Skip to main content

Table 1 Some numerical results for \(\varSigma _{1}\), \(\varSigma _{2}\), and \(\varSigma _{3}\) in Example 1 for \(q=\frac{1}{10}, \frac{1}{2}, \frac{6}{7}\)

From: On a system of fractional q-differential inclusions via sum of two multi-term functions on a time scale

n \(q =\frac{1}{10}\) \(q =\frac{1}{2}\) \(q =\frac{6}{7}\)
\(\varSigma _{1}\) \(\varSigma _{2}\) \(\varSigma _{3}\) \(\varSigma _{1}\) \(\varSigma _{2}\) \(\varSigma _{3}\) \(\varSigma _{1}\) \(\varSigma _{2}\) \(\varSigma _{3}\)
1 −0.3442 −0.3434 −0.3409 −0.3142 −0.2946 −0.2815 −0.1587 −0.0793 −0.0596
2 −0.3446 −0.3439 −0.3414 −0.3381 −0.326 −0.3147 −0.1837 −0.1125 −0.09
3 −0.3446 −0.344 −0.3414 −0.3501 −0.342 −0.3317 −0.2076 −0.1435 −0.1197
4 −0.3446 −0.344 −0.3414 −0.3562 −0.35 −0.3403 −0.2292 −0.1716 −0.1476
5 −0.3446 −0.344 −0.3414 −0.3592 −0.3541 −0.3446 −0.2484 −0.1968 −0.1731
10 −0.3446 −0.344 −0.3414 −0.3622 −0.358 −0.3488 −0.3128 −0.2832 −0.2634
11 −0.3446 −0.344 −0.3414 −0.3622 −0.3581 −0.3489 −0.3209 −0.2943 −0.2752
12 −0.3446 −0.344 −0.3414 −0.3622 −0.3581 −0.3489 −0.3279 −0.3039 −0.2855
56 −0.3446 −0.344 −0.3414 −0.3622 −0.3581 −0.3489 −0.3706 −0.3626 −0.3487
57 −0.3446 −0.344 −0.3414 −0.3622 −0.3581 −0.3489 −0.3706 −0.3627 −0.3488
58 −0.3446 −0.344 −0.3414 −0.3622 −0.3581 −0.3489 −0.3706 −0.3627 −0.3488
59 −0.3446 −0.344 −0.3414 −0.3622 −0.3581 −0.3489 −0.3707 −0.3627 −0.3488
60 −0.3446 −0.344 −0.3414 −0.3622 −0.3581 −0.3489 −0.3707 −0.3627 −0.3488