Skip to main content

Advertisement

Table 1 Some numerical results for calculation of \(\varGamma _{q}(x)\) with \(q=\frac{1}{8}\), which is constant, for \(x=9.5, 65, 110, 780\) in Algorithm 2

From: On the existence of solutions for a multi-singular pointwise defined fractional q-integro-differential equation

nx = 9.5x = 65x = 110x = 780
12.6797864432.5458341,804,225.6347531.29090809480473E+45
22.6745524423.8885181,800,701.7565601.28838678993206E+45
32.6738994422.8084671,800,262.1321081.28807224237593E+45
42.6738184422.6734941,800,207.1924681.28803293353064E+45
52.6738084422.6566231,800,200.3252221.28802802007493E+45
62.6738064422.6545141,800,199.4668201.28802740589531E+45
72.6738064422.6542501,800,199.3595191.28802732912289E+45
82.6738064422.6542171,800,199.3461071.28802731952634E+45
92.6738064422.6542131,800,199.3444301.28802731832677E+45
102.6738064422.6542131,800,199.3442211.28802731817683E+45
112.6738064422.6542121,800,199.3441951.28802731815808E+45
122.6738064422.6542121,800,199.3441911.28802731815574E+45
132.6738064422.6542121,800,199.3441911.28802731815545E+45
142.6738064422.6542121,800,199.3441911.28802731815541E+45
152.6738064422.6542121,800,199.3441911.28802731815541E+45
162.6738064422.6542121,800,199.3441911.28802731815541E+45
172.6738064422.6542121,800,199.3441911.28802731815541E+45
182.6738064422.6542121,800,199.3441911.28802731815541E+45
192.6738064422.6542121,800,199.3441911.28802731815541E+45