Skip to main content

Existence of nontrivial weak homoclinic orbits for second-order impulsive differential equations

Abstract

A sufficient condition is obtained for the existence of nontrivial weak homoclinic orbits of second-order impulsive differential equations by employing the mountain pass theorem, a weak convergence argument and a weak version of Lieb’s lemma.

1 Introduction

Fečkan [1], Battelli and Fečkan [2] studied the existence of homoclinic solutions for impulsive differential equations by using perturbation methods. Tang et al. [36] studied the existence of homoclinic solutions for Hamiltonian systems via variational methods. In recent years, many researchers have paid much attention to multiplicity and existence of solutions of impulsive differential equations via variational methods (for example, see [712]). However, few papers have been published on the existence of homoclinic solutions for second-order impulsive differential equations via variational methods.

In this paper, we consider the following impulsive differential equations:

(1.1)
(1.2)

where V:R×RR is of class C 1 , V(t,0)= V (t,0)=0 with V (t,x)=(V/x)(t,x), and IC(R,R) with I(0)=0. denotes the set of all integers, and t j (jZ) are impulsive points. Moreover, there exist a positive integer p and a positive constant T such that 0< t 0 < t 1 << t p 1 <T, t l + k p = t l +kT, kZ, l=0,1,,p1. q ( t j + )= lim h 0 + q ( t j +h) and q ( t j )= lim h 0 + q ( t j h) represent the right and left limits of q (t) at t= t j respectively.

We say that a function q(t) is a weak homoclinic orbit of Eqs. (1.1) and (1.2) if q satisfies (1.1) and

q { q C ( R , R ) : j = + | q ( t j ) | 2 < + , q L 2 ( R ) , q ( ± ) = 0 , q ( k T ) = 0 , k Z } .

Motivated by the works of Nieto and Regan [7], Smets and Willem [13], in this paper we study the existence of nontrivial weak homoclinic orbits of (1.1)-(1.2) by using the mountain pass theorem, a weak version of Lieb’s lemma and a weak convergence argument. Our method is different from those of [8, 9].

The main result is the following.

Theorem 1.1 Assume that Eqs. (1.1) and (1.2) satisfy the following conditions:

(H1) There exists a positive number T such that

V (t+T,x)= V (t,x),V(t+T,x)=V(t,x),(t,x) R 2 ;

(H2) lim x 0 V ( t , x ) x =0 uniformly for tR;

(H3) There exists a constant μ>2 such that

x V (t,x)μV(t,x)>0,(t,x)R×R{0};

(H4) There exist constants a 0 >0 and a 1 >0 such that

(H5) There exists a constant b, with 0<b< μ 2 ( μ + 2 ) T p , such that

| I ( x ) | b|x|,

and

2 0 x I(t)dtI(x)x0.

Then there exists a nontrivial weak homoclinic orbit of Eqs. (1.1) and (1.2).

Remark 1.1 (H2) implies that q(t)0 is an equilibrium of (1.1)-(1.2).

Remark 1.2 Set V(t,x)=(2+sint) x 4 , I(x)= x 10 π p . It is easy to see that V(t,x), I(x) satisfy (H1)-(H5).

2 Proof of main results

Lemma 2.1 (Mountain pass lemma [14])

Let E be a Banach space and φ C 1 (E,R), eE, r>0 be such that e>r and

b:= inf y = r φ(y)>φ(0)φ(e).

Let

Then, for each ε>0, δ>0, there exists yE such that

(V1) d2εφ(y)d+2ε;

(V2) dist(y,E)2δ;

(V3) φ (y) 8 ε δ .

In what follows, l 2 denotes the space of sequences whose second powers are summable on (the set of all integers), that is,

j Z | a j | 2 <+,a= { a j } j = + l 2 .

The space l 2 is equipped with the following norm:

a l 2 = ( j Z | a j | 2 ) 1 2 .

We now prove some technical lemmas.

Lemma 2.2 The space

H:= { q C ( R , R ) : { q ( t j ) } j = + l 2 , q L 2 ( R ) , q ( ± ) = 0 , q ( k T ) = 0 , k Z }
(2.1)

is a Hilbert space with the inner product

( q 1 , q 2 ) H = R q 1 (t) q 2 (t)dt,
(2.2)

and the corresponding norm

q H = ( R | q ( t ) | 2 d t ) 1 2 .
(2.3)

Proof Let { q n } be a Cauchy sequence in H, then { q n } is a Cauchy sequence in L 2 (R) and there exists y L 2 (R) such that { q n } converges to y in L 2 (R). Define the function q(t) as follows:

q(t)= k T t y(s)ds,kTt<(k+1)T,kZ.

It is easy to see that

lim h 0 + q(kTh)= ( k 1 ) T k T y(s)ds.

Since q n (kT)=0, kZ, we have

| ( k 1 ) T k T y ( s ) d s | = | ( k 1 ) T k T y ( s ) d s [ q n ( k T ) q n ( ( k 1 ) T ) ] | = | ( k 1 ) T k T [ y ( s ) q n ( s ) ] d s | ( k 1 ) T k T | y ( s ) q n ( s ) | d s T 1 2 [ ( k 1 ) T k T | y ( s ) q n ( s ) | 2 d s ] 1 2 T 1 2 [ R | y ( s ) q n ( s ) | 2 d s ] 1 2 ,

which implies that ( k 1 ) T k T y(s)ds=0, that is, q(k T )=0, kZ. Therefore, q is continuous. Thus, qC(R,R) and q =y.

Noticing that, for kTt<(k+1)T, we have

| q ( t ) | 2 = | k T t y ( s ) d s | 2 [ k T ( k + 1 ) T | y ( s ) | d s ] 2 T k T ( k + 1 ) T | y ( s ) | 2 d s = T k T + | y ( s ) | 2 d s T ( k + 1 ) T + | y ( s ) | 2 d s ,

which implies q(±)=0. On the other hand, since

j = + | q ( t j ) | 2 = l = 0 p 1 k = + |q( t l + k p ) | 2 ,

and kT< t l + k p = t l +kT<(k+1)T (l=0,1,,p1), we have

| q ( t l + k p ) | 2 =| k T t l + k p y(s)ds | 2 T k T ( k + 1 ) T | y ( s ) | 2 ds.

Therefore,

j = + | q ( t j ) | 2 l = 0 p 1 k = + T k T ( k + 1 ) T | y ( s ) | 2 ds=pT R | y ( s ) | 2 ds<+.

Consequently, qH and { q n } converges to q in H. The proof is complete. □

Lemma 2.3 For any qH, the following inequalities hold:

| q | := sup t R | q ( t ) | T 1 2 q H , | q | 2 := [ R | q ( t ) | 2 d t ] 1 2 T q H .

Furthermore, q H 1 (R) and

Proof For any tR, there exists an integer k such that (k1)Tt<kT. Then it follows from Cauchy-Schwarz inequality that

| q ( t ) | = | q ( k T ) q ( t ) | t k T | q ( s ) | d s ( k 1 ) T k T | q ( s ) | d s T 1 2 ( ( k 1 ) T k T | q ( s ) | 2 d s ) 1 2 T 1 2 q H ,

which implies | q | T 1 2 q H .

Furthermore, from the above argument, we have

k = + ( k 1 ) T k T | q ( t ) | 2 dt T 2 k = + ( k 1 ) T k T | q ( t ) | 2 dt= T 2 q H 2 ,

that is, | q | 2 T q H .

Since

Finally, we obtain that

j = + | q ( t j ) | 2 = l = 0 p 1 k = + | q ( t l + k T ) | 2 = l = 0 p 1 k = + | t l + k T ( k + 1 ) T q ( s ) d s | 2 l = 0 p 1 k = + [ k T ( k + 1 ) T | q ( s ) | d s ] 2 p T k = + k T ( k + 1 ) T | q ( s ) | 2 d s = p T q H 2 .

The proof is complete. □

Define the functional φ:HR as follows:

φ(q)= 1 2 R | q ( t ) | 2 dt R V ( t , q ( t ) ) dt+ j = + 0 q ( t j ) I(s)ds,qH.
(2.4)

Lemma 2.4 If (H1)-(H5) hold, then φ C 1 (H,R) and

φ ( q ) , h = R q (t) h (t)dt R V ( t , q ( t ) ) h(t)dt+ j = + I ( q ( t j ) ) h( t j ),hH.
(2.5)

Proof From the continuity of V, V and (H2)-(H3), we see that, for each γ>0, there exists C γ >0, such that

| V ( t , x ) | C γ |x|, | V ( t , x ) | 1 2 C γ | x | 2 ,tR,|x|γ.

Since q(t)0 as t, there exists ρ γ >0 such that

| q ( t ) | γ,whenever |t| ρ γ .

Therefore, we have

| V ( t , q ( t ) ) | C γ | q ( t ) | , | V ( t , q ( t ) ) | 1 2 C γ | q ( t ) | 2 ,for all |t| ρ γ .

It follows from (H5) that, q,hH,

| j = + I ( q ( t j ) ) h ( t j ) | j = + | I ( q ( t j ) ) | | h ( t j ) | j = + b | q ( t j ) | | h ( t j ) | b ( j = + | q ( t j ) | 2 ) 1 2 ( j = + | h ( t j ) | 2 ) 1 2 < + ,

and

j = + | 0 q ( t j ) I(s)ds| j = + min { 0 , q ( t j ) } max { 0 , q ( t j ) } | I ( s ) | ds b 2 j = + | q ( t j ) | 2 <+.
(2.6)

Thus, φ and the right hand of (2.5) is well defined on H. By the definition of Fréchet derivative, it is easy to see that φ C 1 (H,R) and (2.5) holds. □

Lemma 2.5 If qH is a critical point of the functional φ, then q satisfies (1.1).

Proof If qH is a critical point of the functional φ, then for any h C 0 (R), we have

0= φ ( q ) , h = R q (t) h (t)dt R V ( t , q ( t ) ) h(t)dt+ j = + I ( q ( t j ) ) h( t j ).

jZ, take h C 0 (R) such that h(t)=0 for any t(, t j ][ t j + 1 ,+), and h C 0 ([ t j , t j + 1 ]). Therefore, we have

0= t j t j + 1 q (t) h (t)dt t j t j + 1 V ( t , q ( t ) ) h(t)dt,

by the definition of the weak derivative, which implies

q (t)+ V ( t , q ( t ) ) =0a.e. on ( t j , t j + 1 ).
(2.7)

Hence, the critical point qH of the functional φ satisfies (1.1). The proof is complete. □

Lemma 2.6 Under the assumptions (H1)-(H5), there exists eH and r>0 such that e H >r and

b:= inf y H = r φ(y)>φ(0)φ(e).

Proof If qH and q H 1 T 1 2 , then, by Lemma 2.3, | q | 1. Hence, by (H5) and Lemma 2.3, we have

j = + 0 q ( t j ) I ( s ) d s j = + min { 0 , q ( t j ) } max { 0 , q ( t j ) } | I ( s ) | d s 1 2 j = + b | q ( t j ) | 2 1 2 b T p q H 2 ,
(2.8)

and

j = + I ( q ( t j ) ) q( t j ) j = + | I ( q ( t j ) ) | | q ( t j ) | j = + b | q ( t j ) | 2 bTp q H 2 .
(2.9)

It follows from (2.8), (H4) and Lemma 2.3 that

φ ( q ) = 1 2 q H 2 R V ( t , q ( t ) ) d t + j = + 0 q ( t j ) I ( s ) d s 1 2 q H 2 a 1 R | q ( t ) | μ d t 1 2 b T p q H 2 1 2 q H 2 a 1 | q | μ 2 R | q ( t ) | 2 d t 1 2 b T p q H 2 1 2 ( 1 b T p ) q H 2 a 1 T μ + 2 2 q H μ .

Therefore, as μ>2 and b< μ 2 ( μ + 2 ) T p < 1 T p , there exists r>0 such that inf q H = r φ(q)>0.

Now, let vH{0} and λ>1. Then there exists a subset (a,b) of and λ large enough such that

λ | v ( t ) | >1,for all t(a,b).

Since V(t,λv(t))0, by (2.4), (H4) and Lemma 2.3, we have

φ ( λ v ) λ 2 2 R | v ( t ) | 2 d t a b V ( t , λ v ( t ) ) d t + j = + 0 λ v ( t j ) I ( s ) d s λ 2 2 v H 2 a 0 λ μ a b | v ( t ) | μ d t + λ 2 2 b T p v H 2 = λ 2 2 ( 1 + b T p ) v H 2 a 0 λ μ a b | v ( t ) | μ d t .

Since μ>2, the right-hand member is negative of λ sufficiently large, and there exists e:=λvH such that e H >r, φ(e)0. The proof is complete. □

Lemma 2.7 Under the assumptions (H1)-(H5), there exists a bounded sequence { q n } in H such that

φ( q n )d, φ ( q n )0,dist( q n ,H)0,

where d:= inf γ Γ sup t [ 0 , 1 ] φ(γ(t)), Γ={γC([0,1],H):γ(0)=0,γ(1)=e}. Furthermore, q n does not converge to 0 in measure.

Proof All we have to prove is that any sequence { q n } obtained by taking ε=1/ n 2 and δ=1/n in Lemma 2.1 is bounded and q n does not converge to 0 in measure. For n sufficiently large, it follows from (H3), (H5), (2.4), (2.5), (2.8) and (2.9) that

d + 1 + q n H φ ( q n ) 1 μ φ ( q n ) , q n = ( 1 2 1 μ ) R | q n ( t ) | 2 d t R [ V ( t , q n ( t ) ) 1 μ V ( t , q n ( t ) ) q n ( t ) ] d t + j = + 0 q n ( t j ) I ( s ) d s 1 μ j = + I ( q n ( t j ) ) q n ( t j ) = ( 1 2 1 μ ) q n H 2 1 μ R [ μ V ( t , q n ( t ) ) V ( t , q n ( t ) ) q n ( t ) ] d t + j = + 0 q n ( t j ) I ( s ) d s 1 μ j = + I ( q n ( t j ) ) q n ( t j ) ( 1 2 1 μ ) q n H 2 b T p 2 q n H 2 b T p μ q n H 2 = ( 1 2 1 μ b T p 2 b T p μ ) q n H 2 .

Since b< μ 2 ( μ + 2 ) T p , { q n } is bounded in H.

Let a 2 := sup n N { q n H }. By (H2) and (H3), we have

1 2 V (t,u)uV(t,u)=o ( u 2 ) ,as u0,

which implies

a 3 := sup | u | T 1 2 a 2 1 2 V ( t , u ) u V ( t , u ) u 2 <.

For any ε>0, there exists δ>0 such that, for |u|δ, we have

| 1 2 V (t,u)uV(t,u)|ε u 2 .

Therefore, by Lemma 2.3, we have

(2.10)

If q n converges to 0 in measure on R, then it follows from (H5) and (2.10) that

0 < d = φ ( q n ) 1 2 φ ( q n ) , q n + o ( 1 ) = R [ 1 2 V ( t , q n ) q n V ( t , q n ) ] d t + j = + 0 q n ( t j ) I ( s ) d s 1 2 j = + I ( q n ( t j ) ) q n ( t j ) + o ( 1 ) meas { | q n ( t ) | > δ } T a 2 2 a 3 + ε T 2 a 2 2 + 1 2 j = + [ 2 0 q n ( t j ) I ( s ) d s I ( q n ( t j ) ) q n ( t j ) ] + o ( 1 ) meas { | q n ( t ) | > δ } T a 2 2 a 3 + ε T 2 a 2 2 + o ( 1 ) = o ( 1 ) ,

a contradiction. The proof is complete. □

The following lemma is similar to a weak version of Lieb’s lemma [15], which will play an important role in the proof of Theorem 1.1.

Lemma 2.8 If { u n } is bounded in H and u n does not converge to 0 in measure, then there exist a sequence { x n k }Z and a subsequence { u n k } of { u n } such that

u n k (+ x n k T)u0 in H 1 (R).

Proof If

lim n sup q Z sup t [ q T T , q T + T ] | u n ( t ) | =0,

then, for any ε>0, there exists n 0 >0 such that, for n n 0 , we have

sup q Z sup t [ q T T , q T + T ] | u n ( t ) | ε.

Therefore, for all tR and n n 0 , we have

| u n ( t ) | ε,

which implies

lim n meas { t R : | u n ( t ) | > ε } =0,

a contradiction. Therefore, there exist a constant ρ>0 and a subsequence { n k } of {n} such that

sup x Z sup t [ x T T , x T + T ] | u n k ( t ) | >ρ,kN,

where denotes the set of all positive integers. So, for kN, there exists x n k Z such that

sup t [ x n k T T , x n k T + T ] | u n k ( t ) | >ρ.

Let v n k (t)= u n k (t+ x n k T), tR. Since { u n } is bounded in H, by Lemma 2.3, it is easy to see that { v n k } is bounded in H 1 (R). Therefore, { v n k } has a subsequence which weakly converges to u in H 1 (R). Without loss of generality, we assume that v n k u in H 1 (R). Thus, v n k u in H 1 ([T,T]). Therefore, v n k uniformly converges to u in [T,T]. Noticing that

sup t [ T , T ] | v n k ( t ) | = sup t [ T , T ] | u n k ( t + x n k T ) | = sup t [ x n k T T , x n k T + T ] | u n k ( t ) | >ρ,

we have

sup t [ T , T ] | u ( t ) | ρ,

that is, u0. □

Proof of Theorem 1.1 By Lemma 2.7, there exists a bounded { q n } in H such that

φ( q n )d, φ ( q n )0,dist( q n ,H)0,

and { q n } does not converge to 0 in measure on , where d is the mountain pass value. By Lemma 2.8, there exists a sequence { x n k } in such that

ω k := q n k (+ x n k T)ω0in  H 1 (R).

For any fixed kN, set s=t+ x n k T and h k (s):=h(s x n k T). Then s j := t j + x n k T (jZ) are impulsive points and

h k H = ( R | h k ( s ) | 2 d s ) 1 2 = ( R | h ( s ) | 2 d s ) 1 2 = h H .

For any h C 0 (R) with h(kT)=0, we have

φ ( ω k ) , h = R ω k ( t ) h ( t ) d t R V ( t , ω k ( t ) ) h ( t ) d t + j = + I ( ω k ( t j ) ) h ( t j ) = R [ q n k ( t + x n k T ) h ( t ) V ( t , q n k ( t + x n k T ) ) h ( t ) ] d t + j = + I ( q n k ( t j + x n k T ) ) h ( t j ) = R [ q n k ( s ) h ( s x n k T ) V ( s x n k T , q n k ( s ) ) h ( s x n k T ) ] d s + j = + I ( q n k ( s j ) ) h ( s j x n k T ) = R [ q n k ( s ) h ( s x n k T ) V ( s , q n k ( s ) ) h ( s x n k T ) ] d s + j = + I ( q n k ( s j ) ) h ( s j x n k T ) = R [ q n k ( s ) h k ( s ) V ( s , q n k ( s ) ) h k ( s ) ] d s + j = + I ( q n k ( s j ) ) h k ( s j ) = φ ( q n k ) , h k .

Hence, we have

| φ ( ω k ) , h | = | φ ( q n k ) , h k | φ ( q n k ) h k H = φ ( q n k ) h H ,

which implies

φ ( ω k ) , h 0as k.
(2.11)

Since H H 1 (R), ω k ω in H, therefore

R ω k h R ω h .
(2.12)

As ω k ω in H 1 (R), { ω k } is bounded in H 1 (R) and hence | ω k | c for some c>0 and all kN. Also, { ω k } uniformly converges to ω on supp(h) and, V being uniformly continuous on supp(h)×[c,c], V (t, ω k )h uniformly converges to V (t,ω)h on supp(h)×[c,c]. By the Lebesgue dominated convergence theorem, this implies that

R V (t, ω k )h R V (t,ω)h.
(2.13)

For any hH and ε>0, take J 0 sufficiently large such that

( j = J 0 + 1 + | h ( t j ) | 2 ) 1 2 ε, ( j = J 0 1 | h ( t j ) | 2 ) 1 2 ε.

Since ω k ω in H 1 (R), ω k ω in H 1 ([ t J 0 , t J 0 ]), therefore ω k uniformly converges to ω in [ t J 0 , t J 0 ]. By the continuity of I, there exists K>0 such that, when k>K, we have

| j = J 0 J 0 [ I ( ω k ( t j ) ) I ( ω ( t j ) ) ] h( t j )|ε.

Since

| I ( ω k ( t j ) ) | b | ω k ( t j ) | , | I ( ω ( t j ) ) | b | ω ( t j ) | ,

it follows from Lemma 2.3 that

Similarly, we have

( j = J 0 1 [ I ( ω k ( t j ) ) I ( ω ( t j ) ) ] 2 ) 1 2 2b T p max { sup k ω k H , ω H } .

By the Cauchy-Schwarz inequality, we have

Therefore,

lim k j = + I ( ω k ( t j ) ) h( t j )= j = + I ( ω ( t j ) ) h( t j ).
(2.14)

From (2.11)-(2.14), we have

φ ( ω ) , h = lim k φ ( ω k ) , h =0.

Thus, φ (ω)=0 and ω is a nontrivial weak homoclinic orbit of (1.1)-(1.2). □

References

  1. Fečkan M: Chaos in singularly perturbed impulsive O.D.E. Boll. Unione Mat. Ital, B 1996, 10: 175–198.

    Google Scholar 

  2. Battelli F, Fečkan M: Chaos in singular impulsive O.D.E. Nonlinear Anal. 1997, 28: 655–671. 10.1016/0362-546X(95)00182-U

    Article  MathSciNet  Google Scholar 

  3. Tang XH, Xiao L: Homoclinic solutions for nonautonomous second order Hamiltonian systems with a coercive potential. J. Math. Anal. Appl. 2009, 351: 586–594. 10.1016/j.jmaa.2008.10.038

    Article  MathSciNet  Google Scholar 

  4. Tang XH, Xiao L: Homoclinic solutions for a class of second-order Hamiltonian systems. Nonlinear Anal. 2009, 71: 1140–1152. 10.1016/j.na.2008.11.038

    Article  MathSciNet  Google Scholar 

  5. Tang XH, Lin XY: Homoclinic solutions for a class of second-order Hamiltonian systems. J. Math. Anal. Appl. 2009, 354: 539–549. 10.1016/j.jmaa.2008.12.052

    Article  MathSciNet  Google Scholar 

  6. Tang XH, Lin XY: Existence of infinitely many homoclinic orbits in Hamiltonian systems. Proc. R. Soc. Edinb. A 2011, 141: 1103–1119. 10.1017/S0308210509001346

    Article  MathSciNet  Google Scholar 

  7. Nieto J, O’Regan D: Variational approach to impulsive differential equations. Nonlinear Anal., Real World Appl. 2009, 10: 680–690. 10.1016/j.nonrwa.2007.10.022

    Article  MathSciNet  Google Scholar 

  8. Zhang H, Li ZX: Periodic and homoclinic solutions generated by impulses. Nonlinear Anal., Real World Appl. 2011, 1: 39–51.

    Article  Google Scholar 

  9. Han X, Zhang H: Periodic and homoclinic solutions generated by impulses for asymptotically linear and sublinear Hamiltonian system. J. Comput. Appl. Math. 2011, 235: 1531–1541. 10.1016/j.cam.2010.08.040

    Article  MathSciNet  Google Scholar 

  10. Chen H, Sun J: An application of variational method to second-order impulsive differential equation on the half-line. Appl. Math. Comput. 2010, 217: 1863–1869. 10.1016/j.amc.2010.06.040

    Article  MathSciNet  Google Scholar 

  11. Sun J, Chen H, Yang L: The existence and multiplicity of solutions for an impulsive differential equation with two parameters via a variational method. Nonlinear Anal. 2010, 73: 440–449. 10.1016/j.na.2010.03.035

    Article  MathSciNet  Google Scholar 

  12. Luo Z, Xiao J, Xu J: Subharmonic solutions with prescribed minimal period for some second-order impulsive differential equations. Nonlinear Anal. 2012, 75: 2249–2255. 10.1016/j.na.2011.10.023

    Article  MathSciNet  Google Scholar 

  13. Smets D, Willem M: Solitary waves with prescribed speed on infinite lattices. J. Funct. Anal. 1997, 149: 266–275. 10.1006/jfan.1996.3121

    Article  MathSciNet  Google Scholar 

  14. Brezis H, Nirenberg L: Remarks on finding critical points. Commun. Pure Appl. Math. 1991, 64: 939–963.

    Article  MathSciNet  Google Scholar 

  15. Lieb EH: On the lowest eigenvalue of the Laplacian for the intersection of two domains. Invent. Math. 1983, 74: 441–448. 10.1007/BF01394245

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research is supported by the National Natural Science Foundation of China (Grant No. 10971085). The authors would like to thank the anonymous reviewers for their valuable comments and suggestions to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Fang.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed equally to the manuscript and read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Fang, H., Duan, H. Existence of nontrivial weak homoclinic orbits for second-order impulsive differential equations. Bound Value Probl 2012, 138 (2012). https://doi.org/10.1186/1687-2770-2012-138

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1687-2770-2012-138

Keywords