Figure 2From: A shifted Jacobi-Gauss-Lobatto collocation method for solving nonlinear fractional Langevin equation involving two fractional orders in different intervals Approximate solution for $\mathit{\nu}\mathbf{=}\mathbf{1.2}\mathbf{,}\mathbf{1.4}\mathbf{,}\mathbf{1.6}\mathbf{,}\mathbf{1.8}\mathbf{,}\mathbf{2}$ , $\mathit{\mu}\mathbf{=}\mathbf{1}$ with 14 nodes and the exact solution at $\mathit{\nu}\mathbf{=}\mathbf{2}$ and $\mathit{\mu}\mathbf{=}\mathbf{1}$ , for Example 2. Back to article page