- Research
- Open access
- Published:
Advanced neural network approaches for coupled equations with fractional derivatives
Boundary Value Problems volume 2024, Article number: 96 (2024)
Abstract
We investigate numerical solutions and compare them with Fractional Physics-Informed Neural Network (FPINN) solutions for a coupled wave equation involving fractional partial derivatives. The problem explores the evolution of functions u and v over time t and space x. We employ two numerical approximation schemes based on the finite element method to discretize the system of equations. The effectiveness of these schemes is validated by comparing numerical results with exact solutions. Additionally, we introduce the FPINN method to tackle the coupled equation with fractional derivative orders and compare its performance against traditional numerical methods.
Key findings reveal that both numerical approaches provide accurate solutions, with the FPINN method demonstrating competitive performance in terms of accuracy and computational efficiency. Our study highlights the significance of employing FPINNs in solving fractional differential equations and underscores their potential as alternatives to conventional numerical methods. The novelty of this work lies in its comparative analysis of traditional numerical techniques and FPINNs for solving coupled wave equations with fractional derivatives, offering insights into advancing computational methods for complex physical systems.
1 Introduction
In this work, we numerically solve a coupled diffusion equation with a fractional derivative order of the form
with initial and boundary conditions
and boundary conditions
where \(0 < \alpha < 1 \), \(1 < \beta < 2 \), \(_{0}D^{\alpha}_{t} u \), \(_{0}D^{\alpha}_{t} v \), and \(_{0}D^{\beta}_{x} u \), \(_{0}D^{\beta}_{x} v \) denote the Caputo or Riemann–Liouville fractional derivatives of orders α and β, respectively. Here \(f_{i} : \Omega \times I \longrightarrow \mathbb{R} \), \(i = 1, 2 \), and \(u_{0} \) and \(v_{0} \) are given functions.
Equations (1) describe the interaction between two dependent variables \(u(x, t) \) and \(v(x, t) \) under the influence of source terms \(f_{1}(x,t) \) and \(f_{2}(x,t) \). The coupling terms \(v(x, t) \) and \(u(x, t) \) reflect the interaction between the processes. The form of these equations is inspired by the literature on fractional diffusion equations, which demonstrate the effectiveness of fractional models in capturing complex dynamics. References [2–5, 7, 13–15, 20, 21] provide a collection of published works that offer support for the mathematical formulation of problems concerning fractional differential equations and numerical methods. See also the references of [9–12, 16–19] for further existing results related to the stability and Numerically analysis of (1).
Fractional partial differential equations have applications in diverse fields such as electromagnetic theory, viscoelastic mechanics, fractal media, mathematical biology, and chemistry. Analytical solutions for these equations have been investigated using the Fourier and Laplace transforms, as well as Green’s functions [13, 15]. Additionally, various numerical methods have been proposed to solve space- and time-fractional partial differential equations [5, 7, 14]. Zeng et al. [21] considered two finite difference methods to approximate the time-fractional subdiffusion equation with the Caputo fractional derivative:
Using the finite difference method, Yokus [20] presented a numerical solution for the space- and time-fractional-order Burgers-type equation
Boutiba et al. [4] considered the finite element method for solving space-time partial differential equations involving fractional derivatives:
This work expands the use of Physics-Informed Neural Networks (PINNs) to solve coupled partial differential equations (PDEs) involving fractional derivatives, focusing on the interaction between two dependent variables \(u(x, t) \) and \(v(x, t) \). This approach provides a more accurate representation of memory and hereditary properties in physical processes, which are crucial in fields such as viscoelasticity, anomalous diffusion, and complex fluid dynamics.
This paper is organized as follows. In Sect. 3, we theoretically study the existence of a unique solution for a class of partial differential equations involving fractional derivatives. In Sect. 4, we numerically analyze the problem using the finite element method with two different time discretization methods using the Riemann–Liouville and Caputo derivatives, along with the Grünwald–Letnikov approximation.
Finally, in Sect. 5, we provide a numerical example to verify the consistency of our theoretical and numerical results.
2 Preliminaries
We now introduce some notations and definitions of functional spaces equipped with their norms, seminorms, and inner products, which will be used hereafter.
Let Λ be a domain representing I, Ω, or \(\mathcal{O}\). The space \(L^{2}(\Lambda )\) consists of measurable functions with Lebesgue-integrable squares over Λ. Its inner product and norm are defined as
for \(u, v \in L^{2}(\Lambda )\).
For a nonnegative real number s, by \(H^{s}(\Omega )\) and \(H^{s}_{0}(\Omega )\) we denote the usual Sobolev spaces with norms denoted by \(\|\cdot \|_{s,\Omega}\) (see [1]). For a Sobolev space X with norm \(\|\cdot \|_{X}\), we define
equipped with the norm
Particularly, when X is \(H^{\sigma}(\Omega )\) or \(H_{0}^{\sigma}(\Omega )\) for \(\sigma > 0\), the norm of the space \(H^{s}(I;X)\) will be denoted by \(\|\cdot \|_{\sigma ,s,Q}\).
Now we recall some definitions of fractional integrals and fractional derivatives, as detailed in [8].
Definitions 1
-
1.
For any positive integer n and \(\alpha \in (n-1,n]\), the fractional integral is defined by
$$ I^{\alpha}_{t} f(t) = \frac{1}{\Gamma (\alpha )} \int _{0}^{t} (t- \tau )^{\alpha -1} f(\tau ) \, d\tau \quad \text{for all } t \in [0,T], $$where Γ is Euler’s gamma function.
-
2.
The Riemann fractional derivative of a function \(f(t)\) is defined as follows:
$$ ^{RL}_{0}D^{\alpha}_{t} f(t) = \frac{1}{\Gamma (n-\alpha )} \frac{d^{n}}{dt^{n}} \int _{0}^{t} (t-\tau )^{n-\alpha -1} f(\tau ) \, d\tau $$for any positive integer n and \(\alpha \in (n-1,n]\).
-
3.
The Caputo fractional derivative of a function f(t) is defined as follows:
$$ ^{C}_{0}D^{\alpha}_{t} f(t) = \frac{1}{\Gamma (n-\alpha )} \int _{0}^{t} (t-\tau )^{n-\alpha -1} f^{(n)}(\tau ) \, d\tau $$for any positive integer n and \(\alpha \in (n-1,n]\).
-
4.
The generalized Caputo fractional derivative of order \(\alpha \in (n-1,n]\) is defined as follows:
$$ ^{C}_{0}D^{\alpha ,\eta}_{t} f(t) = \frac{1}{\Gamma (n-\alpha )} \int _{0}^{t} (t-\tau )^{n-\alpha -1} e^{-\eta (t-\tau )} f^{(n)}( \tau ) \, d\tau $$for any positive integer n.
-
5.
For any positive integer n and \(\alpha \in (n-1,n)\), the Grünwald–Letnikov fractional derivative of a function f is defined by
$$ _{0}^{GL}D_{\alpha }^{t} \ f(t) = \lim _{\Delta t \to 0} \frac{1}{\Delta t^{\alpha}} \sum _{k=0}^{n} \delta _{k}^{\alpha } f(t-k \Delta t), $$where \(\delta _{k}^{\alpha } = (-1)^{k} \frac{\Gamma (\alpha +1)}{\Gamma (\alpha +1-k) \Gamma (k+1)}\).
-
6.
In the usual Sobolev space \(H^{s}_{0}(\Lambda )\), we define the seminorm (see [7])
$$ |v|^{\ast}_{H^{s}_{0}(\Lambda )} := \left ( \frac{\left ( ~^{R}D^{s}_{z}v,\,^{R}D^{s}_{z}v\right )_{ \Lambda}}{\cos (\pi s)} \right )^{\frac{1}{2}} $$(3)for all \(v \in H^{s}_{0}(\Lambda )\).
We recall also the following lemmas (see [6, 7] for proofs).
Lemma 1
[7] For \(s > 0\), \(s \neq n - 1/2\), the spaces \({}^{l}H^{s}_{0}(\Lambda )\), \({}^{r}H^{s}_{0}(\Lambda )\), and \(H^{s}_{0}(\Lambda )\) are equal, and their seminorms are all equivalent to \(|\cdot |_{{\ast}H^{s}_{0}(\Lambda )}\).
Lemma 2
[6] For \(0 < \alpha < 2\), \(\alpha \neq 1\), and \(w, v \in H^{\frac{\alpha}{2}}_{0}(\mathcal{O})\), we have
3 Existence and uniqueness of the solution
We define the space \(B^{s, \sigma}\left ( \mathcal{O} \right ) = H^{s}\left (I, L^{2}( \Omega )\right ) \cap L^{2}\left (I, H^{s}(\Omega )\right )\) with the norm
where \(\mathcal{O} = \Omega \times I\). The Riemann–Liouville weak formulation of our problem (1)–(2) is defined as follows: for \(f_{1}, f_{2} \in B^{\frac{\alpha}{2}, \frac{\beta}{2}}(\mathcal{O})'\), find \(u, v \in B^{\frac{\alpha}{2}, \frac{\beta}{2}}(\mathcal{O})\) such that
where the bilinear form \(\mathcal{A}(\cdot , \cdot )\) is defined as
and the functional \(\mathcal{L}(\chi ,\xi )\) is given by
This formulation will be instrumental in proving the existence theorem for the solution of problem (1)–(2).
Theorem 1
For \(0 < \alpha < 1\), \(1 < \beta < 2\), and \(f_{1}, f_{2} \in L^{2}(\mathcal{O})\), problem (1)–(2) has a unique solution. Furthermore, we have the following stability result:
Proof
The existence of the unique solution is established by the well-known Lax–Milgram lemma. It involves proving the coercivity and continuity of the bilinear form \(\mathcal{A}\) and the continuity of the linear functional \(\mathcal{F}\), which is straightforward. First, it follows from Lemma 1 that for \((u, v), (\chi , \xi ) \in B^{\frac{\alpha}{2}, \frac{\beta}{2}}( \mathcal{O}) \times B^{\frac{\alpha}{2}, \frac{\beta}{2}}(\mathcal{O})\), we have
This proves the continuity of \(\mathcal{A}\). Then for the coercivity, from the same lemma, for all \((u, v) \in B^{\frac{\alpha}{2}, \frac{\beta}{2}}(\mathcal{O})\), we have
As \(1 < \beta < 2\), we can conclude that
To prove stability, we take \((\chi , \xi ) = (u, v)\) in (4), and using the coercivity result we get
 □
4 Numerical approach
4.1 Finite element method of Caputo’s derivative (FEMC1)
Step 1. Base functions and discretization domain. Let \(\Omega = [0,L]\) be a finite domain. Let \(\Omega _{e}\) be a uniform partition of Ω with uniform grid
so that \(\Omega = \bigcup _{i=0}^{m-1} \Omega _{i}\), where \(\Omega _{i} = [x_{i}, x_{i+1}]\). The time discretization of the interval \(I = [0, T]\) is given by
where m and n are positive integers, \(\Delta x = x_{i} - x_{i-1} = \frac{L}{m}\), so that \(x_{i} = i\Delta x\) for \(i = 1, \ldots , m\), and \(\Delta t = t_{j} - t_{j-1} = \frac{T}{n}\), so that \(t_{j} = j\Delta t\) for \(j = 1, \ldots , n\).
Denote by \(u(x_{i}, t_{j}) = u_{i}^{j}\), \(v(x_{i}, t_{j}) = v_{i}^{j}\), \(f_{1}(x_{i}, t_{j}) = f_{1}^{j}\), and \(f_{2}(x_{i}, t_{j}) = f_{2}^{j}\) the values of the functions u, v, \(f_{1}\), and \(f_{2}\) at the point \(x_{i}\) and instant \(t_{j}\). We also define the space \(S_{k}\) as the set of piecewise linear functions associated with this partition:
where \(P_{1}(\Omega _{i})\) is the space of linear polynomials defined on \(\Omega _{i}\).
The base functions \(h_{i}\) of \(S_{k}\) for each \(\Omega _{i}\) changing from the real base to the reference base are given by
Denoting by \(u^{j}\), \(v^{j}\) the approximations of \(u(t_{j})\), \(v(t_{j})\), we have
where
In Fig. 1, we show the distribution of test functions across elements.
To summarize the principle of the finite element method, we multiply equations (1)1 and (1)2 by h, and integrating by parts over Ω, we obtain
for all \(j=\overline{1,n}\).
The weak formulation of the problem can also be expressed by choosing each test function h as \(h_{i}\) on \(\Omega = \displaystyle \cup _{e=0}^{m-1} \Omega _{e}\) in (10), so we have
where \(\lambda =\beta -1\). The Caputo fractional derivative can be approximated by the formulas
and
With element-by-element \(\Omega _{e}\), \(e=\overline{0,m-1}\), we get
In Fig. 2 we show the pattern mesh of u and v using the discretization of the intervals \((0,L)\) and \(0,T\)).
In the following, we reformulate system (14) in abstract form as follows:
where
and \(K_{e}^{j}\) represents the element e at \(t_{j}\) defined by
where
for \(j = \overline{1,n}\), and the element \(\Omega _{0}\). We perform the same analysis using the test functions \(h_{i}\), \(i = \overline{1,m-1}\), and find
and
for \(j = \overline{1,n}\), and the element \(\Omega _{m}\). The following lemmas will be useful.
Lemma 3
For \(0 < \alpha < 1\) and \(x_{i} \leq x \leq x_{i+1}\), we have
and
where \(\mu = \dfrac{1}{\Delta x \Gamma (2-\alpha )}\).
Using equation (12) and Lemma 3, we obtain the following result.
Lemma 4
For \(j=1, 2, \ldots , n\) and \(0 < \alpha < 1\), we have
where \(0 \leq x \leq x_{k}\) and \(\mu = \dfrac{1}{\Delta x \Gamma (2-\alpha )}\).
For all \(j = \overline{1,n}\) and element \(\Omega _{i}\), \(i = \overline{1,m-2}\), we get
and
The Algorithm 1 summarizes all the steps for the calculation of the coefficients of \(P^{j}\).
Using equation (13), we obtain the following results.
Lemma 5
For \(j = 1, 2, \ldots , n\) and \(0 < \alpha < 1\), we have
where \(B = \dfrac{1}{\Delta t \Gamma (2 - \alpha )}\) and \(t_{j} - t_{k} = \Delta t (j - k)\).
Lemma 6
For \(i = \overline{1, m-1}\), we have
For all \(j = \overline{1, n}\) and the element \(\Omega _{i}\), \(i = \overline{1, m-2}\), we get
and
The Algorithm 2 summarizes all the steps for the calculation of the coefficients of \(C_{i}\).
Recall that for all \(j = \overline{1, n}\) and elements \(\Omega _{i}\), \(i = \overline{1, m-2}\), we get
and
Step 2. Assembly of the global system. We construct the global system matrix K. The contribution to the global matrix from an element consisting of nodes i and j is placed in a submatrix of the global matrix formed by rows i and j and columns i and j.
For this purpose, the procedure requires the solution to be continuous and the unknown source terms \(K_{i}^{j}\) be balanced at nodes common to several elements where they are connected to each other. We recall that
where
The system in the Fig. 3, contains the global matrix.
For each element, we have a starting point at \((i, j)\). Therefore we perform the following transformation:
where \(c=(m+1) \times (n+1)\), and p represents a counter or an index that increments automatically at each iteration of the loop.
After assembly of the global system matrix, system (11) is equivalent to
where
The Algorithm 3 assembles the global system.
4.2 Finite element method of Riemann’s derivative (FEMR2)
We follow the same steps as in Model (FEMC1). Multiplying equations (1)1 and (1)2 by h and integrating by parts element-by-element over Ω, we have
for \(e=\overline{0,m-1}\) and \(j=\overline{1,n}\).
We need the following lemma to give the second scheme.
Lemma 7
For \(0 < \alpha < 1\) and \(0 < \lambda < 1\), we have
and
This lemma establishes the connection between the Riemann–Liouville fractional derivative and the Caputo fractional derivative. Therefore, applying Lemma 7, system (19) can be written as
where \(g_{1}^{j}=f_{1}^{j}- \frac{u_{0}(x)t_{j}^{-\alpha}}{\Gamma (1-\alpha )}\) and \(g_{2}^{j}=f_{2}^{j}- \frac{u_{0}(x)t_{j}^{-\alpha}}{\Gamma (1-\alpha )}\).
In the following, we reformulate system (20) in abstract form as follows:
where
Finally, we apply the same previous results.
4.3 PINN approach
The Physics-Informed Neural Networks (PINNs) represent a novel category of neural networks that integrate machine learning and physical laws. This new algorithmic technology emerged relatively recently, in 2019, stemming from research laboratories.
To solve a system containing the Caputo fractional derivative, we employ both the PINN model and the Finite Difference Method (FDM) (see Fig. 4). The PINN captures the complex behaviors of the studied system, whereas the FDM discretizes the differential or integral equations, enabling a numerical approach to problem resolution. By combining these two approaches we obtain a scheme termed Fractional Physics-Informed Neural Networks (fPINNs), capable of efficiently solving a variety of mathematical and physical problems.
The predicted function values, denoted as \(f1_{pred}\) and \(f2_{pred}\), are defined as follows:
In this case, \(u(x, t)\) and \(v(x, t)\) will be approximated by a neural network. The latter has as an objective to minimize the following loss:
where
Now we calculate the right-hand side of (24)1 and (24)2:
and
Here \(\{x^{0}_{i}, u^{0}_{i}\}\) denotes the initial data at \(t = 0\), \(\{t^{j}_{0}, t^{j}_{L}\}\) the boundary data, and \(\{x_{i}, t_{i}\}\) corresponds to collocation points on \(f1_{pred}(x, t)\) and \(f2_{pred}(x, t)\), where \(N_{0}\), \(N_{b}\), and \(N_{f}\) are the numbers of available observations. Figure 5 shows the point cloud used for training the PINN and calculating the fractional derivative for each point \((x_{i},t_{j})\).
For \(0 < \alpha < 1\) and the interval \([t_{0}, t_{j}]\) discretized into \(j+1\) points, \(0 = t_{0} < t_{1} < \cdots < t_{j}\), the Caputo fractional derivative of order α using the method of finite differences (MDF) is approximated as
Lemma 8
Let q be the fractional order, where \(q = n + \alpha \), and n is the integer part of q. The fractional derivative of order q can be expressed as
where \(D^{\alpha}_{x} u(x,t)\) represents the fractional derivative of order α of the function \(u(x,t)\) and \(D^{n}\) represents the integer-order derivative of order n. This expression shows that the fractional derivative of order q is obtained by first applying the fractional derivative of order \(D^{\alpha}\), followed by the integer-order derivative of order n.
Then
for \(0 < \lambda < 1\) and the interval \([x_{0}, x_{i}]\) discretized into \(i+1\) points \(0 = x_{0} < x_{1} < \cdots < x_{i}\). Using the method of finite differences (MDF), the Caputo fractional derivative of order λ is approximated as
The PINN calculates the integer-order partial derivative \(\frac{\partial ^{n} u}{\partial ^{n} x}\) using automatic differentiation to obtain the gradients of the model predictions with respect to the inputs. For the FPINN with Riemann fractional derivative, we use Lemma 7:
4.4 Numerical examples
4.4.1 Caputo derivative example
The initial and boundary conditions are
and the boundary conditions are
where \(0 < \alpha < 1\), \(1 < \beta < 2\), and
The exact solution is \(u(x,t) = t^{2} x^{4}\), \(v(x,t) = t^{4} - x^{3}\). Figure 6 shows the value of \(K_{0}^{1} \) and \(K_{1}^{1} \) for \(\alpha = 0.5 \), \(\beta = 1.75 \), \(\Delta x = 0.1 \), and \(\Delta t = 0.1\).
The data used in the graphic representations were obtained from the values obtained using appropriate algorithms. Figure 7 and Fig. 8 give the comparison between the exact solutions and the numerical solutions for u and v with Caputo derivative.
We define Root Mean Square Error (RMSE) by
The data presented in Table 1 and Table 2, were obtained by comparing the exact solutions u and v with their respective numerical approximations û and v̂ using different discretization values Δx and Δt. Specifically, we calculated the RMSE defined by Equation (26), which measures the discrepancy between u (or v) and û (or v̂). This comparison enabled us to assess the accuracy of the numerical method employed to approximate u and v.
4.4.2 Riemann derivative example
The initial and boundary conditions are
and the boundary conditions are
where \(0 < \alpha < 1\), \(1 < \beta < 2\), and
The exact solution is \(u(x,t) = t x^{2}\), \(v(x,t) = t^{2} + x\). Figure 9 and Fig. 10 give the comparison between the exact solutions and the numerical solutions for u and v with Reimann derivative.
The data presented in Table 3 and Table 4, were obtained by comparing the exact solutions u and v with their respective numerical approximations û and v̂ using different discretization values Δx and Δt.
4.4.3 FPINN example
The initial and boundary conditions are
and the boundary conditions are
where \(0 < \alpha < 1\), \(1 < \beta < 2\), and
The exact solution is \(u(x,t) = t x^{2}\), \(v(x,t) = t^{2} + x\).
For \(\alpha = 0.5\), \(\beta = 1.75\), and \((x,t) \in [0,1] \times [0,1]\), we obtain the following results:
The data presented in the tables above were obtained by comparing the exact solutions u and v with their respective numerical approximations û and v̂ using different discretization values Δx and Δt. Specifically, we calculated the RMSE defined by
This comparison enabled us to assess the accuracy of the numerical method employed to approximate u and v.
Figures 11-14, were obtained by comparing the exact solutions u and v with their respective numerical FPINN approximations û and v̂.
The data presented in Table 5 and Table 6, were obtained by comparing the exact solutions u and v with their respective numerical FPINN approximations û and v̂ using different values of the order of the fractional derivatives α and β.
5 Conclusions
In this paper, we studied the well-posedness and the numerical solution of a coupled wave equation for solving a class of Caputo or Riemann–Liouville space-time fractional partial differential equations, subsequently comparing this solution with those obtained through various methods: the finite element method and Physics-Informed Neural Network (PINN).
This paper makes a significant contribution to the field of numerical analysis and applied mathematics by advancing the capabilities of PINNs in solving complex fractional and coupled PDEs, thus providing a powerful tool for researchers and practitioners dealing with sophisticated modeling challenges.
We conclude that PINNs emerge as a robust and promising tool for tackling complex PDEs, signaling a potentially transformative future alternative in this domain.
Data Availability
No datasets were generated or analysed during the current study.
References
Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)
Ayadi, M.A., Ahmed, B., Makram, H.: Numerical solutions for a Timoshenko-type system with thermoelasticity with second sound. Appl. Math. Model. 14(8), 2975–2992 (2021)
Beniani, A., Bahri, N., Alharbi, R., Bouhali, K., Zennir, K.: Stability for weakly coupled wave equations with a general internal control of diffusive type. Axioms 12(1), 48 (2023)
Boutiba, M., Baghli-Bendimerad, S., Benaïssa, A.: Three approximations of numerical solutions by finite element method for resolving space-time partial differential equations involving fractional derivative orders. Math. Model. Eng. Probl. 9(5), 1179–1186 (2022)
Feng, L.B., Zhuang, P., Liu, F., Turner, I., Gu, Y.T.: Finite element method for space-time fractional diffusion equation. Numer. Algorithms 72(3), 749–767 (2016)
Li, B., Luo, H., Xie, X.: A time-spectral algorithm for fractional wave problems. J. Sci. Comput. 77(2), 1164–1184 (2018)
Li, C., Chen, A.: Numerical methods for fractional partial differential equations. Int. J. Comput. Math. 95(2), 1–60 (2017)
Li, X., Xu, C.: Existence and uniqueness of the weak solution of the space-time fractional diffusion equation and a spectral method approximation. Commun. Comput. Phys. 8(5), 1016–1051 (2010)
Marin, M.: On the existence of solutions in the theory of thermoelastic bodies with microstructure. Stud. Cerc. Mat. 46(6), 577–592 (1994)
Marin, M., Abbas, I., Kumar, A.: Relaxed Saint-Venant principle for thermoelastic micropolar diffusion. Struct. Eng. Mech. 51(4), 651–662 (2014)
Marin, M., Hobiny, A., Abbas, I.: Finite element analysis of nonlinear bioheat model in skin tissue due to external thermal sources. Mathematics 9, Article IDÂ 1459 (2021). https://doi.org/10.3390/math9131459
Marin, M., Öchsner, A., Bhatti, M.M.: Some results in Moore–Gibson–Thompson thermoelasticity of dipolar bodies. Z. Angew. Math. Mech. 100, Article ID e202000090 (2020)
Povstenko, Y., Klekot, J.: The Dirichlet problem for the time-fractional advection–diffusion equation in a line segment. Bound. Value Probl. 89, 1–8 (2016)
Pruser, H.H., Zielke, W.: Undular bores (favre waves) in open channels—theory and numerical simulation. J. Hydraul. Res. 32(3), 337–354 (1994)
Salim, T.O., El-Kahlout, A.: Analytical solution of time-fractional advection dispersion equation. Appl. Appl. Math. 4(1), 176–188 (2009)
Scutaru, M.L., Vlase, S., Marin, M.: Symmetrical mechanical system properties-based forced vibration analysis. J. Comput. Appl. Mech. 54(4), 501–514 (2023)
Shannon, A.G., Özkan, E.: Some aspects of interchanging difference equation orders. Notes Number Theory Discrete Math. 28(3), 507–516 (2022)
Sharma, P., Sharma, B.K., Mishra, N.K., Almohsen, B., Bhatti, M.M.: Electroosmotic microchannel flow of blood conveying copper and cupric nanoparticles: ciliary motion experiencing entropy generation using backpropagated networks. Z. Angew. Math. Mech. 104, Article IDÂ e202300442 (2024). https://doi.org/10.1002/zamm.202300442
Vlase, S., Scutaru, M.L., Marin, M.: A method for the study of the vibration of mechanical bars systems with symmetries. Acta Tech. Napocensis, Ser. Applied Math. Mech. Eng. 60(4), 539–544 (2017)
Yokus, A.: Numerical solution for space and time fractional order Burger type equation. Alex. Eng. J. 57(3), 1077–1086 (2017)
Zeng, F., Li, C., Liu, F., Turner, I.: The use of finite difference/element approaches for solving the time-fractional subdiffusion equation. SIAM J. Sci. Comput. 35(6), A2976–A3000 (2013)
Acknowledgements
The authors extend their appreciation to the Deanship of Research and Graduate Studies at King Khaled University for funding this work through Large Research Project under grant number RGP2/37/45.
Funding
Not Applicable.
Author information
Authors and Affiliations
Contributions
All authors contributed equally to this work.
Corresponding author
Ethics declarations
Ethics approval and consent to participate
This was not required for the present study.
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
About this article
Cite this article
Alfalqi, S., Boukhari, B., Bchatnia, A. et al. Advanced neural network approaches for coupled equations with fractional derivatives. Bound Value Probl 2024, 96 (2024). https://doi.org/10.1186/s13661-024-01899-3
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13661-024-01899-3