Skip to main content

Advertisement

Table 3 Some numerical results for calculation of \(\varGamma _{q}(x)\) with \(q=\frac{1}{8}, \frac{1}{2}, \frac{4}{5}, \frac{8}{9}\) for \(x=110\) of Algorithm 2

From: On the existence of solutions for a multi-singular pointwise defined fractional q-integro-differential equation

n\(q=\frac{1}{8}\)\(q=\frac{1}{2}\)\(q=\frac{4}{5}\)\(q=\frac{8}{9}\)
11,804,225.6347532.43388915243820E+321.10933564801075E+752.3996994906237E+102
21,800,701.7565602.12965300838343E+325.41355796236824E+747.1431517307455E+101
31,800,262.1321081.99654969535946E+323.19616462101800E+742.6837217226512E+101
41,800,207.1924681.93415751737948E+322.14884539802207E+741.1944485864825E+101
51,800,200.3252221.90393630617042E+321.58553847001434E+746.0526350536381E+100
61,800,199.4668201.88906180377847E+321.25302695267477E+743.3987862057282E+100
71,800,199.3595191.88168265610746E+321.04280391429109E+742.0741306563269E+100
81,800,199.3461071.87800749466975E+329.02841142168746E+731.3555712905453E+100
91,800,199.3444301.87617350297573E+328.05899312693661E+739.38129101307050E+99
101,800,199.3442211.87525740263248E+327.36673088857628E+736.81335603265770E+99
111,800,199.3441951.87479957611817E+326.86049299667128E+735.15556440821410E+99
121,800,199.3441911.87457071874804E+326.48333340557523E+734.04051908444650E+99
481,800,199.3441911.87434189862553E+325.18960499065178E+736.66324790738213E+98
901,800,199.3441911.87434189862553E+325.18923469131315E+736.50025876524830E+98
911,800,199.3441911.87434189862553E+325.18923468501255E+736.50013085733126E+98
921,800,199.3441911.87434189862553E+325.18923467997207E+736.50001716364224E+98
931,800,199.3441911.87434189862553E+325.18923467593968E+736.49991610435300E+98
1181,800,199.3441911.87434189862553E+325.18923465987107E+736.49915022957670E+98
1191,800,199.3441911.87434189862553E+325.18923465985889E+736.49914550293450E+98
1201,800,199.3441911.87434189862553E+325.18923465984914E+736.49914130147782E+98