Skip to main content

Extension of Milne-type inequalities to Katugampola fractional integrals

Abstract

This study explores the extension of Milne-type inequalities to the realm of Katugampola fractional integrals, aiming to broaden the analytical tools available in fractional calculus. By introducing a novel integral identity, we establish a series of Milne-type inequalities for functions possessing extended s-convex first-order derivatives. Subsequently, we present an illustrative example complete with graphical representations to validate our theoretical findings. The paper concludes with practical applications of these inequalities, demonstrating their potential impact across various fields of mathematical and applied sciences.

1 Introduction

Definition 1.1

([24])

A function \(\mathfrak{g}:I\rightarrow \mathbb{R}\) is said to be convex if

$$ \mathfrak{g}\left ( tu+\left ( 1-t\right ) v\right ) \leq t \mathfrak{g}\left ( u\right ) +\left (1-t\right ) \mathfrak{g}(v) $$

holds for all \(u,v\in I\) and all \(t\in \lbrack 0,1]\).

The notion of convexity is a fundamental concept in both pure and applied mathematics, offering a rich framework for understanding the behavior of functions, sets, and optimization problems. It plays a pivotal role in the theory of approximation, especially in integral inequalities. This is because convex functions preserve inequalities under integration, a property that is crucial for establishing bounds and estimates in various approximation techniques. This concept has been extended to include variations like s-convexity [7], P-convexity [16], Godunova-Levin convexity [18], and s-Godunova-Levin convexity [15], broadening the scope to include a wider array of functions. These extensions allow for greater flexibility in mathematical and applied research, accommodating functions that do not meet the strict criteria of classic convexity yet still retain useful convex-like properties.

Definition 1.2

([16])

A nonnegative function \(\mathfrak{g}:I\rightarrow \mathbb{R}\) is said to be P-convex if

$$ \mathfrak{g}\left ( tu+\left ( 1-t\right ) v\right ) \leq \mathfrak{g}\left ( u\right ) +\mathfrak{g}\left (v\right ) $$

holds for all \(u,v\in I\) and all \(t\in \lbrack 0,1]\).

Definition 1.3

([18])

A nonnegative function \(\mathfrak{g}:I\rightarrow \mathbb{R}\) is said to be a Godunova-Levin function if

$$ \mathfrak{g}\left ( tu+\left ( 1-t\right ) v\right ) \leq \tfrac{\mathfrak{g}\left ( u\right ) }{t}+\tfrac{\mathfrak{g}(v)}{1-t} $$

holds for all \(u,v\in I\) and all \(t\in \left ( 0,1\right ) \).

Definition 1.4

([15])

A nonnegative function \(\mathfrak{g}:I\rightarrow \mathbb{R}\) is said to be an s-Godunova-Levin function, where \(s\in \left [ 0,1\right ]\), if

$$ \mathfrak{g}\left ( tu+\left ( 1-t\right ) v\right ) \leq \tfrac{\mathfrak{g}\left ( u\right ) }{t^{s}}+\tfrac{\mathfrak{g}(v)}{\left ( 1-t\right ) ^{s}} $$

holds for all \(u,v\in I\) and all \(t\in \left ( 0,1\right ) \).

Definition 1.5

([7])

A nonnegative function \(\mathfrak{g}:I\subset \left [ 0,\infty \right ) \rightarrow \mathbb{R}\) is said to be s-convex in the second sense for some fixed \(s\in \left ( 0,1\right ] \) if

$$ \mathfrak{g}\left (tu+(1-t)v\right )\ \leq t^{s}\mathfrak{g}\left (u \right )+(1-t)^{s}\mathfrak{g}\left (v\right ) $$

holds for all \(u,v\in I\) and \(t\in \lbrack 0,1]\).

Definition 1.6

([32])

A nonnegative function \(\mathfrak{g}:I\subset \left [ 0,\infty \right ) \rightarrow \mathbb{R}\) is said to be extended s-convex for some fixed \(s\in \left [ -1,1\right ] \) if

$$ \mathfrak{g}\left (tu+(1-t)v\right )\ \leq t^{s}\mathfrak{g}\left (u \right )+(1-t)^{s}\mathfrak{g}\left (v\right ) $$

holds for all \(u,v\in I\) and \(t\in \left ( 0,1\right ) \).

Numerous researchers have delved into utilizing these varied types of convexity to establish error bounds for a range of quadrature rules [4, 15, 16, 25, 26, 32].

Fractional calculus, an extension of traditional calculus, delves into the concepts of derivatives and integrals of non-integer order, offering a broader framework for analyzing dynamical systems. Several fractional integral operators were introduced, such as the Riemann-Liouville [22], Hadamard [28], and Katugampola fractional operators [19], among others, each providing distinct approaches to defining and computing fractional derivatives and integrals. These operators expand the mathematical tool kit, allowing for more nuanced descriptions of memory and hereditary properties in various physical and engineering processes.

Among the most renowned quadrature rules is the Milne rule, a powerful numerical method for approximating the integral of a function and that originates from the broader family of Simpson’s rule. The accuracy of Milne’s rule has been extensively studied through various works that explore error estimation associated with this formula across different types of integrals and classes of functions: via the classical Riemann integral [3], local fractional integral [2, 23], quantum integral [5, 31], the Riemann-Liouville fractional operators [810], the proportional Caputo-Hybrid operator [12], and the conformable fractional operator [33]. For further studies on this formula, we refer readers to [6, 13, 14, 27].

In [14], the authors established the following Milne-type inequality for functions whose derivatives are convex as follows:

$$\begin{aligned} &\left \vert \tfrac{1}{3}\left ( 2\mathfrak{g}\left ( a\right ) - \mathfrak{g}\left ( \tfrac{a+b}{2}\right ) +2\mathfrak{g}\left ( b\right ) \right ) -\tfrac{1 }{ b-a} \underset{a}{\overset{b}{\int}} \mathfrak{g}(z)\ dz \right \vert \\ \leq &\tfrac{5\left (b-a\right )}{24}\left (\left \vert \mathfrak{g}^{ \prime }\left ( a\right ) \right \vert +\left \vert \mathfrak{g}^{ \prime }\left (b\right ) \right \vert \right ) . \end{aligned}$$

Budak et al. [10] extended the above-mentioned result to Riemann-Liouville fractional integrals:

$$\begin{aligned} &\left \vert \tfrac{1}{3}\left ( 2\mathfrak{g}\left ( a\right ) - \mathfrak{g}\left ( \tfrac{a+b}{2}\right ) +2\mathfrak{g}\left ( b\right ) \right ) - \tfrac{2^{\alpha -1}\Gamma \left ( \alpha +1\right ) }{\left ( b-a\right ) ^{\alpha }} \left (J_{a^{+}}^{\alpha }\mathfrak{g}\left ( \tfrac{a+b}{2}\right )+J_{b^{-}}^{ \alpha }\mathfrak{g}\left ( \tfrac{a+b}{2}\right )\right ) \right \vert \\ \leq &\tfrac{b-a}{12}\left (\tfrac{\alpha +4 }{ \alpha +1}\right ) \left (\left \vert \mathfrak{g}^{\prime }\left ( a\right ) \right \vert +\left \vert \mathfrak{g}^{\prime }\left (b\right ) \right \vert \right ), \end{aligned}$$

where \(\mathfrak{g}\) is a convex function, and \(J_{a^{+}}^{\alpha}\) and \(J_{b^{-}}^{\alpha}\) represent the left- and right-sided Riemann-Liouville fractional integrals, respectively.

Among the different fractional integral operators that have been introduced, the Katugampola fractional integral operators are designed to provide a more general framework that encompasses both the Riemann-Liouville and Hadamard fractional integrals. Introduced by Udita N. Katugampola in 2011, this approach offers unified fractional integral operators with a parameter that can adjust the definition to match the specific requirements of various applications. Since the introduction of these operators, several works on integral inequalities using these operators have been published. In [17], Farid et al. established Ostrowski-type inequalities for differentiable h-convex functions. Kermausuor provided some generalized Ostrowski-type inequalities for functions with strongly \((s, m)\)-convex second-order derivatives in [20] and Simpson-type inequalities for functions with s-convex first-order derivatives in [21]. For additional studies in this direction, we direct readers to [1, 11, 29, 30] and the references cited therein.

In this work, we extend Milne-type inequalities to Katugampola fractional integrals. To this end, we first introduce a new integral identity on which we base the establishment of several Milne-type inequalities for functions with extended s-convex first-order derivatives. Subsequently, we present an example that includes graphical representations to confirm the validity of our results. Finally, we conclude the study with some applications, demonstrating the practical implications and potential of our findings in broader mathematical and applied contexts.

2 Preliminaries

In this section, we present key definitions that are crucial to further conducting our research.

Definition 2.1

([22])

Let \(\mathfrak{g}\in L_{1}[a,b]\). The fractional Riemann-Liouville integrals \(J_{a^{+}}^{\alpha }f\) and \(J_{b^{-}}^{\alpha }f\) of order \(\alpha >0\) are defined by

$$\begin{aligned} J_{a^{+}}^{\alpha }\mathfrak{g}(x) =& \frac{1}{\Gamma \left ( \alpha \right ) } \overset{x}{\underset{a}{\int }}\left ( x-v\right ) ^{\alpha -1}\mathfrak{g}(v)dv, \text{ \ \ \ }x>a, \\ J_{b^{-}}^{\alpha }\mathfrak{g}(x) =& \frac{1}{\Gamma \left ( \alpha \right ) } \overset{b}{\underset{x}{\int }}\left ( v-x\right ) ^{\alpha -1}\mathfrak{g}(v)dv, \text{ \ \ \ }b>x, \end{aligned}$$

respectively, where \(\Gamma (\mu )=\overset{\infty }{\underset{0}{\int }}\) \(e^{-v}v^{\mu -1}dv\) is the Gamma function, and \(J_{a^{+}}^{0}\mathfrak{g}(x)=J_{b^{-}}^{0}\mathfrak{g}(x)= \mathfrak{g}(x)\).

Definition 2.2

([28])

Let \(\alpha >0\). The left- and right-sided Hadamard’s fractional integral operators of order \(\alpha >0\) are defined by

$$\begin{aligned} H_{a^{+}}^{\alpha }\mathfrak{g}(x) =& \frac{1}{\Gamma \left ( \alpha \right ) } \overset{x}{\underset{a}{\int }}\left ( \ln x-\ln v\right ) ^{\alpha -1} \frac{\mathfrak{g}(v)}{v}dv,\text{ \ \ \ }x>a, \\ H_{b^{-}}^{\alpha }\mathfrak{g}(x) =& \frac{1}{\Gamma \left ( \alpha \right ) } \overset{b}{\underset{x}{\int }}\left ( \ln v-\ln x\right ) ^{\alpha -1} \frac{\mathfrak{g}(v)}{v}dv,\text{ \ \ \ }b>x. \end{aligned}$$

In what follows, \(X_{k}^{r}\left ( a,b\right )\) \(\left ( k\in \mathbb{R}\right. \) and \(\left .1\leq r\leq \infty \right )\) denotes the space of all complex-valued Lebesgue measurable functions \(\mathfrak{g}\) for which \(\left \Vert \mathfrak{g}\right \Vert _{X_{k}^{r}}<\infty \), where

$$ \left \Vert \mathfrak{g}\right \Vert _{X_{k}^{r}}=\left ( \underset{a}{\overset{b}{\int}}\left \vert v^{k}\mathfrak{g}(v) \right \vert ^{r}\right )^{\frac{1}{r}} \ \text{for}\ 1\leq r< \infty , $$

and for \(r=\infty \)

$$ \left \Vert \mathfrak{g}\right \Vert _{X_{k}^{\infty}}=ess \underset{a\leq v\leq b}{\sup}\left \vert v^{k}\mathfrak{g}(v)\right \vert . $$

Definition 2.3

([19])

Let \(\mathfrak{g}\in X_{k}^{r}\left ( a,b\right ) \). The left- and right-sided Katugampola fractional integrals of order \(\alpha \in \mathbb{C}\) with \(Re\left ( \alpha \right ) >0\) and \(\rho >0\) are defined by

figure a

The Katugampola fractional integral operators are crafted to offer a broader framework that includes the Riemann-Liouville and Hadamard fractional integrals, as elucidated in the following remark:

Remark 2.4

For \(\alpha , \rho >0\) and \(x>a\), we have

  1. 1.

    ,

  2. 2.

    .

Equivalent results also apply to right-sided operators.

Definition 2.5

([22])

For any complex numbers and nonpositive integers x, y such that \(Re\left ( x\right ) >0\) and \(Re\left ( y\right ) >0\), the beta function is defined by

$$ B\left ( x,y\right ) =\overset{1}{\underset{0}{\int }}v^{x-1}\left ( 1-v \right ) ^{y-1}dv= \tfrac{\Gamma \left ( x\right ) \Gamma \left ( y\right ) }{\Gamma \left ( x+y\right ) }, $$

where \(\Gamma \left ( .\right ) \) is the Euler gamma function.

Definition 2.6

([22])

The hypergeometric function is defined as follows

figure b

where \(c>b>0\), \(\left \vert z\right \vert <1\), and \(B\left ( .,.\right ) \) is the beta function.

3 Main results

The following lemma is necessary to justify our results.

Lemma 3.1

Let \(\mathfrak{g}:\left [ a^{\rho },b^{\rho }\right ] \rightarrow \mathbb{R}\) be a differentiable function on \(\left [ a^{\rho },b^{\rho }\right ] \) with \(0\leq a< b\), and \(\mathfrak{g}^{\prime }\in L^{1}\left [ a^{\rho },b^{\rho }\right ] \). Then the following equality holds

figure c

where \(\alpha ,\rho >0\) and

figure d

Proof

Let

$$ I_{1}=\underset{0}{\overset{1}{\int }}\left ( t^{\rho \alpha }+ \tfrac{1}{3}\right ) t^{\rho -1}\mathfrak{g}\left ( \left ( 1-t^{\rho }\right ) \tfrac{a^{\rho }+b^{\rho }}{2}+t^{\rho }b^{\rho }\right ) dt $$

and

$$ I_{2}=\underset{0}{\overset{1}{\int }}\left ( t^{\rho \alpha }+ \tfrac{1}{3}\right ) t^{\rho -1}\mathfrak{g}^{\prime }\left ( t^{\rho }a^{\rho }+ \left ( 1-t^{\rho }\right ) \tfrac{a^{\rho }+b^{\rho }}{2}\right ) dt. $$

Integrating by parts \(I_{1}\), we get

figure e

Similarly, we have

figure f

Subtract (3.4) from (3.3), then multiplying the resulting equality by \(\tfrac{\rho \left ( b^{\rho }-a^{\rho }\right ) }{4}\), we get the desired result. □

Theorem 3.2

Let \(\mathfrak{g}:\left [ a^{\rho },b^{\rho }\right ] \rightarrow \mathbb{R}\) be a differentiable function on \(\left [ a^{\rho },b^{\rho }\right ] \) with \(0\leq a< b\), and \(\mathfrak{g}^{\prime }\in L^{1}\left [ a^{\rho },b^{\rho }\right ] \). If \(\left \vert \mathfrak{g}^{\prime }\right \vert \) is extended s-convex in the second sense for some fixed \(s\in \left ( -1,1\right ] \), then we have

figure g

where \(\alpha ,\rho >0\), is defined as in (3.2), and \(B\left ( .,.\right ) \) is the beta function.

Proof

Using the properties of modulus and the extended s-convexity of \(\left \vert \mathfrak{g}^{\prime }\right \vert \), from Lemma 3.1, we have

figure h

where we have used the fact that

$$ \underset{0}{\overset{1}{\int }}\left ( t^{\rho \alpha }+\tfrac{1}{3} \right ) t^{\rho -1}t^{s\rho }dt= \tfrac{4\left ( s+1\right ) +\alpha }{3\rho \left ( s+1\right ) \left ( s+1+\alpha \right ) } $$
(3.5)

and

$$ \underset{0}{\overset{1}{\int }}\left ( t^{\rho \alpha }+\tfrac{1}{3} \right ) t^{\rho -1}\left ( 1-t^{\rho }\right ) ^{s}dt= \tfrac{1}{\rho }B\left ( \alpha +1,s+1\right ) + \tfrac{1}{3\rho \left ( s+1\right ) }. $$
(3.6)

The proof is completed. □

Corollary 3.3

In Theorem 3.2, if \(\left \vert \mathfrak{g}^{\prime }\right \vert \) is a P-function, then we obtain

figure i

Corollary 3.4

In Theorem 3.2, if \(\left \vert \mathfrak{g}^{\prime }\right \vert \) is a convex function, then we obtain

figure j

Corollary 3.5

In Theorem 3.2, setting \(\rho =1\) yields

$$\begin{aligned} &\left \vert \tfrac{1}{3}\left ( 2\mathfrak{g}\left ( a\right ) - \mathfrak{g}\left ( \tfrac{a+b}{2}\right ) +2\mathfrak{g}\left ( b\right ) \right ) - \tfrac{2^{\alpha -1}\Gamma \left ( \alpha +1\right ) }{\left ( b-a\right ) ^{\alpha }} \mathcal{J}^{\alpha }\left ( \mathfrak{g}\right ) \right \vert \\ \leq &\tfrac{b-a}{4}\left ( \tfrac{4\left ( s+1\right ) +\alpha }{3\left ( s+1\right ) \left ( s+1+\alpha \right ) }\left ( \left \vert \mathfrak{g}^{\prime }\left ( a\right ) \right \vert +\left \vert \mathfrak{g}^{\prime }\left ( b\right ) \right \vert \right ) \right . \\ &+\left . 2\left ( B\left ( \alpha +1,s+1\right ) + \tfrac{1}{3\left ( s+1\right ) }\right ) \left \vert \mathfrak{g}^{\prime }\left ( \tfrac{a+b}{2} \right ) \right \vert \right ) , \end{aligned}$$

where

$$ \mathcal{J}^{\alpha }\left ( \mathfrak{g}\right ) =J_{a^{+}}^{\alpha } \mathfrak{g}\left ( \tfrac{a+b}{2}\right ) +J_{b^{-}}\mathfrak{g}\left ( \tfrac{a+b}{2}\right ) . $$
(3.7)

Corollary 3.6

In Corollary 3.5, setting \(\alpha =1\) yields

$$\begin{aligned} &\left \vert \tfrac{1}{3}\left ( 2\mathfrak{g}\left ( a\right ) - \mathfrak{g}\left ( \tfrac{a+b}{2}\right ) +2\mathfrak{g}\left ( b\right ) \right ) -\tfrac{1}{b-a} \underset{a}{\overset{b}{\int }}\mathfrak{g}\left ( z\right ) dz\right \vert \\ \leq &\tfrac{b-a}{4\left ( s+1\right ) \left ( s+2\right ) }\left ( \tfrac{4s+5}{3}\left \vert \mathfrak{g}^{\prime }\left ( a\right ) \right \vert + \tfrac{2s+10}{3}\left \vert \mathfrak{g}^{\prime }\left ( \tfrac{a+b}{2}\right ) \right \vert +\tfrac{4s+5}{3}\left \vert \mathfrak{g}^{\prime }\left ( b\right ) \right \vert \right ) , \end{aligned}$$

which, for \(s \in (0,1]\), corresponds to Theorem 2.2 in [14].

Corollary 3.7

In Corollary 3.5, if we take \(s=0\), we get

$$\begin{aligned} &\left \vert \tfrac{1}{3}\left ( 2\mathfrak{g}\left ( a\right ) - \mathfrak{g}\left ( \tfrac{a+b}{2}\right ) +2\mathfrak{g}\left ( b\right ) \right ) - \tfrac{2^{\alpha -1}\Gamma \left ( \alpha +1\right ) }{\left ( b-a\right ) ^{\alpha }} \mathcal{J}^{\alpha }\left ( \mathfrak{g}\right ) \right \vert \\ \leq &\tfrac{b-a}{4\left ( 1+\alpha \right ) }\left ( \tfrac{4+\alpha }{3}\left \vert \mathfrak{g}^{\prime }\left ( a\right ) \right \vert + \tfrac{8+2\alpha }{3}\left \vert \mathfrak{g}^{\prime }\left ( \tfrac{a+b}{2}\right ) \right \vert +\tfrac{4+\alpha }{3}\left \vert \mathfrak{g}^{\prime }\left ( b\right ) \right \vert \right ) . \end{aligned}$$

Moreover, if we take \(\alpha =1\), we obtain

$$\begin{aligned} &\left \vert \tfrac{1}{3}\left ( 2\mathfrak{g}\left ( a\right ) - \mathfrak{g}\left ( \tfrac{a+b}{2}\right ) +2\mathfrak{g}\left ( b\right ) \right ) -\tfrac{1}{b-a} \underset{a}{\overset{b}{\int }}\mathfrak{g}\left ( z\right ) dz\right \vert \\ \leq &\tfrac{5\left ( b-a\right ) }{24}\left ( \left \vert \mathfrak{g}^{\prime }\left ( a\right ) \right \vert +2\left \vert \mathfrak{g}^{\prime }\left ( \tfrac{a+b}{2}\right ) \right \vert + \left \vert \mathfrak{g}^{\prime }\left ( b\right ) \right \vert \right ) . \end{aligned}$$

Corollary 3.8

In Corollary 3.5, if we take \(s=1\), we get

$$\begin{aligned} &\left \vert \tfrac{1}{3}\left ( 2\mathfrak{g}\left ( a\right ) - \mathfrak{g}\left ( \tfrac{a+b}{2}\right ) +2\mathfrak{g}\left ( b\right ) \right ) - \tfrac{2^{\alpha -1}\Gamma \left ( \alpha +1\right ) }{\left ( b-a\right ) ^{\alpha }} \mathcal{J}^{\alpha }\left ( \mathfrak{g}\right ) \right \vert \\ \leq &\tfrac{b-a}{4}\left ( \tfrac{8+\alpha }{6\left ( 2+\alpha \right ) }\left \vert \mathfrak{g}^{\prime }\left ( a\right ) \right \vert + \tfrac{6+\left ( 1+\alpha \right ) \left ( 2+\alpha \right ) }{3\left ( 1+\alpha \right ) \left ( 2+\alpha \right ) } \left \vert \mathfrak{g}^{\prime }\left ( \tfrac{a+b}{2}\right ) \right \vert +\tfrac{8+\alpha }{6\left ( 2+\alpha \right ) }\left \vert \mathfrak{g}^{\prime }\left ( b\right ) \right \vert \right ) . \end{aligned}$$

This result represents a refinement of that obtained by Budak et al. in Theorem 1 [10] since the latter can be deduced using the convexity of \(\left \vert f'\right \vert \), i.e., \(\left \vert f'\left (\frac{a+b}{2}\right )\right \vert \leq \frac{1}{2}\left (\left \vert f'(a)\right \vert + \left \vert f'(b) \right \vert \right )\).

Remark 3.9

If we set \(\alpha =1\) in Corollary 3.8, we recover the same result established in Corollary 2.4 [14].

Theorem 3.10

Let \(\mathfrak{g}:\left [ a^{\rho },b^{\rho }\right ] \rightarrow \mathbb{R}\) be a differentiable function on \(\left [ a^{\rho },b^{\rho }\right ] \) with \(0\leq a< b\), and \(\mathfrak{g}^{\prime }\in L^{1}\left [ a^{\rho },b^{\rho }\right ] \). If \(\left \vert \mathfrak{g}^{\prime }\right \vert ^{\kappa }\) is extended s-convex in the second sense for some fixed \(s\in \left ( -1,1\right ] \), where \(\kappa >1\) with \(\frac{1}{\lambda }+\frac{1}{\kappa }=1\), then we have

figure k

where is defined as in (3.2), and \(_{2}F_{1}\left ( .,.,.;.\right ) \) is the hypergeometric function.

Proof

From Lemma 3.1, we have

figure l

Using the Hölder inequality and the extended s-convexity in the second sense of \(\left \vert \mathfrak{g}^{\prime }\right \vert ^{\kappa }\), we get

figure m

where we have used the fact that

figure n

The proof is completed. □

Corollary 3.11

In Theorem 3.10, if \(\left \vert \mathfrak{g}^{\prime }\right \vert ^{\kappa }\) is a P-function, then we obtain

figure o

Corollary 3.12

In Theorem 3.10, if \(\left \vert \mathfrak{g}^{\prime }\right \vert ^{\kappa }\) is a convex function, then we obtain

figure p

Theorem 3.13

Let \(\mathfrak{g}:\left [ a^{\rho },b^{\rho }\right ] \rightarrow \mathbb{R}\) be a differentiable function on \(\left [ a^{\rho },b^{\rho }\right ] \) with \(0\leq a< b\), and \(\mathfrak{g}^{\prime }\in L^{1}\left [ a^{\rho },b^{\rho }\right ] \). If \(\left \vert \mathfrak{g}^{\prime }\right \vert ^{\kappa }\) is extended s-convex in the second sense for some fixed \(s\in \left ( -1,1\right ] \), where \(\kappa \geq 1\) with \(\frac{1}{\lambda }+\frac{1}{\kappa }=1\), then we have

figure q

where is defined as in (3.2), and \(B\left ( .,.\right ) \) is the beta function.

Proof

Using power mean inequality in (3.8), since \(\left \vert \mathfrak{g}^{\prime }\right \vert ^{\kappa }\) is extended s-convex in the second sense, we have

figure r

The proof is achieved. □

Corollary 3.14

In Theorem 3.13, if \(\left \vert \mathfrak{g}^{\prime }\right \vert ^{\kappa }\) is a P-function, then we obtain

figure s

Corollary 3.15

In Theorem 3.13, if \(\left \vert \mathfrak{g}^{\prime }\right \vert ^{\kappa }\) is a convex function, then we obtain

figure t

4 Validation and applications

This section is dedicated to validating the accuracy of the findings presented in this study through a numerical example with graphical representations, as well as illustrating the practical application and implications of these results.

4.1 Graphical validation

In this subsection, our goal is to confirm the accuracy of our results through an example supported by graphs generated in Matlab. These visual representations are intended to directly illustrate the precision of our findings.

Example 4.1

Consider the interval \([a, b] = [0, 1]\) and let \(\mathfrak{g}: [0, 1] \rightarrow \mathbb{R}\) be a real function defined by \(\mathfrak{g}(z) =\tfrac{z^{s+1}}{s+1}\), where the derivative \(\mathfrak{g}'(z) =z^{s}\) represents an s-convex function for \(s\in (0,1]\).

From Theorem 3.2, we derive the following value for the left- and right-hand sides, as depicted in Fig. 1:

figure v

and

$$ RHS=\tfrac{1}{4}\left [ \tfrac{4\left ( s+1\right ) +\alpha }{3\left ( s+1\right ) \left ( s+1+\alpha \right ) }+ 2^{1-s} \left ( B\left ( \alpha +1,s+1\right ) + \tfrac{1}{3\left ( s+1\right ) }\right ) \right ]. $$

From the representations in Fig. 1, we observe that the right-hand side consistently lies above the left-hand side, confirming the accuracy of our results.

Figure 1
figure 1

The diagrammatic presentation to Theorem 3.2 for \(s\in (0,1]\) and \(\alpha \in (0,2]\)

4.2 Application to quadrature formulas

Let ϒ denote the segmentation of the interval \(\left [a, b\right ]\) at the points \(a = z_{0} < z_{1} < \cdots < z_{n} = b\). Consider the following numerical integration formula:

$$ \int _{a}^{b} \mathfrak{g}(z) dz = \lambda (\mathfrak{g}, \Upsilon ) + R(\mathfrak{g}, \Upsilon ), $$

where

$$ \lambda (\mathfrak{g}, \Upsilon ) = \sum _{i=0}^{n-1} \tfrac{z_{i+1} - z_{i}}{3} \left (2\mathfrak{g}(z_{i}) - \mathfrak{g} \left (\tfrac{z_{i} + z_{i+1}}{2}\right ) + 2\mathfrak{g}(z_{i+1}) \right ) $$

represents the quadrature’s approximation, and \(R(\mathfrak{g}, \Upsilon )\) signifies the error in approximation associated with this method.

Proposition 1

Let \(n\in \mathbb{N}\) and \(\mathfrak{g}:\left [ a,b\right ] \rightarrow \mathbb{R}\) be a differentiable function on \(\left [ a,b\right ] \) with \(0\leq a< b\) and \(\mathfrak{g}^{\prime }\in L^{1}\left [ a,b\right ] \). If \(\left \vert \mathfrak{g}^{\prime }\right \vert \) is a P-function, we have

$$ \left \vert R\left ( f,\Upsilon \right ) \right \vert \leq \underset{i=0}{\overset{n-1}{\sum }}\tfrac{5\left ( z_{i+1}-z_{i}\right ) ^{2}}{24} \left ( \left \vert \mathfrak{g}^{\prime }\left ( z_{i}\right ) \right \vert +2\left \vert \mathfrak{g}^{\prime }\left ( \tfrac{z_{i}+z_{i+1}}{2}\right ) \right \vert +\left \vert \mathfrak{g}^{\prime }\left ( z_{i+1}\right ) \right \vert \right ) . $$

Proof

Applying second inequality of Corollary 3.7 on the subintervals \(\left [ z_{i},z_{i+1}\right ] \) \(( i=0,1,\ldots, n-1 ) \) of the partition ϒ, we get

$$\begin{aligned} &\left \vert \tfrac{1}{3}\left ( 2\mathfrak{g}\left ( z_{i}\right ) - \mathfrak{g}\left ( \tfrac{z_{i}+z_{i+1}}{2}\right ) +2\mathfrak{g}\left ( z_{i+1}\right ) \right ) -\tfrac{1}{z_{i+1}-z_{i}}\underset{z_{i}}{\overset{z_{i+1}}{\int }}\mathfrak{g} \left ( z\right )\ dz\right \vert \\ \leq &\tfrac{5\left ( z_{i+1}-z_{i}\right ) }{24}\left ( \left \vert \mathfrak{g}^{\prime }\left ( z_{i}\right ) \right \vert +2\left \vert \mathfrak{g}^{\prime }\left ( \tfrac{z_{i}+z_{i+1}}{2}\right ) \right \vert +\left \vert \mathfrak{g}^{ \prime }\left ( z_{i+1}\right ) \right \vert \right ) . \end{aligned}$$

Multiplying both sides of the above inequality by \(\left ( z_{i+1}-z_{i}\right ) \), then summing the obtained inequalities for \(i=0,1,\ldots,n-1\) and using the triangular inequality, we get the desired result. □

Proposition 2

Let \(n\in \mathbb{N}\) and \(\mathfrak{g}:\left [ a,b\right ] \rightarrow \mathbb{R}\) be a differentiable function on \(\left [ a,b\right ] \) with \(0\leq a< b\) and \(\mathfrak{g}^{\prime }\in L^{1}\left [ a,b\right ] \). If \(\left \vert \mathfrak{g}^{\prime }\right \vert \) is convex, we have

$$ \left \vert R\left ( f,\Upsilon \right ) \right \vert \leq \underset{i=0}{\overset{n-1}{\sum }}\tfrac{\left ( z_{i+1}-z_{i}\right ) ^{2}}{24} \left ( 3\left \vert \mathfrak{g}^{\prime }\left ( z_{i}\right ) \right \vert +4\left \vert \mathfrak{g}^{\prime }\left ( \tfrac{z_{i}+z_{i+1}}{2}\right ) \right \vert +3\left \vert \mathfrak{g}^{\prime }\left ( z_{i+1}\right ) \right \vert \right ) . $$

Proof

Applying Corollary 3.8 with \(\alpha =1\) on the subintervals \(\left [ z_{i},z_{i+1}\right ] \) \(\left ( i=0,1,\ldots,n-1\right ) \) of the partition ϒ, we get

$$\begin{aligned} &\left \vert \tfrac{1}{3}\left ( 2\mathfrak{g}\left ( z_{i}\right ) - \mathfrak{g}\left ( \tfrac{z_{i}+z_{i+1}}{2}\right ) +2\mathfrak{g}\left ( z_{i+1}\right ) \right ) -\tfrac{1}{z_{i+1}-z_{i}}\underset{z_{i}}{\overset{z_{i+1}}{\int }}\mathfrak{g} \left ( z\right ) \ dz\right \vert \\ \leq &\tfrac{z_{i+1}-z_{i}}{24}\left ( 3\left \vert \mathfrak{g}^{ \prime }\left ( z_{i}\right ) \right \vert +4\left \vert \mathfrak{g}^{ \prime }\left ( \tfrac{z_{i}+z_{i+1}}{2}\right ) \right \vert +3\left \vert \mathfrak{g}^{\prime }\left ( z_{i+1} \right ) \right \vert \right ) . \end{aligned}$$

Multiplying both sides of the above inequality by \(\left ( z_{i+1}-z_{i}\right ) \), then summing the obtained inequalities for \(i=0,1,\ldots,n-1\) and using the triangular inequality, we get the desired result. □

4.3 Application to special means

For any given real numbers a and b, the following definitions apply:

The arithmetic mean is given by \(A(a, b) = \tfrac{a + b}{2}\).

The p-logarithmic mean is defined as \(L_{p}(a, b) = \left ( \tfrac{b^{p+1} - a^{p+1}}{(p+1)(b - a)} \right )^{\frac{1}{p}}\), where \(a, b > 0\), \(a \neq b\), and \(p \in \mathbb{R} \setminus \{-1, 0\}\).

Proposition 3

Let \(a,b\in \mathbb{R}\) and \(\kappa ,\lambda >1\), with \(0< a< b\) and \(\frac{1}{\kappa }+\frac{1}{\lambda }=1\), then we have

$$\begin{aligned} &\left \vert 4A\left ( a^{2},b^{2}\right ) -A^{2}\left ( a,b\right ) -3L_{2}^{2} \left ( a,b\right ) \right \vert \\ \leq &\tfrac{b-a}{2}\left ( \tfrac{4^{\lambda +1}-1}{3}\right ) ^{ \frac{1}{\lambda }}\left ( \left ( a^{\kappa }+\left ( \tfrac{a+b}{2}\right ) ^{ \kappa }\right ) ^{\frac{1}{\kappa }}+\left ( \left ( \tfrac{a+b}{2} \right ) ^{\kappa }+b^{\kappa }\right ) ^{\frac{1}{\kappa }}\right ) . \end{aligned}$$

Proof

The statement is derived from Corollary 3.11 by setting both ρ and α equal to 1 and applying this to the function \(\mathfrak{g}(z) = \frac{1}{2}z^{2}\). □

5 Conclusion

In conclusion, this work successfully extends Milne-type inequalities to incorporate Katugampola fractional integrals, marking a significant advancement in the field of fractional calculus. By developing a new integral identity, we have laid the groundwork for analyzing functions with extended s-convex first-order derivatives more comprehensively. The example provided confirms the correctness of our theoretical results, supported by graphical evidence. Furthermore, the applications discussed illustrate the broad utility of our findings, potentially benefiting a wide range of scientific disciplines. Our study not only enriches the existing literature on integral inequalities but also encourages further exploration and application of fractional calculus techniques in addressing intricate mathematical challenges.

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Abdeljawad, T., Rashid, S., Khan, H., Chu, Y.M.: On new fractional integral inequalities for p-convexity within interval-valued functions. Adv. Differ. Equ. 2020, 330 (2020). 17 pp.

    Article  MathSciNet  Google Scholar 

  2. Al-Sa’di, S., Bibi, M., Seol, Y., Muddassar, M.: Milne-type fractal integral inequalities for generalized m-convex mapping. Fractals 31, 2350081 (2023)

    Article  Google Scholar 

  3. Alomari, M.: New error estimations for the Milne’s quadrature formula in terms of at most first derivatives. Konuralp J. Math. 1(1), 17–23 (2013)

    MathSciNet  Google Scholar 

  4. Alomari, M.W., Dragomir, S.S.: Various error estimations for several Newton-Cotes quadrature formulae in terms of at most first derivative and applications in numerical integration. Jordan J. Math. Stat. 7(2), 89–108 (2014)

    MathSciNet  Google Scholar 

  5. Bin-Mohsin, B., Javed, M.Z., Awan, M.U., Khan, A.G., Cesarano, C., Noor, M.A.: Exploration of quantum Milne-Mercer-type inequalities with applications. Symmetry 15(5), 1096 (2023)

    Article  Google Scholar 

  6. Bosch, P., Rodríguez, J.M., Sigarreta, J.M.: On new Milne-type inequalities and applications. J. Inequal. Appl. 2023, 3 (2023). 18 pp.

    Article  MathSciNet  Google Scholar 

  7. Breckner, W.W.: Stetigkeitsaussagen für eine Klasse verallgemeinerter konvexer Funktionen in topologischen linearen Räumen (German). Publ. Inst. Math. (Belgr.) 23(37), 13–20 (1978)

    Google Scholar 

  8. Budak, H., Hyder, A.A.: Enhanced bounds for Riemann-Liouville fractional integrals: novel variations of Milne inequalities. AIMS Math. 8(12), 30760–30776 (2023)

    Article  MathSciNet  Google Scholar 

  9. Budak, H., Karagözoğlu, P.: Fractional Milne type inequalities. Acta Math. Univ. Comen. 93, 1–15 (2024)

    MathSciNet  Google Scholar 

  10. Budak, H., Kösem, P., Kara, H.: On new Milne-type inequalities for fractional integrals. J. Inequal. Appl. 2023, 10 (2023). 15 pp.

    Article  MathSciNet  Google Scholar 

  11. Chu, Y.M., Awan, M.U., Javad, M.Z., Khan, A.G.: Bounds for the remainder in Simpson’s inequality via n-polynomial convex functions of higher order using Katugampola fractional integrals. J. Math. (2020). https://doi.org/10.1155/2020/4189036

    Article  MathSciNet  Google Scholar 

  12. Demir, I.: A new approach of Milne-type inequalities based on proportional Caputo-hybrid operator: a new approach for Milne-type inequalities. J. Adv. Appl. Comput. 10, 102–119 (2023)

    Article  Google Scholar 

  13. Desta, H.D., Budak, H., Kara, H.: New perspectives on fractional Milne-type inequalities: insights from twice-differentiable functions. Univers. J. Math. Appl. 7(1), 30–37 (2024)

    Article  Google Scholar 

  14. Djenaoui, M., Meftah, B.: Milne type inequalities for differentiable s-convex functions. Honam Math. J. 44(3), 325–338 (2022)

    MathSciNet  Google Scholar 

  15. Dragomir, S.S.: Inequalities of Hermite-Hadamard type for h-convex functions on linear spaces. Proyecciones 34(4), 323–341 (2015)

    Article  MathSciNet  Google Scholar 

  16. Dragomir, S.S., Pečarić, J.E., Persson, L.E.: Some inequalities of Hadamard type. Soochow J. Math. 21(3), 335–341 (1995)

    MathSciNet  Google Scholar 

  17. Farid, G., Katugampola, U.N., Usman, M.: Ostrowski-type fractional integral inequalities for mappings whose derivatives are h-convex via Katugampola fractional integrals. Stud. Univ. Babeş–Bolyai, Math. 63(4), 465–474 (2018)

    Article  MathSciNet  Google Scholar 

  18. Godunova, E.K., Levin, V.I.: Inequalities for functions of a broad class that contains convex, monotone and some other forms of functions (Russian). In: Numerical Mathematics and Mathematical Physics (Russian), pp. 138–142. Moskov. Gos. Ped. Inst, Moscow (1985). 166

    Google Scholar 

  19. Katugampola, U.N.: New approach to a generalized fractional integral. Appl. Math. Comput. 218(3), 860–865 (2011)

    Article  MathSciNet  Google Scholar 

  20. Kermausuor, S.: Generalized Ostrowski-type inequalities involving second derivatives via the Katugampola fractional integrals. J. Nonlinear Sci. Appl. 12(8), 509–522 (2019)

    Article  MathSciNet  Google Scholar 

  21. Kermausuor, S.: Simpson’s type inequalities via the Katugampola fractional integrals for s-convex functions. Kragujev. J. Math. 45(5), 709–720 (2021)

    Article  MathSciNet  Google Scholar 

  22. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Elsevier Science B.V., Amsterdam (2006)

    Book  Google Scholar 

  23. Meftah, B., Lakhdari, A., Saleh, W., Kiliçman, A.: Some new fractal Milne-type integral inequalities via generalized convexity with applications. Fractal Fract. 7(2), 166 (2023)

    Article  Google Scholar 

  24. Niculescu, C.P.: Convexity according to the geometric mean. Math. Inequal. Appl. 3(2), 155–167 (2000)

    MathSciNet  Google Scholar 

  25. Qi, Y., Li, G., Wang, S., Wen, Q.Z.: Hermite-Hadamard-Fejer type inequalities via Katugampola fractional integrals for s-convex functions in the second sense. Fractals 30(7), 2250131 (2022)

    Article  Google Scholar 

  26. Qi, Y., Wen, Q., Li, G., Xiao, K., Wang, S.: Discrete Hermite-Hadamard-type inequalities for \((s, m) \)-convex function. Fractals 30(07), 2250160 (2022)

    Article  Google Scholar 

  27. Román-Flores, H., Ayala, V., Flores-Franulič, A.: Milne type inequality and interval orders. Comput. Appl. Math. 40(4), 130 (2021). 15 pp.

    Article  MathSciNet  Google Scholar 

  28. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives. Theory and Applications. Gordon and Breach Science Publishers, Yverdon (1993). Edited and with a foreword by S. M. Nikol’skiĭ. Translated from the 1987 Russian original. Revised by the authors

    Google Scholar 

  29. Şanlı, Z., Köroğlu, T., Kunt, M.: Improved Hermite Hadamard type inequalities for harmonically convex functions via Katugampola fractional integrals. Commun. Fac. Sci. Univ. Ank. Sér. A1 Math. Stat. 68(2), 1556–1575 (2019)

    Article  MathSciNet  Google Scholar 

  30. Set, E., Karaog̀lan, A.: Hermite-Hadamard and Hermite-Hadamard-Fejer type inequalitiesImproved Hermite-Hadamard type inequalities for \((k,h)\)-convex function via Katugampola fractional integrals. Kenya J. Mech. Eng. 5, 181–191 (2017)

    Google Scholar 

  31. Sial, I.B., Budak, H., Ali, M.A.: Some Milne’s rule type inequalities in quantum calculus. Filomat 37(27), 9119–9134 (2023)

    Article  MathSciNet  Google Scholar 

  32. Xi, B.-Y., Qi, F.: Inequalities of Hermite-Hadamard type for extended s-convex functions and applications to means. J. Nonlinear Convex Anal. 16(5), 873–890 (2015)

    MathSciNet  Google Scholar 

  33. Ying, R., Lakhdari, A., Xu, H., Saleh, W., Meftah, B.: On conformable fractional Milne-type inequalities. Symmetry 16(2), 196 (2024)

    Article  Google Scholar 

Download references

Funding

No funding was received for this work.

Author information

Authors and Affiliations

Authors

Contributions

A. L. and H. B wrotee the main results. M. U. A and B. M revised the paper.

Corresponding author

Correspondence to Hüseyin Budak.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lakhdari, A., Budak, H., Awan, M.U. et al. Extension of Milne-type inequalities to Katugampola fractional integrals. Bound Value Probl 2024, 100 (2024). https://doi.org/10.1186/s13661-024-01909-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13661-024-01909-4

Mathematics Subject Classification

Keywords