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Abstract
We prove Marchenko-type uniqueness theorems for inverse Sturm-Liouville
problems. Moreover, we prove a generalization of Ambarzumyan’s theorem.
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1 Introduction
Let us denote by L(q,α,β) the Sturm-Liouville boundary value problem

–y′′ + q(x)y = μy, x ∈ (,π ),μ ∈C, (.)

y() cotα + y′() = , α ∈ (,π ), (.)

y(π ) cotβ + y′(π ) = , β ∈ (,π ), (.)

where q is a real-valued, summable function, q ∈ L
R

(,π ). At the same time, L(q,α,β)
denotes the self-adjoint operator generated by problem (.)-(.) (see, e.g., [–]). It is
known that under the above conditions the spectrum of operator L(q,α,β) is discrete and
consists of real, simple eigenvalues (see, e.g., [, ]), which we denote by μn = μn(q,α,β),
n ≥ , emphasizing the dependence of μn on q, α and β . We assume that eigenvalues are
enumerated in the increasing order, i.e.,

μ(q,α,β) < μ(q,α,β) < · · · < μn(q,α,β) < · · · .

Let ϕ(x,μ) be a solution of equation (.), which satisfies the initial conditions

ϕ(,μ) = , ϕ′(,μ) = – cotα. (.)

The eigenvalues μn = μn(q,α,β), n ≥ , of L(q,α,β) are the solutions of equation

ϕ(π ,μ) cotβ + ϕ′(π ,μ) = .
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It is easy to see that the functions ϕ(x,μn), n ≥ , are the eigenfunctions corresponding to
the eigenvalue μn. The squares of the L-norm of these eigenfunctions

an = an(q,α,β) :=
∫ π



∣∣ϕ(x,μn)
∣∣ dx, n ≥ ,

are called norming constants. The eigenvalues and norming constants are called spectral
data (besides these, there are other quantities, which are also called spectral data). The
inverse Sturm-Liouville problem is to reconstruct the quantities q,α,β by some spectral
data.

Let L = L(q,α,β) and L = L(q,α,β) be two operators. The following assertion is usu-
ally called the uniqueness theorem of Marchenko.a

Theorem . (Marchenko []) Let q ∈ L
R

(,π ). If

μn(q,α,β) = μn(q,α,β), (.)

an(q,α,β) = an(q,α,β), (.)

for all n ≥ , then α = α,β = β and q(x) = q(x) almost everywhere.

One of the results of the present paper is the following theorem which, in some sense,
is a generalization of Marchenko’s uniqueness theorem.

Theorem . Let q′ ∈ L
R

(,π ). If

μn(q,α,β) = μn(q,α,β), (.)

an(q,α,β) ≥ an(q,α,β), (.)

for all n ≥ , then β = β and q(x) ≡ q(x).

This kind of uniqueness theorem has not been considered before. The main difference
between Theorems . and . is that we replace the equality in (.) with the inequality
in (.). Note that we assume q′ ∈ L

R
(,π ) instead of general q ∈ L

R
(,π ) since our proof

is based on the results of Jodeit and Levitan (see []). And the parameter α of boundary
condition is in advance fixed α = α.

Remark  Some analogues of Theorem . will be stated in the Appendix.

Historically, the first work in the theory of inverse spectral problems for Sturm-Liouville
operators belongs to Ambarzumyan []. He proved that if the eigenvalues of Sturm-
Liouville operator with Neumann boundary conditions are n, then the potential q is 
on [,π ]. It is known that the eigenvalues μn(,π/,π/) of operator L(,π/,π/) are
n, n ≥ . The classical Ambarzumyan theorem in our notations will be as follows.

Theorem . (Ambarzumyan []) If μn(q,π/,π/) = μn(,π/,π/) = n for all n ≥ ,
then q(x) ≡ .
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This was an exception as in general additional information was needed in order to recon-
struct the potential q uniquely. There are many generalizations of Ambarzumyan’s theo-
rem in various directions, we mention several of them (see, e.g., [–] and the references
therein).

Our generalization of Ambarzumyan’s theorem is as follows.

Theorem . Let q′ ∈ L
R

(,π ).
If μn(q,α,π – α) = μn(,α,π – α) for all n ≥ , then q(x) ≡ .

We think that Theorem . is a natural generalization, because we use only one spectrum
to reconstruct the potential q without any additional conditions, as it is in the classical
result.

2 Preliminaries
Two operators L = L(q,α,β) and L = L(q,α,β) are called isospectral if they have the
same spectra, i.e., μn(q,α,β) = μn(q,α,β), n ≥ . In what follows, if a certain symbol γ

denotes an object related to L, then γ (or γ  depending on situation) will denote a similar
object related to L.

The problem of describing all the operators L isospectral with L first was considered
by Trubowitz et al. (see [–]) for q ∈ L

R
(,π ). The same problem was considered by

Jodeit and Levitan in [] for q such that q′ ∈ L
R

(,π ). For this aim the Gelfand-Levitan
integral equation and transformation operators were used in []. They constructed the
kernel F(x, y) of the integral equation as follows. Let cn, n ≥ , be arbitrary real numbers
converging to zero, as n → ∞, so rapidly that the function

F(x, y) =
∞∑

n=

cnϕ
(
x,μ

n
)
ϕ

(
y,μ

n
)

(.)

is continuous and all the second order partial derivatives are also continuous. The integral
equation

K(x, y) + F(x, y) +
∫ x


K(x, t)F(t, y) dt = ,  ≤ y ≤ x ≤ π , (.)

is called Gelfand-Levitan integral equation.b

They proved that if  + cna
n >  for all n ≥ , then the integral equation (.) has a unique

solution K(x, y) and the function

ϕ(x,μ) = ϕ(x,μ) +
∫ x


K(x, t)ϕ(t,μ) dt

is a solution of the differential equation (.), with potential function

q(x) = q(x) + 
d

dx
K(x, x), (.)

and ϕ(x,μ) satisfies the initial conditions

ϕ(,μ) = , ϕ′(,μ) = – cotα,
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where

cotα = cotα +
∞∑

n=

cn. (.)

It means that the function ϕ(x,μ) satisfies the boundary condition (.) for all μ ∈C.
Find β ∈ (,π ) such that μn(q,α,β) = μn(q,α,β) for all n ≥ , i.e., ϕ(x,μ) should sat-

isfy, at the point x = π , the boundary condition (.)

ϕ
(
π ,μ

n
)

cotβ + ϕ′(π ,μ
n
)

= 

for this β ∈ (,π ). Such β (in []) is being defined from the following relation

cotβ = cotβ +
∞∑

n=

cnϕ

(π ,μ

n)
 + cna

n
. (.)

Thus Jodeit and Levitan showed that each admissible sequence {cn}∞n= generates an
isospectral operator L(q,α,β), where q,α and β are given by formulae (.), (.) and (.),
respectively. In this way they obtained all the potentials q, with q′ ∈ L(,π ), having a given
spectrum μ

n = μn(q,α,β), n ≥ .

3 Proof of Theorem 1.2
Consider operators L = L(q,α,β) and L = L(q,α,β) with the set of norming constants
a

n = an(q,α,β) and an = an(q,α,β), n ≥ , respectively. It is known (see, e.g., []) that
in this case the kernel F(x, y) of the integral equation (.) is

F(x, y) =
∞∑

n=

(


an
–


a

n

)
ϕ

(
x,μ

n
)
ϕ

(
y,μ

n
)
. (.)

Since by the condition of Theorem . the operators L and L are isospectral, then formu-
lae (.)-(.) hold. If we compare kernels (.) and (.), we will refer that cn = 

an
– 

a
n

. So
formulae (.) and (.) will become

cotα = cotα +
∞∑

n=

(


an
–


a

n

)
, (.)

cotβ = cotβ +
∞∑

n=

(
a

n – an
)ϕ

(π ,μ
n)

(a
n) . (.)

Thus, we have all the operators L(q,α,β) isospectral with L(q,α,β).
We supposed that α = α, then by formula (.) we have

∞∑
n=

(


an
–


a

n

)
= . (.)

Since an ≥ a
n for all n ≥ , thus from equation (.) it refers that an = a

n for all n ≥ .
Thus, from Marchenko’s uniqueness theorem . we obtain q(x) ≡ q(x) and β = β.

This completes the proof.
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Remark  From equation (.) it follows that the condition an ≥ a
n can be changed with

an ≤ a
n. From relation (.) it follows that we can assume β = β instead of α = α with

the condition an ≥ a
n or an ≤ a

n, and then we will also obtain q(x) ≡ q(x) and α = α.

4 Proof of Theorem 1.4
Consider an operator L(q,α,π – α) and an even operatorc L(,α,π – α).

Levinson proved [] (see also []) that an operator L is even if and only if

ϕ(π ,μn) = (–)n, n ≥ . (.)

The condition of the theorem means that the operator L(q,α,π – α) is isospectral with
L(,α,π – α). Since the method of Jodeit and Levitan has described all the isospectral
operators for a potential function q with q′ ∈ L(,π ), then there exists a sequence {cn}∞n=

such that  + cna
n >  for all n ≥ , {cn}∞n= has the properties described in Section , and

formulae (.)-(.) hold for operators L(q,α,π – α) and L(,α,π – α).
Therefore, taking into account that q(x) ≡ , α = α, β = β = π – α and (.), relations

(.)-(.), which connect these two operators, will become

q(x) = 
d

dx
K(x, x), (.)

∞∑
n=

cn = , (.)

∞∑
n=

cn

 + cna
n

= . (.)

If we subtract (.) from (.), we will obtain

∞∑
n=

c
na

n
 + cna

n
= . (.)

Since  + cna
n >  and a

n >  for all n ≥ , then from equation (.) we obtain that cn =
, n ≥ . Thus, from equations (.), (.) and (.) it follows that q(x) ≡ .

Remark  We will get the classical Ambarzumyan theorem if we take α = π/.

Appendix: Analogues of Theorem 1.2
Consider the L(q,α,β) problem. Let ψ(x,μ) be a solution of equation (.), which satisfies
the initial conditions

ψ(π ,μ) = , ψ ′(π ,μ) = – cotβ . (A.)

The eigenvalues μn = μn(q,α,β), n ≥ , are the solutions of the equation

�(μ) := ϕ(π ,μ) cotβ + ϕ′(π ,μ) = ,
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or of the equation

	(μ) := ψ(,μ) cotα + ψ ′(,μ) = .

�(μ) and 	(μ) are called characteristic functions for the operator L(q,α,β). In [] it
is proved that characteristic functions and their derivatives are uniquely determined only
from their zeros, i.e., from eigenvalues {μn}∞n=. It is easy to see that the functions ψ(x,μn),
n ≥ , are the eigenfunctions corresponding to the eigenvalue μn. The squares of the L-
norm of these eigenfunctions

bn = bn(q,α,β) :=
∫ π



∣∣ψ(x,μn)
∣∣ dx, n ≥ ,

are called norming constants.
Since all the eigenvalues of L(q,α,β) are simple, then there exist constants κn =

κn(q,α,β), n ≥ , such that

ϕ(x,μn) = κnψ(x,μn). (A.)

The theorem of uniqueness of Harutyunyan (see []) states the following.

Theorem A. If

μn(q,α,β) = μn(q,α,β),

κn(q,α,β) = κn(q,α,β),

for all n ≥ , then α = α, β = β and q(x) = q(x) almost everywhere.

From (.), (A.) and (A.) it follows

κn = ϕ(π ,μn) = ψ–(,μn). (A.)

There is a relationship between norming constants and characteristic functions (see,
e.g., [, ])

an =
∣∣ϕ(π ,μn)

∣∣∣∣�̇(μn)
∣∣, (A.)

bn =
∣∣ψ(,μn)

∣∣∣∣	̇(μn)
∣∣, (A.)

where the dot over � (or over 	) denotes the derivative of �(μ) with respect to μ. From
equations (A.) and (A.) we obtain

an = |κn|
∣∣�̇(μn)

∣∣. (A.)

Consider two isospectral operators L(q,α,β) and L(q,α,β). The following formulae,
analogues to (.) and (.), can be obtained for κn:

cotα = cotα +
∞∑

n=


|�̇(μ

n)|
(


|κn| –


|κ

n |
)

, (A.)
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cotβ = cotβ +
∞∑

n=

|κ
n | – |κn|
|�̇(μ

n)| . (A.)

From Theorem A. and formulae (.), (A.), (A.), a new statement, similar to Theo-
rem ., can be proven for κn as follows.

Theorem A. Let q′ ∈ L
R

(,π ). If

μn(q,α,β) = μn(q,α,β),
∣∣κn(q,α,β)

∣∣ ≥ ∣∣κn(q,α,β)
∣∣,

for all n ≥ , then β = β and q(x) ≡ q(x).

Remark  Instead of α = α, we can fix β = β and/or replace the inequality sign (‘≥’) with
less than or equal sign (‘≤’). Even so, the result is valid. Similar theorems can be proven
for ϕ(π ,μn).

Remark  Since the uniqueness theorem of Marchenko is also true for norming constants
bn, taking into consideration relations (A.), (A.) and (A.), analogues to Theorem . can
be proven for ψ(,μn) and bn.
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