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Abstract
We consider the following elliptic problem:

{
–div( |∇u|p–2∇u

|y|ap ) = |u|q–2u
|y|bq + f (x) in �,

u = 0 on ∂�,

in an unbounded cylindrical domain

� :=
{
(y, z) ∈ R

m+1 ×R
N–m–1; 0 < A < |y| < B <∞}

,

where 1 ≤ m < N – p, q = q(a,b) := Np
N–p(a+1–b) , p > 1 and A,B ∈ R+. Let p∗

N,m := p(N–m)
N–m–p . We

show that p∗
N,m is the true critical exponent for this problem. The starting point for a

variational approach to this problem is the known Maz’ja’s inequality (Sobolev Spaces,
1980) which guarantees, for the q previously defined, that the energy functional
associated with this problem is well defined. This inequality generalizes the
inequalities of Sobolev (p = 2,a = 0 and b = 0) and Hardy (p = 2,a = 0 and b = 1).
Under certain conditions on the parameters a and b, using the principle of symmetric
criticality and variational methods, we prove that the problem has at least one
solution in the case f ≡ 0 and at least two solutions in the case f �≡ 0, if p < q < p∗

N,m.

MSC: 35B07; 35B09; 35J70

Keywords: positive solution; supercritical; degenerated operator; variational
methods

1 Introduction
Consider the class of degenerate singular quasilinear elliptic equations in R

N

– div
[
A(x,∇u)∇u

]
= g(x, u) ∀x ∈ R

N , ()

where A is a nonnegative unbounded function that vanishes at some points of RN . More
specifically, we consider variants of this class of equations of the type

– div

[ |∇u|p–∇u
|x|ap

]
+ λ

|u|p–u
|x|(a+)p = α

|u|q–u
|x|bq + βK(x)

|u|r–u
|x|dr + f (x), ()
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where x ∈R
N ,  < p ≤ N –, q = q(a, b) := Np

N–p(a+–b) , α,β and λ are parameters,  < a < N–p
p ,

a ≤ b ≤ a + , d, r ∈R, K ∈ L
q

q–r
r(d–b)(R

N ) and f is a function that belongs to the dual space of

La
b
(
R

N)
=

{
u : RN →R;

∫
RN

|x|–bq|u|q < ∞
}

.

Equations of this type arise in existence problems of stationary anisotropic solutions
for the Schrödinger equation [], in theory of non-Newtonian fluids [], in problems of
flow through porous media [], in study of pseudoplastic fluids [], in dynamic models
for galaxies with cylindrical symmetry [], and several other models. Variants of problem
() in the radial setting were initially treated by Clément, de Figueiredo and Mitidieri []
who proved, for example, the Brézis and Nirenberg [] result for this radial operator. In
recent years, several researchers have studied variants of problem () in the radial setting;
see references [–].

Schindler [] studied variants of this class of equations on unbounded cylinders. Under
certain conditions on the function f , he showed that the problem

⎧⎨
⎩–�pu + |u|p–u = f (u) in �,

u =  on ∂�,
()

has a weak solution in W ,p
 (�), where � is an unbounded cylindrical domain, � ⊂ R

N ,
N ≥  and  ≤ p < N . The lack of compactness of the Sobolev embedding makes stan-
dard variational techniques more delicate. To solve this lack of compactness, the author
introduces a modified concentration-compactness principle for which a version of the
mountain pass lemma [] may be applied.

Afterwards, Hashimoto, Ishiwata and Ôtani [] studied the following problem involv-
ing the p-Laplacian operator:

⎧⎨
⎩–�pu = |u|q–u in �,

u =  on ∂�,
()

in infinite tube-shaped domains � := �d × R
N–d , where �d are d-dimensional annulus

domains with N ≥ . Using the concentration-compactness principle at infinity for par-
tially symmetric functions and the variational method due to Ishiwata and Ôtani [],
they proved the existence of at least one positive solution u to problem () belonging to
W ,p

 (�) ∩ L∞(�), for  ≤ d ≤ N –  and p < q < p†
d , where

p†
d :=

⎧⎨
⎩

(N–d+)p
N–d+–p , for p < N – d + ;

∞, for p ≥ N – d + .

More recently, Clapp and Szulkin [] studied the supercritical case for the following
problem involving the Laplacian operator:

⎧⎨
⎩–�u = |u|p–u in �,

u =  on ∂�,
()
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in an unbounded cylindrical domain

� :=
{

x = (y, z) ∈ R
m+ ×R

N–m–;  < a < |y| < b < ∞}
,

where  ≤ m < N – . The authors showed that if  < p < ∗
N ,m := (N–m)

(N–m)– , then problem
() has infinite invariant solutions and one of these solutions is positive. Note that ∗

N ,m is
the critical Sobolev exponent in dimension N – m, which is greater than the usual critical
Sobolev exponent ∗ = N

N– . This existence result has been proved using the index theory
(see [], Theorem II..), and the argument used to prove the positivity of the solution
was the maximum principle.

Motivated by the recent results in [], in this work we study the effect of the topology of
the domain on existence and multiplicity results in the supercritical case of the following
problem:

⎧⎨
⎩– div( |∇u|p–∇u

|y|ap ) = |u|q–u
|y|bq + f (x) in �,

u =  on ∂�,
()

in an unbounded cylindrical domain

� :=
{

(y, z) ∈R
m+ ×R

N–m–;  < A < |y| < B < ∞}
,

where p > ,  ≤ m < N – p, q = q(a, b) := Np
N–p(a+–b) , a – m

N–m < b < a + , a < (m+)–p
p and

A, B ∈R+.
In this present work, as the domain is unbounded, the lack of compactness of the Sobolev

embedding W ,p
 (�) ↪→ Lq(�) (p ≤ q < p∗ := pN

N–p ) makes standard variational techniques
more delicate.

Generally speaking, some geometrical and topological properties of the domain can help
us to show existence results for elliptic problems; for example, the symmetry of the domain
can be used to improve the Sobolev embedding. However, since we consider unbounded
domains, the lack of compactness of the Sobolev embedding does not follow immediately
from the standard variational techniques. This is one of the main difficulties we have to
deal with in this work.

First we consider problem () in the case where f ≡ , and we get the following existence
result. Note that in its statement, p∗

N ,m is the critical Sobolev exponent in dimension N –m,
which is greater than the usual critical Sobolev exponent p∗ = pN

N–p .

Theorem  If  ≤ m < N – p, f ≡  and p < q < p∗
N ,m, then problem () has at least one

invariant solution.

A natural question is to check what happens to the previous problem under the presence
of certain perturbations. For this purpose, we shall consider the perturbed problem by a
function f belonging to the dual space of W ,p

 (�), denoted by W –,p
 (�), and we get the

following existence and multiplicity result.

Theorem  If  ≤ m < N – p and p < q < p∗
N ,m, then there is a constant ε >  such that for

any f ∈ W –,p
 (�) with  < ‖f ‖– < ε, problem () has at least two invariant solutions.
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To prove these results, we study an auxiliary problem and show that its solutions are
axially symmetric and belong to the space W ,p

 (S) ⊂ W ,p
 (�), where S := (A, B) ×R

N–m–.
As usual, this is done by defining an energy functional I : W ,p

 (S) → R and by showing the
existence of critical points for I in the space W ,p

 (S). These critical points are the weak
solutions of the auxiliary problem and, by our setting, they also solve problem ().

Since S is an unbounded domain, the difficulty to prove Theorems  and  lies in the fact
that W ,p

 (S) cannot be compactly embedded into Lq(S) for any q ∈ (p, p∗
N ,m). In order to

solve the lack of compactness, we construct a subspace of invariant functions W ,p
,G(S) ⊂

W ,p
 (S) with compact embedding W ,p

,G(S) ↪→ Lq(S) for q ∈ (p, p∗
N ,m) (see [, ]).

Using the principle of symmetric criticality [], we can look for critical points of I re-
stricted on W ,p

,G(S). In this way we obtain a weak solution in W ,p
,G(S) for our problem

using the mountain pass theorem of Ambrosetti and Rabinowitz []. Finally, to show the
existence of a second solution, we use Ekeland’s variational principle [].

Since q ∈ (p, p∗
N ,m) and p∗

N ,m > p∗, in problem () we consider not only the subcritical and
critical cases but also the supercritical one.

Note that the p-Laplacian operator �pu = div(|∇u|p–∇u) is a special case of the opera-
tor div( |∇u|p–∇u

|y|ap ); therefore, Theorems  and  improve the results of Hashimoto, Ishiwata
and Ôtani [].

This work is organized as follows. In Section  we introduce some notation and state
some well-known results, such as the principle of symmetric criticality and the mountain
pass theorem. In Section  we introduce the auxiliary problem, whose solutions are also
solutions to problem (). To ensure the existence of solutions to the auxiliary problem, we
use the results of the previous section as well as Ekeland’s variational principle.

2 Preliminaries
In this section, we give some results which are used in the proofs of our main theorems.
First, we denote by O(N) the group of linear isometries of RN . Recall that if G is a closed
subgroup of O(N), then an open subset � of RN is G-invariant if g� = � for every g ∈ G.
Furthermore, a function u : � →R is called G-invariant if u(gx) = u(x) for all g ∈ G, x ∈ �.

Definition  The action of a topological group G on a normed space X is continuous
maps G × X −→ X : [g, u] → gu such that  · u = u, (gg)u = g(gu) and u �→ gu is linear.
The action is isometric if ‖gu‖ = ‖u‖. The space of invariant points is defined by

Fix(G) := {u ∈ X; gu = u,∀g ∈ G}.

A function ϕ : X −→ R is invariant if ϕ ◦ g = ϕ for every g ∈ G.

Now we can state a result by Palais [].

Lemma  (Principle of symmetric criticality) Assume that the action of the topological
group G on the Banach space X is isometric. If ϕ ∈ C(X,R) is invariant and if u is a critical
point of ϕ on Fix(G), then u is a critical point of ϕ.

A frequently used compactness criterion is the Palais-Smale condition (PS condition, in
short).
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Definition  (Palais-Smale condition) If X is a Banach space and � ∈ C(X,R), then the
functional � satisfies the Palais-Smale condition if any sequence {un} ⊂ X for which

∣∣�(un)
∣∣ ≤ constant, and �′(un) →  in X ′

possesses a convergent subsequence.

We finish this section with the statement of the well-known result by Ambrosetti and
Rabinowitz [].

Lemma  (Ambrosetti-Rabinowitz mountain pass theorem) If X is a Banach space, � ∈
C(X,R) satisfies the PS condition, �() =  and

(i) there are constants ρ,α >  such that �|∂Bρ > α,
(ii) there is e ∈ X \ Bρ such that �(e) < ,

then � possesses a critical value c ≥ α, with

c := inf
g∈

max
u∈g([,])

�(u),

where  = {g ∈ C([, ], X); g() =  and g() = e}.

3 Proof of the main results
In our arguments, the proof of Theorem  contains the existence result which is stated as
in Theorem . Therefore, for the sake of brevity, we will deal only with problem () in the
case where f is not necessarily identical to zero.

An axially symmetric function u(y, z) = v(|y|, z) solves problem () if, and only if, v :=
v(r, z) (with r = |y|) solves⎧⎨

⎩– div(rm–ap|∇v|p–∇v) = rm–bq|v|q–v + rmf in S,

v =  on ∂S,
()

where S := (A, B) ×R
N–m– and ∂S := {A, B} ×R

N–m–.
We denote by W ,p

 (S) the subspace of axially symmetric functions of W ,p
 (�) with the

norm defined by ‖v‖ = (
∫

S |∇v|p dx)

p . This norm ‖ · ‖ is equivalent to the standard norm

on W ,p
 (S) (see [], pp.-).

If G := O(N – m – ) is the group of isometries of RN–m–, then

Fix(G) = W ,p
,G(S) =

{
v ∈ W ,p

 (S) : v(r, gz) = v(r, z),∀g ∈ G
}

and

Lq(S)G =
{

v ∈ Lq(S) : v(r, gz) = v(r, z),∀g ∈ G
}

are the subspaces of invariant functions.
Since A < r < B, then the norms on W ,p

,G(S) and Lq(S)G given by

‖v‖m,a,p :=
(∫

S
rm–ap|∇v|p dx

) 
p

and |v|m,b,q :=
(∫

S
rm–bq|v|q dx

) 
q

()

are equivalent to the standard norms on W ,p
 (S) and Lq(S), respectively.
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Denote X := W ,p
 (S) and E := W ,p

,G(S). Let I : X →R be the energy functional associated
to problem () and defined by

I(v) =

p

∫
S

rm–ap|∇v|p –

q

∫
S

rm–bq|v|q –
∫

S
rmfv,

where

I ′(v)(ϕ) =
∫

S
rm–ap|∇v|p–∇v∇ϕ –

∫
S

rm–bq|v|q–vϕ –
∫

S
rmf ϕ ∀ϕ ∈ X.

Applying the principle of symmetric criticality (Lemma ), we can look for critical points
of the functional I constrained to E, which are weak solutions to problem ().

Using Maz’ja’s inequality for the parameters in problem (), for N – m > p ≥ , q :=
Np

N–p(a+–b) , a – m
N–m ≤ b ≤ a +  and a < (m+)–p

p , we get the existence of a positive constant
C such that

(∫
S

rm–bq|v|q dx
) 

q
≤ C

(∫
S

rm–ap|∇v|p dx
) 

p

for every v ∈ X. Therefore, the functional I is well defined for these parameters and the
functions in the intervals and spaces previously mentioned.

In [, ], we have an important result of compactness which ensures that the em-
bedding W ,p

,G(S) ↪→ Lq(S) is compact for  ≤ m < N – p and q ∈ (p, p∗
N ,m), where p∗

N ,m :=
p(N–m)
N–m–p . So, W ,p

,G(S) can be compactly embedded into Lq(S)G for the norms defined
in ().

Note that when b = a +  and b = a – m
N–m , we have q = p and q = p∗

N ,m, respectively.
Hence, we will consider a – m

N–m < b < a + , so that the compactness result and Maz’ja’s
inequality are both satisfied.

The following lemma shows that the functional I verifies the geometry conditions of the
mountain pass theorem.

Lemma  Let I|E be the energy functional associated to problem (); then
(i) there are ε,ρ,α >  such that I|∂Bρ ≥ α, since  < ‖f ‖E– < ε;

(ii) there is e ∈ E \ Bρ such that I(e) < .

Proof (i) For any ε > , we deduce that

∣∣∣∣
∫

S
rmfv

∣∣∣∣ ≤ C

∣∣∣∣
∫

S
fv

∣∣∣∣ ≤ (
ε


p ‖v‖m,a,p

) ·
(

C

ε

p
‖f ‖E–

)

≤ ε

p
‖v‖p

m,a,p +
C

p′ε
p′
p

‖f ‖p′
E–



Assunção et al. Boundary Value Problems  (2017) 2017:52 Page 7 of 11

for all v ∈ E, where 
p + 

p′ = . Therefore,

I(v) =

p
‖v‖p

m,a,p –

q
|v|qm,b,q –

∫
S

rmfv

≥ 
p
‖v‖p

m,a,p –


qSq
q
‖v‖q

m,a,p –
ε

p
‖v‖p

m,a,p –
C

p′ε
p′
p

‖f ‖p′
E–

=
(

 – ε

p
–


qSq

q
‖v‖q–p

m,a,p

)
‖v‖p

m,a,p –
C

p′ε
p′
p

‖f ‖p′
E– , ()

where Sq is the best constant in the embedding W ,p
,G(S) ↪→ Lq(S)G.

By fixing ε ∈ (, ), we can find ρ > , with ‖v‖m,a,p = ρ , ε >  and α > , such that the
conclusion of the lemma holds true. For example, we can take

ρ =
(
MqSq

q
) 

q–p , ε =
C

–
p′

 p′ 
p′ ε


p


M

q
p′(q–p)

(
qSq

q
) p

p′(q–p) , α =



M
q

q–p
(
qSq

q
) p

q–p ,

where M = 
 ( –ε

p ) > .
(ii) Let v ∈ E such that ‖v‖a,m,p = . Then, for any t > , we have

I(tv) =

p

tp –

q
|v|qm,b,qtq – t

∫
S

rmfv.

Since q > p > , then we have limt→∞ I(tv) = –∞. So, there is e ∈ E \ Bρ such that I(e) < .
�

Lemma  The functional I satisfies the Palais-Smale condition in E.

Proof Let {vn} be a Palais-Smale sequence for the functional I in E, i.e.,
. |I(vn)| ≤ M for some M >  and
. I ′(vn) →  in E–, where E– is the dual space of E.
First we will show that {vn} is bounded in E. Assume by contradiction that

‖vn‖m,a,p → ∞ as n → ∞. ()

Given ε > , by items  and  we deduce that
∣∣∣∣I(vn) –


q

I ′(vn)vn

∣∣∣∣ ≤ M +
ε

q
‖vn‖m,a,p ()

for n ∈N large enough.
Moreover, we also have

∣∣∣∣I(vn) –

q

I ′(vn)(vn)
∣∣∣∣ ≥

(

p

–

q

)
‖vn‖p

m,a,p – C

(
 –


q

)
‖f ‖E–‖vn‖m,a,p ()

for all n ∈N.
Hence, for n large enough, we have

(

p

–

q

)
‖vn‖p

m,a,p ≤ M +
(

ε

q
+ C

(
 –


q

)
‖f ‖E–

)
‖vn‖m,a,p.
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Letting n → ∞ in the previous inequality, we obtain a contradiction since  < p < q. This
implies that {vn} is bounded in E.

Now we will prove that {vn} is a Cauchy sequence in E. In [] it is proved that the
inequality

|ξ – η|p ≤
⎧⎨
⎩(|ξ |p–ξ – |η|p–η)(ξ – η), if p ≥ ;

(|ξ |p–ξ – |η|p–η)(ξ – η)
p
 (|ξ |p + |η|p)

–p
 , if  < p < ,

()

holds for all ξ ,η ∈R
N . Hence,

∫
S

rm–ap|∇vi – ∇vj|p ≤
∫

S
rm–ap(|∇vi|p–∇vi – |∇vj|p–∇vj

)
(∇vi – ∇vj)

≤ ∣∣I ′(vi)(vi – vj)
∣∣ +

∣∣I ′(vj)(vi – vj)
∣∣

+
∣∣∣∣
∫

S
rm–bq(|vi|q–vi – |vj|q–vj

)
(vi – vj)

∣∣∣∣
:= I + I + I.

Since {vn} is a Palais-Smale sequence, it follows that I = o(‖vn‖m,a,p) and I = o(‖vn‖m,a,p).
Using Hölder’s inequality, we have

∣∣∣∣
∫

S
rm–bq(|vi|q–vi – |vj|q–vj

)
(vi – vj)

∣∣∣∣ ≤
∫

S
rm–bq(|vi|q– + |vj|q–)|vi – vj|

=
∫

S

(
r

m–bq
q |vi|

)q–r
m–bq

q |vi – vj|

+
∫

S

(
r

m–bq
q |vj|

)q–r
m–bq

q |vi – vj|

≤ (|vi|q–
m,b,q + |vj|q–

m,b,q
)|vi – vj|m,b,q.

It follows from the previous inequality and from the compact embedding W ,p
,G(S) ↪→

Lq(S)G that I = o(‖vn‖a,m,p). Therefore, {vn} is a Cauchy sequence and the functional I
satisfies the Palais-Smale condition. �

Lemma  The functional I is weakly lower semicontinuous in E, i.e., if {vn} converges
weakly to v in E, then I(v) ≤ lim inf I(vn).

Proof Let a sequence {vn} ⊂ E be weakly convergent to v in E. Since the norm ‖ · ‖m,a,p is
weakly lower semicontinuous in E, it follows that


p

∫
S

rm–ap|∇v|p ≤ lim inf
n→∞

(

p

∫
S

rm–ap|∇vn|p
)

. ()

We can conclude from the compact embedding W ,p
,G(S) ↪→ Lq(S)G that {vn} converges

strongly to v in Lq(S)G. Therefore,

lim
n→∞


q

∫
S

rm–bq|vn|q =

q

∫
S

rm–bq|v|p. ()
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By hypothesis, the sequence {vn} converges weakly to v in E and f ∈ W –,p
 (�) ⊂ E–;

hence,

lim
n→∞

∫
S

rmfvn =
∫

S
rmfv. ()

Finally, combining (), () and (), we deduce that

lim inf
n→∞ I(vn)

= lim inf
n→∞

[

p

∫
S

rm–ap|∇vn|p –
(

lim
n→∞


q

∫
S

rm–bq|∇vn|q + lim
n→∞

∫
S

rmfvn

)]

≥ I(v);

therefore, the functional I is weakly lower semicontinuous in E. �

Proof of Theorem  By Lemmas  and , all the assumptions of the mountain pass theo-
rem in [] are satisfied. Hence, we deduce the existence of v∗

 ∈ W ,p
,G(S) which is a weak

solution to problem () and I(v∗
 ) = c > .

Now, we will prove that there is a second weak solution v∗
 ∈ W ,p

,G(S) such that v∗
 �= v∗

.
For ρ >  given as in Lemma , we define the number c by

c := inf{v∈E:‖v‖m,a,p≤ρ} I(v).

It is clear that c ≤ I() = . If c = I(), then  is a minimum value for I ; hence,

 = I ′()(ϕ) = –
∫

S
rmf ϕ, ∀ϕ ∈ E,

which contradicts the fact that f �= . Therefore, c < I() = .
Denote by Bρ the closed ball of radius ρ centered at the origin in E, i.e.,

Bρ =
{

v ∈ E : ‖v‖m,a,p ≤ ρ
}

.

It follows that the set Bρ is a complete metric space with respect to distance defined by
d(u, v) := ‖u – v‖m,a,p for all u, v ∈ Bρ .

By Lemma , the functional I is weakly lower semicontinuous and bounded from below
by relation ().

Let ε such that  < ε < inf∂Bρ I – infBρ I . Using Ekeland’s variational principle [] for the
functional I : Bρ →R, there is a function vε ∈ Bρ such that

I(vε) < inf
Bρ

I + ε, I(vε) < I(v) + ε‖v – vε‖m,a,p, v �= vε .

Since

I(vε) ≤ inf
Bρ

I + ε ≤ inf
Bρ

I + ε < inf
∂Bρ

I,

it follows that vε ∈ Bρ .
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We now define the functional K : Bρ →R by K(v) = I(v) + ε‖v – vε‖m,a,p. It is immediate
that vε is a minimum point of K , and so

K(vε + tϕ) – K(vε)
t

≥  ()

for t >  small enough and ϕ ∈ Bρ . From inequality () we deduce that

I(vε + tϕ) – I(vε)
t

+ ε‖ϕ‖m,a,p ≥ . ()

It follows from () by letting t → + that I ′(vε)ϕ +ε‖ϕ‖m,a,p ≥ . Note that –ϕ also belongs
to Bρ . So, replacing ϕ by –ϕ, we have

I ′(vε)(–ϕ) + ε‖–ϕ‖m,a,p ≥ 

or simply I ′(vε)(ϕ) ≤ ε‖ϕ‖m,a,p. In this way, we can deduce that ‖I ′(vε)‖E– ≤ ε.
Therefore, from the previous information we can conclude that there is a sequence

{vk} ⊂ Bρ such that

I(vk) → c and I ′(vk) →  in E– as k → ∞.

Using Lemma  we can show that up to a subsequence, {vk} converges strongly to some
v∗

 ∈ E. Thus, v∗
 is a weak solution of () and v∗

 is a non-trivial solution since I(v∗
) = c < .

Finally, since I(v∗
 ) = c >  > c = I(v∗

), then v∗
 �= v∗

 . �
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