Skip to main content

Advertisement

Table 2 Some numerical results for calculation of \(\varGamma _{q}(x)\) with \(q=\frac{1}{8}, \frac{1}{2}, \frac{4}{5}, \frac{8}{9}\) for \(x=9.5\) of Algorithm 2

From: On the existence of solutions for a multi-singular pointwise defined fractional q-integro-differential equation

n\(q=\frac{1}{8}\)\(q=\frac{1}{2}\)\(q=\frac{4}{5}\)\(q=\frac{8}{9}\)
12.679786136.04620679,062.1382276,301,918.338883
22.674552119.08154541,793.3350912,528,395.395827
32.673899111.65822426,290.7336381,232,715.590371
42.673818108.17824218,589.881264689,176.848061
52.673808106.49255314,278.326587426,538.394173
62.673806105.66286111,650.586796285,518.687713
72.673806105.2512519946.3508930203,363.796571
262.673806104.8417805522.28383125,842.863721
272.673806104.8417805513.20243325,230.371788
282.673806104.8417795505.94968324,699.649904
292.673806104.8417795500.15538524,238.446645
1062.673806104.8417795477.04823520,879.606269
1072.673806104.841779\( \underline{5477}\underline{.}\underline{048234} \)20,879.566792
1082.673806104.8417795477.04823420,879.531702
1182.673806104.8417795477.04823420,879.337427
1192.673806104.8417795477.04823420,879.327822
1202.673806104.8417795477.048234\( \underline{20\text{,}879}\underline{. }\underline{319284\vphantom{\text{,}}} \)