕ) ∈ �ak and k large enough. �

Lemma . Assume that conditions (hi) (i = , ) and (τ ) hold, and let 
(ρ,ϕ) =
ϕ(π ,ρ,ϕ) – ϕ. Then there exist two positive constants δ and � such that


(ρ,ϕ) < –nπ – δ, (ρ cosϕ,ρ sinϕ) ∈ �ak , ak ≥ �;


(ρ,ϕ) > –nπ + δ, (ρ cosϕ,ρ sinϕ) ∈ �bk , bk ≥ �.

Proof From Lemma . we have that there exists � >  such that, for ak ≥ � or bk ≥ �,

ϕ′(t) ≤ –ω, (ρ cosϕ,ρ sinϕ) ∈ �ak or (ρ cosϕ,ρ sinϕ) ∈ �bk .

Write 
(ρ,ϕ) = –lπ – φ, where l ≥  is an integer,  ≤ φ < π . Let us denote by tφ the
time for ϕ(t) to decrease from –lπ to –lπ –φ. If (ρ cosϕ,ρ sinϕ) ∈ �ak , then we have

π = lT(ak) + tφ = lmτ (ak) + tφ .
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Since tφ ≤ T(ak) = mτ (ak), we have

π = lmτ (ak) + tφ ≤ (l + )mτ (ak) ≤ (l + )
(

π

n
– mσ

)
.

It follows that l ≥ n. If l ≥ n + , then we have


(ρ,ϕ) = –lπ – φ ≤ –(n + )π .

If l = n, then we have

tφ = π – nmτ (ak) ≥ π – n
(

π

n
– mσ

)
≥ nmσ .

Therefore, we get

–φ =
∫ nT(ak )+tφ

nT(ak )
ϕ′(t) dt ≤ –nmσω.

Furthermore,


(ρ,ϕ) ≤ –nπ – nmσω.

Set δ = min{π , nmσω}. Then we have


(ρ,ϕ) ≤ –nπ – δ, (ρ cosϕ,ρ sinϕ) ∈ �ak , ak ≥ �.

Similarly, we can prove


(ρ,ϕ) ≥ –nπ + δ, (ρ cosϕ,ρ sinϕ) ∈ �bk , bk ≥ �. �

3 Proof of the main theorem
At first, we recall a generalized version of the Poincaré-Birkhoff fixed point theorem by
Rebelo [].

A generalized form of the Poincaré-Birkhoff fixed point theorem. Let A ⊂ R be an
annular region bounded by two strictly star-shaped curves around the origin, � and �,
� ⊂ int(�), where int(�) denotes the interior domain bounded by �. Suppose that F :
int(�) → R is an area-preserving homeomorphism and F|A admits a lifting, with the
standard covering projection � : (r, θ ) → z = (r cos θ , r sin θ ), of the form

F̃|A : (r, θ ) → (
w(r, θ ), θ + h(r, θ )

)
,

where w and h are continuous functions of period π in the first variable. Correspondingly,
for �̃ = �–(�) and �̃ = �–(�), assume the twist condition

h(r, θ ) >  on �̃; h(r, θ ) <  on �̃.

Then, F has two fixed points z, z in the interior of A such that

h
(
�–(z)

)
= h

(
�–(z)

)
= .
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Remark . The assumption on the star-shaped boundaries of the annulus is a deli-
cate hypothesis. Martins and Ureña [] showed that the star-shapedness assumption on
the interior boundary is not eliminable. Le Calvez and Wang [] then proved that star-
shapedness of the exterior boundary should also be imposed, while this assumption was
not made in Ding’s theorem [].

Proof of Theorem . From Lemmas . and . we know that there exists an integer k > 
such that, for any k ≥ k,

θ (π , r, θ) – θ < –nπ , (r cos θ, r sin θ) ∈ �ak , (.)

θ (π , r, θ) – θ > –nπ , (r cos θ, r sin θ) ∈ �bk . (.)

Without loss of generality, we assume that ak < bk < ak+ for k ≥ k. Let Dk be an annular
region with boundary �ak and �bk . Consider the Poincaré map P : Dk → R. Write the
Poincaré map in the form

r∗ = r(π , r, θ), θ∗ = θ + �∗(r, θ),

where �∗(r, θ) = θ (π , r, θ) – θ + nπ . From (.) and (.) we know that, for k ≥ k,

�∗(r, θ) < , (r cos θ, r sin θ) ∈ �ak ,

�∗(r, θ) > , (r cos θ, r sin θ) ∈ �bk .

Therefore, the area-preserving homeomorphism P is twisting on the annulus Dk . On the
other hand, by Lemma ., we have that both �ak and �bk are star-shaped with respect
to the origin O for k large enough. Consequently, all assumptions of the generalized form
of the Poincaré-Birkhoff fixed point theorem are satisfied. Therefore, the Poincaré map P
has at least two fixed points in annulus Dk . Furthermore, system (.)′ has infinitely many
π-periodic solutions {(xk(t), yk(t))}∞k= which satisfy

lim
k→∞

(
min
t∈R

(∣∣xk(t)
∣∣ +

∣∣yk(t)
∣∣)) = +∞.

Clearly, each π-periodic solution (xk(t), yk(t)) rotates clockwise strictly n turns around
the origin in the interval [, π ]. It follows that both xk(t) and yk(t) have exactly n simple
zeros in [, π ). Hence, the conclusion of Theorem . holds. �

From Theorem . we know that the existence of periodic solutions of system (.) has
tight relation with the asymptotic property of time map τ (c). In case g is odd, we can easily
check condition (τ ). Set

G+ = lim inf
x→+∞

G(x)
x , G+ = lim sup

x→+∞
G(x)

x .

From Theorem . in [], we have the following lemma.
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Lemma . Assume that condition (h) holds, g is odd and G+ < G+. Then

[
π√
G+

,
π√
G+

]
⊂ [

τ+, τ+]
,

where τ+ = lim infc→+∞ τ (c), τ+ = lim supc→+∞ τ (c).

Applying Theorem . and Lemma ., we can obtain the following corollary.

Corollary . Assume that conditions (hi) (i = , . . . , ) hold. Let g(x) be an odd function
and G+ < G+. If

∃n ∈ N,
mn


∈ (

G+, G+) (
m =

√
a

+
√
b

)
,

then system (.) has infinitely many π -periodic solutions {(xk(t), yk(t))}∞k= which satisfy

lim
k→∞

(
min
t∈R

(∣∣xk(t)
∣∣ +

∣∣yk(t)
∣∣)) = +∞.

Moreover, for each integer k ≥ , both xk(t) and yk(t) have exactly n simple zeros in [, π ).

4 Concluding remarks
The restrictions on the local Lipschitz conditions of f and pi (i = , ) made in the proofs of
the above sections can be removed. Indeed, Lemmas . and . guarantee the applicabil-
ity of the following non-uniqueness version of the Poincaré-Birkhoff theorem which was
proved by Fonda and Ureña in []. We now state this theorem for a general Hamiltonian
system in RN . Let us consider the (time-dependent) Hamiltonian system

{
x′ = ∇yH(t, x, y),
y′ = –∇xH(t, x, y),

(.)

where the continuous function H : R × RN × RN → R, H = H(t, x, y) is T-periodic in its
first variable t and continuously differentiable with respect to (x, y), x = (x, . . . , xN ), y =
(y, . . . , yN ).

We next introduce the definition of rotation number of a continuous path in R. Let w :
[t, t] → R be a continuous path such that w(t) 
= (, ) for every t ∈ [t, t]. The rotation
number of w around the origin is defined as

Rot
(
w(t); [t, t]

)
=

θ (t) – θ (t)
π

,

where θ : [t, t] → R is a continuous determination of the argument along w, i.e., w(t) =
|w(t)|(cos θ (t), sin θ (t)).

Assume that for each i = , . . . , N , there are two strictly star-shaped Jordan closed curves
around the origin �i

,�i
 ⊂ R such that

o ∈D
(
�i


) ⊂D

(
�i


) ⊂D

(
�i


)
.
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Here we denote by D(�) the open bounded region bounded by the Jordan closed curve �.
Consider the generalized annular region

A =
[
D

(
�


) \D(

�

)] × · · · × [

D
(
�N


) \D(

�N

)] ⊂ RN .

Theorem . ([]) Under the framework above, denoting zi(t) = (xi(t), yi(t)), assume that
every solution z(t) = (z(t), . . . , zN (t)) of (.) departing from z() ∈ ∂A is defined on [, T]
and satisfies

zi(t) 
= (, ) for every t ∈ [, T] and i = , . . . , N .

Assume that there are integer numbers ν, . . . ,νN ∈ Z such that, for each i = , . . . , N , either

Rot
(
zi(t); [, T]

){
< νi, if zi() ∈ �i

,
> νi, if zi() ∈ �i

,

or

Rot
(
zi(t); [, T]

){
> νi, if zi() ∈ �i

,
< νi, if zi() ∈ �i

.

Then Hamiltonian system (.) has at least N +  distinct T-periodic solutions z(t), . . . ,
zN (t), with z(), . . . , zN () ∈A, such that

Rot
(
zk

i (t); [, T]
)

= νi for every k = , . . . , N and i = , . . . , N .

Remark . It is noted that there is no requirement of uniqueness of Cauchy problems as-
sociated to system (.) in this higher dimensional Poincaré-Birkhoff theorem for Hamil-
tonian flows. In [, ], Theorem . is applied to prove the multiplicity of periodic solu-
tions of weakly coupled Hamiltonian systems. Theorem . in the present paper can also
be extended to a weakly coupled system of the type

{
x′

i = fi(yi) + pi(t, x, y),
y′

i = –gi(xi) + pi(t, x, y)
(i = , . . . , N), (.)

where x = (x, . . . , xN ), y = (y, . . . , yN ), fi, gi : R → R (i = , . . . , N ) are continuous, pji :
RN+ → R (j = , , i = , . . . , N ) are continuous and π-periodic with the variable t. As-
sume that there is a function U : RN+ → R such that

∂U
∂yi

(t, x, y) = pi(t, x, y),
∂U
∂xi

(t, x, y) = –pi(t, x, y) (i = , . . . , N).

In this case system (.) is a Hamiltonian system. Simple examples of such functions can
be given. For example,

U(t, x, y) = p(t)
i=N∏
i=

sin xi sin yi.

Assume that the following conditions hold:
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(h′
) gi satisfies lim|u|→+∞ sgn(u)gi(u) = +∞, i = , . . . , N ;

(h′
) there exist constants Li >  such that, for all u, v ∈ R, |gi(u) – gi(v)| ≤ Li|u – v|,

i = , . . . , N ;
(h′

) there are constants M > , M >  and  < γi <  such that |pji(t, x, y)| ≤
M(|xi| + |yi|)γi + M for all t ∈ [, π ], (x, y) ∈ RN , j = , , i = , . . . , N ;

(h′
) there are positive constants ai and bi such that

lim
v→+∞

fi(v)
v

= ai, lim
v→–∞

fi(v)
v

= bi.

Set Gi(u) =
∫ u

 gi(s) ds, i = , . . . , N . Let us define the time maps

τi(c) =
∫ di(c)

wi(c)

ds√
(c – Gi(s))

for c >  large enough, where wi(c) and di(c) satisfy wi(c) <  < di(c) and Gi(wi(c)) =
Gi(di(c)) = c. Assume that the time map τi(c) satisfies the condition:

(τ ′) There exist constants σi > , integers ni > , and sequences {ai
k} and {bi

k} such that
limk→∞ ai

k = +∞, limk→∞ bi
k = +∞; and moreover

τi
(
ai

k
)

<
π

mini
– σi, τi

(
bi

k
)

>
π

mini
+ σi, i = , . . . , N ,

where mi = √ai
+ √

bi
and ai, bi are given in condition (h′

).

With a slight modification of the proof of Theorem . and using the higher dimensional
Poincaré-Birkhoff Theorem ., we can prove the result.

Theorem . Assume that conditions (h′
i) (i = , . . . , ) and (τ ′) hold. Then Hamiltonian

system (.) has infinitely many π -periodic solutions {(xk(t), yk(t))}∞k= which satisfy

lim
k→∞

(
min
t∈R

(∣∣xk(t)
∣∣ +

∣∣yk(t)
∣∣)) = +∞,

where |xk(t)| =
∑i=N

i= |xk
i (t)|, |yk(t)| =

∑i=N
i= |yk

i (t)|. Moreover, for each index i, both xk
i (t) and

yk
i (t) have exactly ni simple zeros in the interval [, π ).
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