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Abstract

This paper presents the diffraction of acoustic plane wave through a semi-infinite soft
duct. The soft plates are enclosed symmetrically inside an infinite duct with hard
boundary conditions. We fully emphasize the analysis of the behavior of the reflected
field amplitude for the pentafurcated duct by applying the straightforward
mode-matching technique. We also depict some graphical representations by
determining the reflected field amplitude for various dimensions of the
pentafurcated duct. We also present comparisons of results with the existing results
of a hard pentafurcated duct problem. This research work will assist the future
researchers in reducing noise effects in complicated devices and exhaust systems.

Keywords: scattering; acoustic; reflected field; pentafurcated waveguide; energy
balance

1 Introduction

In the 20th century, excessive amount of noise and unpleasant sounds became a part of
the urban culture that caused temporary disturbance in the natural balance. In urban ar-
eas, many industries use big machines and devices which produce excessive sounds and
contribute to noise pollution. In addition to this, different equipments and vehicles, like
compressors, generators, exhaust fans, grinding mills etc., contribute to the production of
unwanted noises. In the past thirty years, unwanted noises have become a major threat
to physical and mental health of people, especially for those residing in urban areas. In
many technical and industrial fields, a variety of mechanisms have become the source of
harmful and undesired noise. Structural acoustics have provided a large number of chal-
lenging and interesting problems for applied mathematicians, physicists and engineers.
That is the reason why it has become a topic of great interest to study the diffraction of
sound wave in various structures with different combinations of the boundary conditions
(soft, hard, impedance etc.).

Over the years, many researchers have analyzed different types of structures involv-
ing different boundary conditions by integral transform and Jones method based on the
Wiener-Hopf technique.

Buyukaksoy et al. [1] studied a bifurcated cylindrical waveguide with wall impedance
discontinuity. Rawlins [2] also analyzed the solution of a bifurcated circular waveguide
problem. Mahmood-ul-Hassan and Rawlins [3] analyzed two problems of waveguides car-
rying mean flow. They also defined a planar trifurcated lined duct having sound radiations
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[4]. They solved all these problems by applying the Wiener-Hopf technique. Ayub et al.
[5-7] presented acoustic diffraction in a trifurcated waveguide with different boundary
conditions (hard, soft, impedance etc.). Demir and Cinar [8] considered the propagation
of sound in a two-part circular cylindrical duct carrying a mean gas flow, inserted in a
larger infinite outer duct with wall impedance discontinuity. All researchers mentioned
above solved these problems by applying the Wiener-Hopf technique. The solution ob-
tained by the Wiener-Hopf technique consists of complicated factors or split functions.
Sometimes, it is very complicated to handle the matrix Wiener-Hopf problem.

Keeping in mind past research work, we emphasize the mode-matching technique
which is powerful, straightforward and simple compared to Wiener-Hopf and other tech-
niques. In this technique, potential solutions which satisfy the appropriate boundary con-
ditions are matched across the boundary of the structure. Many researchers have used
the mode-matching technique to solve various structures with different boundary con-
ditions. Andronor and Belinskii [9] proposed the diffraction field of acoustic waves in a
vertically stratified medium covered from above by an elastic plate by using the integral
transformation technique. Lawrie et al. [10-12] analyzed different types of geometries by
applying the mode-matching technique to get solutions by developing new orthogonality
relations. Lawrie [13] solved geometry involving scattering in three-dimensional waveg-
uide with flexible wall by using the mode-matching technique. Mahmood-ul-Hassan et al.
[14] analyzed water wave scattering in a submerged elastic plate by applying the mode-
matching technique. Nawaz and Lawrie [15] investigated the scattering of a wave at a
flanged junction between two flexible waveguides by using the mode-matching technique.
The flanged junction has one side soft and another rigid. Decrossas et al. [16] analyzed the
modeling of coaxial circular waveguide discontinuities for material characterization pur-
poses by applying the mode-matching technique. Ranajit et al. [17] presented the design
and analysis of cubic spline interpolated profiled smooth-wall multi-mode horn using the
mode-matching technique along with evolutionary algorithm. Meylan et al. [18] devel-
oped an eigenfunction expansion method for the problem of linear water-wave scattering
by a circular floating porous elastic plate and also developed a coupled boundary-element
and finite element plate shape. Sanchis et al. [19] reported a mode-matching technique for
highly efficient coupling between dielectric silica waveguides and planar photonic crystal
waveguides based on setting localized defects in a PPC tapered waveguide. Hassan [20]
analyzed the propagation of the lowest mode from semi-infinite soft-hard three spaced
duct by applying the straightforward mode-matching technique. Hassan et al. [21] solved
a complicated hard pentafurcated duct problem by applying the powerful mode-matching
technique. The related work on a soft-hard pentafurcated waveguide problem has been
tackled by Hassan et al. [22] using the straightforward mode-matching technique.

We consider here a pentafurcated problem with outer hard and inner soft boundary
conditions. The soft linings (the pressure release conditions) are introduced to see the
effect on the reflected field with a hard pentafurcated problem [21]. The given problem
provides a good first hand approximation in the actual system. This prototype model will
be helpful for researchers to deal with more general conditions. We split our pentafur-
cated structure into six regions. The potential solution is obtained in an individual region
by applying the separation of variables method. The orthogonality relations permit the
given problem to be reduced in the form of infinite systems of linear algebraic equations.
These infinite systems of equations are solved by applying MATLAB programming. The
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Richardson extrapolation formula is used to estimate the errors in the solution. The linear
systems of equations converge, so we can truncate the system of equations in our calcu-
lation. We depict the reflected field amplitude graphically for various dimensions of the
given waveguide. We also present the comparison of the acoustic energy which is propor-
tional to (1—|R|?) for the current problem with an existing hard pentafurcated duct which
was studied by Hassan et al. [21]. This article will be helpful for engineers in the future to
construct exhaust systems to attenuate noise pollution.

We arrange this article in the following manner. In Section 2, the model problem is for-
mulated, while in Section 3 mode-matching solutions are presented. The convergence of
the given problem is synchronized in Section 4. In Section 5, some numerical results are
explained and represented graphically. The comparison between the current problem and
the hard pentafurcated problem [21] is shown in Section 6. In Section 7, the energy con-
servation is also determined to derive power balance relationship between different coef-
ficients of reflection and transmission. The final remarks are given in Section 8.

2 Formulation of the boundary value problem
We consider the diffraction of an incident plane mode from a semi-infinite soft surface
duct (|y| < a, x < 0) which has geometrical representation in Figure 1. We form a two-
dimensional pentafurcated structure such that four semi-infinite soft plates are located
inside two infinite hard plates. Infinite hard plates are located at y = £d.

We introduce the scalar potential function ¢(x,y,t) and define acoustic pressure by p =
—po?)—‘f and velocity vector by # = grad(p), respectively (where p, indicates the density in
equilibrium state). The potential ¢ satisfies the following wave equation:

Vg = (/) pu. (2.1)
We assume
o(x,y,1) = Re[v(x, y)e™], (2.2)

where c is the speed of the sound, w is angular frequency, and the wave number is defined
as k = . Equation (2.2) identically satisfies equation (2.1) which eventually results into a
well-known Helmholtz equation in 2D that is within the duct

(V2 + /(Z)V(x,y) =0. (2.3)
Figure 1 Schematic diagram of the Hard A y-axis
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We will solve the problem subject to the following boundary conditions:

V(%) =0, y=2d,—00<x <00, (2.4)
v(x,9) =0, y=+£b—-00<x<0, (2.5)
v(x,9)=0, y==a,-00<x<0. (2.6)

The wave field satisfies the radiation conditions:
v(x,y) —V'(x,9) is outgoing and bounded as x — o0, (2.7)

which simply ensures the boundedness of the obtained solution. In order to ensure the
unique solution, different extra conditions, which are termed as edge conditions, are im-
posed. However, the problem is well posed as mentioned above. Therefore, no extra con-
dition is required for the uniqueness of the solutions. Yet, in the case of higher order
boundaries, the use of edge conditions becomes relevant. This statement is well supported
through a number of research articles (see, for instance, [15, 23]).

2.1 Regionl:{-d <y <-b,x <0}
In the given problem, the potential solution is obtained in each region by applying the
method of separation of variables. Then we use the straightforward eigenfunction expan-
sion technique proposed by Mei [24] and Linton & Mclver [25].

The potential solution of equation (2.3) in region I can be written as

v(x,y) = ;Ane—i&nx< 7 % B sina, (y + b)), (2.8)

which satisfies equations (2.4), (2.5) and radiation conditions (2.7), where A, represents
transmitted field amplitudes in region I.
The orthonormal relation is defined as

) 2
f ( msino%@ub))( a0 sina,,(y+b)) dy
—d - -

=5mnr m,n=123,..., (29)

where §,,,, is the Kronecker delta defined by

0, m+#n,
Sn = 7 (2.10)
1, m=n.

The associated eigenvalues are

2
R T
& = kz_(z(d-b)) , (2.11)

= k- (3—”)2 (2.12)
2d-b)
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(2.13)
§ e (Br-bx i 1,2,3 (2.14)
ay, = =), n=123,..., .
§ 2(d-b)
with 0 <Ima; <Imas ... and Rea,, > 0.
The eigenvalues o, = % are the solution of the following relation:
cosa,(d-b)=0, n=12,3,.... (2.15)
2.2 Regionll:{-b <y <-a,x< 0}
The potential solution of equation (2.3) in this region is given by
= ; 2
v(x,y) = ;Bne_iﬂ”x< G- sin B, (y + b)), (2.16)

which satisfies equations (2.5), (2.6) and radiation conditions (2.7), where B,, is the ampli-
tudes of transmitted field in region II.
The eigenfunctions satisfy the orthonormal relation

4 2 . 2 .
fb( (b_a)smﬂm(y+b))( (b_u)smﬁn(y+b)>dy

= Smnr mn=12,3,.... (217)

The associated eigenvalues are

2
. 7
L= kz_((b—a)) ) (2.18)

2w 2
VH‘<w—m>
(2.20)
2
‘/kz_((b”fa)> , n=1,23,..., (2.21)

with 0 <ImB; <Imp;... and Re B, > 0.
The eigenvalues 8, = 75 satisfy the equation

(2.19)

pa =
B\n:

sinB,(b—a)=0, n=123,.... (2.22)

2.3 Regionlll: {-a <y < a,x <0}
The potential solution of equation (2.3) in region III is defined as

v(x,y) = Z C, e T (\/g sin y, (y + a)) +en* (\/g siny; (y + a)), (2.23)
n=1
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which also satisfies equation (2.6) and radiation conditions (2.7), where the incident wave
e”}l"(\/g siny;(y + a)) is excited in the lowest mode propagating from x = —oco.
The eigenfunctions in this region define the orthonormal relation

/ﬂ (\/gsin Ym(y + a)) (\/gsin Vu(y + a)) ay=8um, mn=12,3,.... (2.24)

The associated eigenvalues are

2
Y=,k - <1> , (2.25)
2a
2
= k2= <£) (2.26)
a
(2.27)
R nm \ 2
=R -(52) m=123.., (2.28)
a

with 0 <Imy; <Imyp,... and Rey, > 0.
The eigenvalues y, = 5~ are the roots of the equation

sin(y,2a4) =0, n=1,2,3,.... (2.29)

2.4 RegionlV:{a <y < b,x <0}
The general potential solution of equation (2.3) in region IV is defined as

- —ifnx 2 :
V(x,y)=;Dne i ( ) smﬂn(y—a)), (2.30)

which satisfies equations (2.5), (2.6) and radiation conditions (2.7), where D,, is the ampli-
tudes of transmitted field in region IV.
The eigenfunctions satisfy the orthonormal relation

b 2 2 p
| (Jasntntr-a)(| g s -a)

= 5er mn=12,3,.... (231)

2.5 RegionV:{b<y =<d,x <0}
The general potential solution of equation (2.3) in this region is defined as

v(x,y) = ;Enet&nx< @ % D) sina, (y - b)), (2.32)

which satisfies equations (2.4), (2.5) and radiation conditions (2.7), where E,, is the ampli-

tudes of transmitted field in region V.
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The eigenfunctions satisfy the orthonormal relation

d 2 [ 2
/b( (d_b)sinam(y—b))( - b)sman(y b))

=8, mn=12,3,.... (2.33)

2.6 RegionVI: {-d <y <d, x> 0}
The general potential solution of equation (2.3) in region VI is defined as

o0
v(x,y) = Y Fae™* UM (y) dy, (2.34)

n=1

which satisfies equation (2.4) and radiation conditions (2.7).
We define the vertical orthonormal eigenfunctions in region VI as

i} =, ifn=1,
(VI)(y) dy = \/? (2.35)
\/gcos)\n(y+d), ifn#1.

The associated eigenvalues are

2

R T

Y B L I 2.36

e 250

2

R 7

Az = k*— <E> (2.37)
(2.38)

. (n-1m\>

A= k% - °d , n=123..., (2.39)

with 0 <Imil < Imig . and Re): > 0.

(n=Dm

The eigenvalues A, = 5~

satisfy the equation
sin(A,2d) =0, n=1,23,.... (2.40)

3 Solution of the pentafurcated waveguide problem

Here, we formulate an infinite system of equations by using potential solutions in all re-
gions which are matched at x = 0 to exploit the continuity of potentials and the continuity
of derivative of potentials (see Figure 1). Then we solve these system of equations by nu-
merically truncating them.

3.1 Continuity of pressure
The continuity of pressure in region I and region VI at x = 0 gives

Z (,(d 2 smoz,,(y+b)) ZF,,@,EVD()/).
n=1 n=1
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On taking the inner product with ( d 2 sina,,(y + b)), integrating over [—d, —b] and using

equation (2.9), we obtain

Ay = ZF,,PW,, m=1,2,3 (3.1)
n=1
where
-b 2
Py =/ ( @b s1nam(y+b)> VD (y) dy

Ja@ ['“m;j};z(d 2], if dos 7
| 53 [(d b)sina,,(b-d)], if A, =a,,

amm, ifn=1,m+#1.

The continuity of pressure in region II and region VI across x = 0 gives

ZB (J S sinfly + b)) =) _EV0)
n=1

Again by taking the inner product with ( ooy SIN Bm(y + b)), integrating over [-b, —a] and

using equation (2.17), we obtain

00
BmzanQmm m=12,3,..., (32)
n=1
where
—a 9 .
an:/ ( (b— )S]H,Bm()""b) )()’)dy
T [ﬁm(coskn(d—h)—c};);/j,)\nz(b—a) cos Ay (d-a)) ]’ if A ?,ﬂm,
s | P2 1 (b~ a)sin (b= )], i Ay = B
d(bl_a)[%:(bu)]’ ifn:l,m #1

The continuity of pressure in region III and region VI at x = 0 gives

i (\/jsm Va(y + a)) (\/gsin n(y+ a)) = nf;pnq,}gvn(y)

n=

On taking the inner product with (\/g siny,,(y + a)), integrating over [—a,a] and using
(2.24), we get

o0
Cpy + 81 = ZFann, m=1,2,3,..., (3.3)

n=1
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where
a/ 7 )
B [ (\/; Sin vy + a)) B000) dy
\/7[;/,,1 cos An(d—a y:)ii/gﬂacos)w(a+d))]’ i 2on # Vo
= o (B | g siny, (a—d)], if Ay = Yo
g[S, itn=1,m#1.

The continuity of pressure in region IV and region VI across x = 0 gives

oo 2 o0 _
Dn( sin ﬂn(y—a)) DA
2>\ - 2

While taking the inner product with ( b - sm Bm(y—a)), integrating over [a, b] and using
(2.31), we obtain

[
Dy=Y FuSun» m=123,..., (3.4)
n=1
where
’ 2 (VD
Sin = ———sin —a) |V d
= [ (g snatr=a) 800
/d(bZ > [/Sm cos)L,,(a+d)—/3mﬁy2f;o_s;é,(b+d)Cosﬂm(b—u)]’ if )\n 7-//3;,”,
= 2d2b a)[cosﬂm(a+d)—2<;3(::ﬂm(2b+d—u) —(b-a)sinBula+d)], ifrn=Pm
1- cmﬂm(b a) . _
d(ba [ ]’ lfl’l—l,m#l.

The continuity of pressure in region V and region VI across x = 0 gives

3 sina, (y — b)) = 3 F,,\IILVD()/).
r(|am >

Taking the inner product with ( /( 75 sina,,(y — b)), integrating over [b,d] and using

(2.33), we obtain
o0
Em:ZFnTmm Wl:1,2,3,..., (35)
n=1
where

drl 2
Tmn:/( - b)smam(y b) dy

2 U Cosk,,(b+d)—)~n sin)\n2dsincxm(d—b) .
dd=b) [ w232 ]7 if A, 7 s
— s b+d, d—-b) .
= Zd}d_b) [cosam(br ;a:‘w’” Bd=b) _(d —b)sina(b+d)], if hy =0t
1 ifn=1,m#1
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3.2 Continuity of velocity
Whilst following the working procedure of subsection (3.1), the continuity of the deriva-

tives of the potential solutions in different regions across x = 0 give the following systems

of equations.
o0
~QnAm =Y AnFuPoy m=1,2,3,..., (3.6)
n=1
o0
~BmBm = Z)LnFanm m=12,3,..., (3.7)
n=1
o0
)?18171’! - )?mcm = Z)‘-nFanm m= 1’ 2, 3;"'7 (3.8)
n=1
o0
~PuDn =) AnFuSpmy m=1,2,3,..., (39)
n=1
o0
~&mEm =Y dnFyTomy m=1,2,3,.... (3.10)
n=1
3.3 Coupling

Although we can solve equations (3.1) to (3.10) for unknown coefficients, we prefer to
couple these systems of equations for the sake of convenience. From (3.1) and (3.6), we

have

o0
ZFann(&m +3)=0, m=1,2,3,..., (3.11)

n=1

where equations (3.2) and (3.7) yield

ZFann(Bm +3,)=0, m=123,.... (3.12)
n=1

From (3.3) and (3.8), we have
o0
ZFann(),}m +)\n) = (),}1 + );m)alm) m = 1;2)37-”’ (313)
n=1

equations (3.4) and (3.9) give
> ESun(Bm+hn) =0, m=1,23,.... (3.14)
n=1

From (3.5) and (3.10), we have

oo
Y FyTyn(@m +An) =0, m=1,2,3,.... (3.15)

n=1
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Figure 2 Reflected field amplitude |R| and absolute error versus the truncation number M.

4 Convergence

Now we simplify an infinite system of equations to obtain unknown coefficients from re-
gion I to region VI. We plot the reflected field amplitude |R| and the absolute error of
reflection coefficient by exploiting the Richardson extrapolation formula as a function of
truncation number M for different dimensions of the duct having frequency 7 as shown
in Figure 2. We can observe clearly that the reflection becomes insensitive when M > 70
for both dimensions of the duct as presented in Figure 2 of sub-graphs f; and f;. In order
to estimate the exact solution, the Richardson extrapolation is used for large values of M
(M =400 and N = 5M) as represented in the sub-graphs f; and f; of Figure 2. The infinite
system of equations converges so that we can truncate at M =~ 100, which indicates the

errors within the line width.

5 Numerical results
Now, we truncate the infinite system of equations (3.11)-(3.15) by taking n = 1,2,3,...,5M
and m =1,2,3,...,M to solve F,. To check out the intensity of transmitted wave for the
current problem, we consider the reflection coefficient since the transmitted acoustic en-
ergy is proportional to (1—|R|?). In Figures 3-6, we present the graphical representation of
the reflected field |R| = |C;| versus the wave number k for different dimensions of the duct.
We assume only one propagating wave in each region I-V, then we observe the propagating
modes in region VI

In Figure 3, we consider that the dimensions of coaxial regions (b < |y| <d, a < |y| < b,
x < 0) are such that b = 3, d = 5, while the width of the middle region (|y| < a, x < 0) has val-
ues a =1and a = 2. The frequency range is 0 < k < . Three possible modes can propagate
in the forward direction in region VI (|y| < d,x > 0) from (7 /2 < k < 37 /5,37 /5 < k < 47 /5,
47 /5 < k < ) for a = 1. There are two modes in the forward direction for ¢ = 2 in this con-
dition. We can see from the graphical representation clearly that the cut-off(on) frequency
is changed from /4 to 7/2 as the width of the middle region is decreased. We also ob-
serve that the absolute value of reflection coefficient increases as the dimension of the

inner most duct decreases, while the width of the other coaxial regions is fixed.
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Figure 4 Reflected field amplitude |R| versus the wave number k for b=2 and d = 3.

In Figure 4, we assume small values a = 0.5 and a = 1 for the width of the middle region
(x <0, |y| < a). The frequency range is 0 < k < 2. The values of coaxial regions are kept
fixed b =2 and d = 3. The cut-on frequency is changed from 7 /2 to 7 as the width of the
inner duct (|y| < a, x < 0) is decreased. We can see similar behavior in Figure 3.

Figure 5 depicts the graph of |R| against k. We consider different dimensions of the coax-
ial region (x < 0, |y| < b) b =3 and b = 2, while a = 1 and d = 4 are kept fixed over frequency
range 0 < k < . Two modes can propagate in the forward direction x > 0. The cut-off(on)
frequencies do not change as the width of the inner most region is fixed. The upper bound
of the reflected field coefficient decreases from 0.98 to 0.71 when the width of the coaxial
region ‘b’ increases from 2 to 3 as shown in Figure 5.

Similarly, we present the graph of the reflected field amplitude versus the wave number
k in Figure 6. We have fixed the values of = 1 and b = 2, while the values of ‘d’ are 3 and 4,
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Figure 6 Reflected field amplitude |R| versus the wave number k fora=1and b=2.

and they are represented by dashed line and solid line, respectively. The frequency range
is 0 < k < w. We observe similar behavior of the reflection coefficient. We observe two
modes propagate in the forward direction.

6 Comparison

Here, we present the comparison of the reflection coefficient results for the current prob-
lem and the previous related work on a hard pentafurcated duct [21]. We consider different
dimensions for duct spacing for both problems and explain these results in two situations
as mentioned below.

6.1 Situation 1
We consider the duct dimensions for both ducts as @ = 1, b = 2 and d = 4 over the fre-
quency range 0 < k < 7. Figure 7 is the graphical view of this situation. We observe clearly
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Figure 7 Reflected field amplitude |R| versus the wave number k for two pentafurcated problems for
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Figure 8 Reflected field amplitude |R| versus the wave number k for two pentafurcated problems for

that the reflection coefficient decreases monotonically from the cut-off(on) frequency /2

to 37 /4.

The behaviors of the reflected field in outer hard inner soft penta and the hard penta are

similar for these dimensions. The reflection coefficient for the hard penta duct is smaller

than outer hard inner soft penta for 0 < k < 37/4. We also observe that the reflection

coeflicient for both problems decreases to small values eventually.

6.2 Situation 2

Figure 8 depicts the comparison of reflection coefficient results for 2 =1, b = 3 and

d = 5. The frequency range is 0 < k < 7. The reflection coefficient decreases monotoni-

cally rapidly for the given problem from cut-off(on) frequency 7 /2 to onwards 7. In this

case, the reflection behavior for hard penta duct [21] is quite different for 27 /5 < k < 57/8.

The upper bound of the reflection coefficient for hard penta is 0.43, while the upper bound

is 1 for the given problem.
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7 Energy conservation
Now we use the Green’s identity [26]

/ /D((V2v + KPv)v* = (V2 + K2vF)v) ds = fé}D (V*% - vaal; ) dy=0 (7.1)

to represent the reflected and transmitted waves energy conservation relationship with
incident wave. In the given problem, v(x, y) is the solution of equation (2.3) which satisfies
boundary conditions (2.4)-(2.6), where * indicates the conjugate and D is the region of the
duct (-d < y < d, —00 < x < 00) having cuts for the semi-infinite ducts. We consider one
wave that propagates in each of five regions I-V (-d < y < d, x < 0). Then, after the use of a

little algebra, it is easy to show energy conservation relationship (7.2) from equation (7.1).

2
P(1-1C1) = @ilAil® + BilBi I + BUDI P + &l B> + ) AIF P (7.2)
j=1

where 71 (1 — |C;|?) represents acoustic energy which is proportional to (1 — |R|?) that be-
longs to the middle region (-a < y < a, x < 0). This radiated energy is distributed over
different regions.

8 Final remarks

We have investigated an outer hard inner soft pentafurcated exhaust problem by applying
the straightforward mode-matching technique. This article will be helpful for engineers
to design various exhaust systems for reduction of noise problems. The dominant mode
is assumed to propagate in the inner region (|y| < a, x < 0) of the duct.

We have solved an infinite system of equations and observed that the solution becomes
insensitive for M > 70 for given dimensions of the duct spacing (see Figure 2). So we can
truncate at M ~ 100, which shows errors within line width of error plots. We have plot-
ted the reflected field |R| against the wave number k for the given problem for different
physical situations in Figures 3-6. We have considered different dimensions of the duct
while the frequency range is 0 < k < 7. We have observed that the reflection coefficient
decreases from cut-off frequency of the backward directed propagating modes (see Fig-
ures 3 and 4). The value of |R| decreases when we increase the width of the inner region
(lyl < a, x < 0). In both Figures 5 and 6, the width of the middle region (]y| < 4, x < 0) is
kept fixed. In Figure 5, we have observed that the cut-off (on) frequency remains the same
when we change the width of the coaxial region (|y| < b, x < 0). We have observed that the
reflection increases as we decrease the duct spacing. When we change the width of the
outer region (|y| < d) (see Figure 6), the cut-off (on) frequency k = /2 does not change,
but the other cut-off (on) frequencies do change. In Figures 3-6, we have observed that the
value of reflected field coefficient is one at certain values of wave number (k = 7w /4,7 /2, ),
which corresponds to cut-on frequencies in region III. This corresponds to maximum at-
tenuation downstream.

In Section 6, we have compared the reflected field results against the wave number for
two pentafurcated ducts with different boundary conditions (see Figures 7 and 8). We
have assumed that only one wave propagates in each of the coaxial regions (|y| < d, x < 0).
We have noticed that the value of the reflected coefficient is greater for the given problem
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than the hard pentafurcated duct problem [21] for the given frequency range (see Figures 7
and 8). Thus the radiated acoustic energy which is proportional to (1 — |R|?) for the given
problem is smaller than the transmitted energy for hard pentafurcated duct. We have con-
cluded that the inner soft surfaces provide an upper bound (|R| = 1) to reduce noise effects.
This geometry can be solved by using the Wiener-Hopf technique, but it would require
tedious, complicated calculations and computational work if compared to this technique.
Future work will be extended to solving the given model in the case of fluid flow. This re-
search work will be helpful for engineers and physicists to form the type of compressors,

generators, exhaust fans and grinding mills which reduce unwanted noise in urban areas.
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