Skip to main content

Periodic solution for neutral-type differential equation with piecewise impulses on time scales

Abstract

In this paper, we establish the existence and stability of periodic solutions for neutral-type differential equations with piecewise impulses on time scales. We first obtain some sufficient conditions for the existence of a unique periodic solution by using the Banach contraction mapping principle. We also prove the existence of at least one periodic solution using the Schauder fixed point theorem. In addition, we establish the stability results based on the existence of periodic solutions. It is worth noting that the results of this paper are based on time scales, so that they are applicable to continuous, discrete, and other types of systems.

1 Introduction

In 1988, Hilger [1] first proposed time scale theory and calculation. By using time scale theory discrete and continuous analysis can be unified. Thus it provides us with new methods for studying discrete and continuous systems. For more details of time scale theory, we refer to books [2, 3], where the authors give important overviews of the basic theory of time scales and their applications to differential equations. For recent research on differential equations on time scales, see [48] and the references therein.

In this paper, we focus on the problem of periodic solutions to differential equations on time scales. Let us briefly review the research progress on the above issues. In 2007, Kaufmann and Raffoul [9] introduced a new definition of periodic time scale and studied nonlinear neutral dynamic equations with delay of the form

$$ x^{\Delta}(t)=-a(t)x(\sigma (t))+\big(F(t,x(t),x(t-g(t)))\big)^{ \Delta }+G(t,x(t),x(t-g(t))),~t\in \mathbb{T}, $$
(1.1)

where \(\mathbb{T}\) is a periodic time scale, \(a\in \mathcal{R}^{+}\) with \(a>0\), and the functions \(F(t,x,y)\) and \(G(t,x,y)\) are continuous and periodic in t and Lipschitz continuous in x and y. Based on Krasnoselskii’s fixed point theorem and contraction mapping principle, some sufficient conditions were obtained guaranteeing the existence and stability of periodic solutions to equation (1.1). Ardjouni and Djoudi [10] considered a nonlinear dynamic equation with variable delay of the form

$$ x^{\Delta}(t)=-a(t)x^{3}(\sigma (t))+c(x)x^{\tilde{\Delta}}(t-\tau (t)) +G(t,x^{3}(t),x^{3}(t-\tau (t)),~t\in \mathbb{T}, $$
(1.2)

where \(\mathbb{T}\) is a periodic time scale, \(x^{\Delta}\) is the Δ-derivative on \(\mathbb{T}\), and \(x^{\tilde{\Delta}}\) is the Δ-derivative on \((id-\tau )(\mathbb{T})\). Using the Burton–Krasnoselskii theorem, they obtained the existence of periodic solutions to equation (1.2). Alam, Abbas, and Nieto [11] investigated the existence of periodic solutions of modified version of the Leslie–Gower predator–prey model on time scales by using the continuation theorem of coincidence degree theory. Bohner et al. [12] studied the existence of periodic solutions for predator–prey dynamic systems with Beddington–DeAngelis functional response on time scales. Li and Li [13] studied almost periodic time scales and almost periodic functions on time scales. Most of results about periodic solutions on time scales can be found in [1418].

On the other hand, the impulsive dynamic systems have been extensively studied. Kumar and Djemai [19] established the existence of solutions, stability, and controllability results for piecewise nonlinear impulsive dynamic systems on time scales by using the Banach fixed point theorem, Gramian-type matrices, and the theory of time scales. For the controllability, stability, and observability problems for linear impulsive dynamic systems on time scales, see [20, 21]; for the approximate controllability of semilinear dynamic equations, see [22]; for the controllability of neutral differential equations with impulses on time scales, see [23]; for the stability and controllability results of evolution impulsive dynamic systems, see [24]; for the total controllability results for a class of time-varying switched dynamical systems with impulses, see [25]; and for the abstract integro-hybrid evolution systems with impulses on time scales, see [26].

However, a few authors studied periodic solution problems for neutral-type differential equations with piecewise impulses on time scales. Motivated by the above discussion, we study the existence and stability of solutions of the following piecewise impulsive neutral-type equation on time scales:

$$ \left \{ \textstyle\begin{array}{l} (x(t)+c(t)x(t-\gamma ))^{\Delta}=-a(t)x(t) +f(t,x(t-\tau (t))) \\ \hphantom{(x(t)+c(t)x(t-\gamma ))^{\Delta}=}{}+ \int _{0}^{t} K(s)g(t,x(s))\Delta s,~t\geq 0,~t\neq t_{j}, \\ x(t_{j}^{-})-x(t_{j}^{+})=I_{j}(x(t_{j})),~~t= t_{j},~j=1,2,\ldots ,q, \end{array}\displaystyle \right . $$
(1.3)

where \(\mathbb{T}\) is a periodic time scale, \(t\in \mathbb{T}^{+}=[0,\infty )_{\mathbb{T}}\), \(\gamma >0\) is a constant, \(~a\in C_{rd}(\mathbb{T}^{+},\mathbb{R})\) with \(a(t)<0\), \(~c,\tau \in C_{rd}(\mathbb{T}^{+},\mathbb{R})\) with \(|c(t)|\neq 1 \text{ and } \tau (t)>0\), \(K\in C_{rd}(\mathbb{T}^{+}, \mathbb{R})\), \(f, g\in C_{rd}(\mathbb{T}^{+}\times \mathbb{R}, \mathbb{R})\) with \(f(t+\omega ,\cdot )=f(t,\cdot )\) and \(g(t+\omega ,\cdot )=g(t,\cdot )\), the impulse points \(t_{j}\) satisfy the relation \(0< t_{1}<\cdots <t_{q}\), \(x(t_{j}^{-})\) and \(x(t_{j}^{+})\) represent the right and the left limits of \(x(t_{j})\), respectively, \(I_{j}\in C(\mathbb{R},\mathbb{R})\), and there exists a positive constant q such that \(t_{j+q}=t_{j}+\omega \) and \(I_{j}(x(t_{j}))=I_{j+q}(x(t_{j+q}))\). Throughout this paper, we assume that a, c, and τ are all ω-periodic functions.

We list the following main contributions of this paper:

(1) We first study a class of neutral-type differential equations with piecewise impulses on time scales. The model in the present paper is different from that in [27]. Since (1.3) is a time scale system unifying discrete and continuous systems, our results have wider applicability.

(2) We develop a fixed point theorem for differential systems on time scales.

(3) We develop two different sufficient conditions for the existence of periodic solutions to the considered system by using the Banach and Schauder fixed point theorems.

The rest of this paper is organized as follows. Section 2 gives preliminaries including some definitions and lemmas. In Sect. 3, some sufficient conditions for existence of periodic solution of system (1.3) are obtained. Section 4 gives some stability results for system (1.3). In Sect. 5, an example is given to show the effectiveness of the main results. Finally, we give some conclusions and discussions.

2 Preliminaries

A time scale \(\mathbb{T}\) is a closed subset of \(\mathbb{R}\) with the topology and ordering inherited from \(\mathbb{R}\). For the definitions and means for the forward jump operator σ, backward jump operator ρ, graininess function μ, regressive function set \(\mathcal {R}\), and positive regressive set \(\mathcal {R}^{+}\), see [2]. The interval \([s,t]_{\mathbb{T}}\) means \([s,t]\cap{\mathbb{T}}\). The intervals \([s,t)_{\mathbb{T}}\), \((s,t)_{\mathbb{T}}\), and \((s,t]_{\mathbb{T}}\) are defined similarly. A function \(f:\mathbb{T}\rightarrow \mathbb{R}\) is said to be rd-continuous if it is continuous at all right-dense points of \(\mathbb{T}\) and the finite left-hand limit exists at left-dense points of \(\mathbb{T}\). The set of all rd-continuous functions is denoted by \(C_{rd}(\mathbb{T},\mathbb{R})\).

Definition 2.1

[28] A time scale \(\mathbb{T}\) is periodic if for each \(t\in \mathbb{T}\), there is \(l>0\) such that \(t\pm l\in \mathbb{T}\). For \(\mathbb{T}\neq \mathbb{R}\), the period of the time scale is the smallest positive l.

Definition 2.2

[28] Let \(\mathbb{T}\neq \mathbb{R}\) be a periodic time scale with period l. The function \(\psi :\mathbb{T}\rightarrow \mathbb{R}\) is periodic with period τ if there exists a natural number n such that \(\tau =nl\) and \(\psi (t\pm \tau )=\psi (t)\) for all \(t\in \mathbb{T}\). When \(\mathbb{T}=\mathbb{R}\), ψ is a periodic function if τ is the smallest positive number such that \(\psi (t\pm \tau )=\psi (t)\).

The exponential function on \(\mathbb{T}\) is defined by \(e_{h}(t,s)=\exp \bigg(\int _{s}^{t}\xi _{\mu (r)}(h(r))\Delta r \bigg)\), where

$$ \xi _{\mu (r)}(h(r))=\left \{ \textstyle\begin{array}{l} \frac{1}{\mu (r)}Log(1+\mu (r)\alpha (r)),~\mu (r)>0, \\ h(r),~~\mu (r)=0. \end{array}\displaystyle \right . $$

Lemma 2.1

[2] Let \(u,v\in \mathcal {R}\). Then

  1. [1]

    \({e}_{0}(t,s)\equiv 1\) and \({e}_{u}(t,t)\equiv 1\);

  2. [2]

    \({e}_{u}(\rho (t),s)=(1-\mu (t)u(t)){e}_{u}(t,s)\);

  3. [3]

    \({e}_{u}(t,s)=\frac{1}{{e}_{u}(s,t)}=e_{\ominus u}(s,t)\), where \(\ominus u(t)=-\frac{u(t)}{1+\mu (t)u(t)}\);

  4. [4]

    \({e}_{u}(t,s){e}_{u}(s,r)={e}_{u}(t,r)\).

Lemma 2.2

[29] For a nonnegative function ρ with \(-\rho \in \mathcal{R}^{+}\), we have

$$ 1-\int _{s}^{t}\rho (u)\Delta u\leq e_{-\rho}(t,s)\leq \exp \bigg\{ - \int _{s}^{t}\rho (u)\Delta u\bigg\} ~\mathrm{for~all}~t\geq s. $$

For a nonnegative function ρ with \(\rho \in \mathcal{R}^{+}\), we have

$$ 1+\int _{s}^{t}\rho (u)\Delta u\leq e_{\rho}(t,s)\leq \exp \bigg\{ \int _{s}^{t}\rho (u)\Delta u\bigg\} ~\mathrm{for~all}~t\geq s. $$

Lemma 2.3

(Banach contraction mapping principle) [30] Let X be a Banach space with norm \(||\cdot ||\). Let \(T: \Gamma \rightarrow \Gamma \), where \(\Gamma \subseteq X\) is a nonempty closed set. If there exists \(k\in [0,1)\) such that \(||Tx-Ty||< k||x-y||\) for all \(x,y\in \Gamma \), then T has unique fixed point \(x^{*}\in \Gamma \) satisfying \(Tx^{*}=x^{*}\).

Lemma 2.4

(Schauder’s fixed theorem) [31] Let X be a nonempty convex compact subset of a Banach space Y, and let \(T: X\rightarrow X\) be a continuous map. Then T has a fixed point.

Let

$$ PC(\mathbb{T})=\{x(t):x(t)\in C_{rd}((t_{j},t_{j+1})_{\mathbb{T}}, \mathbb{R}),~j=1,2,\ldots ,q\} $$

and

$$ \Xi =\{x(t):x\in PC(\mathbb{T}),~x(t+\omega )=x(t)\} $$

with the norm \(||x||=\sup _{t\in [0,\omega ]_{\mathbb{T}}}|x(t)|\). Obviously, Ξ is a Banach space. Let

$$ \mathcal{A}:\Xi \rightarrow \Xi ,~(\mathcal{A}x)(t)=x(t)+c(t)x(t- \gamma ). $$

Lemma 2.5

[32] If \(|c(t)|\neq 1\), then \(\mathcal{A}\) has a bounded inverse \(\mathcal{A}^{-1}\) on Ξ, and for all \(x\in \Xi \),

$$ ||\mathcal{A}^{-1}x||\leq \frac{1}{1-c_{0}}~for~c_{0}< 1 $$

or

$$ ||\mathcal{A}^{-1}x||\leq \frac{1}{c_{1}-1}~for~c_{1}>1, $$

where \(c_{0}=\sup _{t\in [0,\omega ]_{\mathbb{T}}}|c(t)|\) and \(c_{1}=\inf _{t\in [0,\omega ]_{\mathbb{T}}}|c(t)|\).

Obviously, \(\mathcal{A}^{-1}\) and \(\mathcal{A}\) are both linear operators. Letting \((\mathcal{A}x)(t)=u(t)\), we can use \(\mathcal{A}^{-1}\) to change (1.3) into the form

$$ \left \{ \textstyle\begin{array}{l} u^{\Delta}(t)=-a(t)(\mathcal{A}^{-1}u)(t) +f(t,\mathcal{A}^{-1}u(t- \tau (t))) \\ \hphantom{u^{\Delta}(t)=}{}+\int _{0}^{t} K(s)g(t,\mathcal{A}^{-1}u(s))\Delta s,~t\in \mathbb{T},~t\neq t_{j}, \\ \mathcal{A}^{-1}u(t_{j}^{-})-\mathcal{A}^{-1}u(t_{j}^{+})=I_{j}( \mathcal{A}^{-1}u(t_{j})),~~t= t_{j},~j=1,2,\ldots ,q. \end{array}\displaystyle \right . $$
(2.1)

Using \((\mathcal{A}^{-1}u(t)=u(t)-c(t)(\mathcal{A}^{-1}u)(t-\gamma )\), (2.1) can be changed into

$$ \left \{ \textstyle\begin{array}{l} u^{\Delta}(t)=-a(t)u(t)+a(t)c(t)(\mathcal{A}^{-1}u)(t) +f(t, \mathcal{A}^{-1}u(t-\tau (t))) \\ \hphantom{u^{\Delta}(t)=}{}+\int _{0}^{t} K(s)g(t,\mathcal{A}^{-1}u(s))\Delta s,~t\in \mathbb{T},~t\neq t_{j}, \\ u(t_{j}^{-})-u(t_{j}^{+})=(\mathcal{A}I_{j}\mathcal{A}^{-1})u(t_{j}),~~t= t_{j},~j=1,2,\ldots ,q. \end{array}\displaystyle \right . $$
(2.2)

Since system (1.3) is equivalent to system (2.2), we only study the existence of periodic solutions for system (2.2).

Lemma 2.6

A function \(u\in \Xi \) is called a solution of system (2.2) if it satisfies the equation

$$ \begin{aligned} u(t)&=\int _{t}^{t+\omega}\Theta (t,s)\bigg(-a(s)c(s)(\mathcal{A}^{-1}u)(s) +f(s,\mathcal{A}^{-1}u(s-\tau (s))) \\ &\quad {}+\int _{0}^{s} K(\xi )g(s, \mathcal{A}^{-1}u(\xi ))\Delta \xi \bigg)\Delta s \\ &\quad {}+\sum _{t_{j}\in [t,t+\omega ]_{\mathbb{T}}}\Theta (t,t_{j})e_{-a}( \sigma (t_{j}),t_{j}) (\mathcal{A}I_{j}\mathcal{A}^{-1})u(t_{j}), \end{aligned} $$

where \(\Theta (t,s)=\frac{e_{-a}(t,\sigma (s))}{1-e_{-a}(0,\omega )}\), \(t \in \mathbb{T}\), \(s\in [t,t+\omega ]_{\mathbb{T}}\).

Proof

The proof of Lemma 2.6 is similar to that of Lemma 2.8 in [27], so we omit it. □

In view of Lemma 2.2 and \(a(t)<0\), it is easy to see that

$$ \Theta (t,s)\leq \frac{1}{1-\alpha}, $$
(2.3)

where \(\alpha =\inf \{ e_{-a(t)}(0,\omega ),~t\in [0,\omega ]_{\mathbb{T}} \}<1\).

In this paper, we need the following assumptions:

(H1) For all \(t\in \mathbb{T}^{+}\) and \(x,y\in \mathbb{R}\), the nonlinear functions f and g satisfy the following inequalities:

$$\begin{aligned}& ||f(t,x)-f(t,y)||\leq l_{f}||x-y||~~||g(t,x)-g(t,y)||\leq l_{g}||x-y||,\\& ||f(t,0)||\leq m_{f},~~||g(t,0)||\leq m_{g}, \end{aligned}$$

where \(l_{f}\), \(l_{g}\), \(m_{f}\), and \(m_{g}\) are positive constants.

(H2) For all \(j=1,2,\ldots ,q\) and \(x,y\in \mathbb{R}\), the impulsive term \(I_{j}\) satisfies the inequality

$$ ||I_{j}(t_{j},x)-I_{j}(t_{j},y)||\leq l_{j}||x-y||~~||I_{j}(t_{j},0)|| \leq m_{j}, $$

where \(l_{j}\) and \(m_{j}\) are positive constants.

(H3) For all \(s,t\in \mathbb{T}^{+}\), there exists a positive constant M such that

$$ \int _{0}^{t} |K(s)|\Delta s\leq M. $$

(H4) For all \(t\in \mathbb{T}^{+}\) and \(x\in \mathbb{R}\), the nonlinear functions f and g satisfy the inequalities

$$ ||f(t,x)||\leq \tilde{l}_{f} \quad \text{and}\quad ||g(t,x)||\leq \tilde{l}_{g}, $$

where \(\tilde{l}_{f}\) and \(\tilde{l}_{g}\) are positive constants.

(H5) For all \(j=1,2,\ldots ,q\) and \(x\in \mathbb{R}\), the impulsive term \(I_{j}\) satisfies the inequality

$$ ||I_{j}(t_{j},x)||\leq \tilde{l}_{j}, $$

where \(\tilde{l}_{j}\) is a positive constant.

3 Existence of periodic solutions

In this section, we prove the existence of periodic solutions of system (1.3). First, we prove the existence of a unique periodic solution by using the Banach contraction mapping principle, and after that, we prove the existence of at least one periodic solution by using the Schauder fixed point theorem.

Theorem 3.1

If assumptions (H1)(H3) hold, then system (1.3) has a unique periodic solution, provided that

$$ \frac{\omega (\alpha c_{0}+l_{f}+Ml_{g})}{(1-\alpha )(1-c_{0})} + \frac{\beta}{1-\alpha}\sum _{j=1}^{q}l_{j}< 1~~\mathrm{for}~c_{0}< 1 $$
(3.1)

or

$$ \frac{\omega (\alpha c_{0}+l_{f}+Ml_{g})}{(1-\alpha )(c_{1}-1)} + \frac{\beta}{1-\alpha}\sum _{j=1}^{q}l_{j}< 1~~\mathrm{for}~c_{1}>1, $$
(3.2)

where \(\beta =\exp \bigg\{-\int _{0}^{\omega }a(u)\Delta u\bigg\}\).

Proof

For a positive constant r, let \(B_{r}=\{x:x\in \Xi ,~||x||\leq r\}\), where r satisfies

$$ \begin{aligned} r&\geq \bigg[\frac{\omega}{1-\alpha}\big(m_{f}+Mm_{g}\big) + \frac{\beta}{1-\alpha}\sum _{j=1}^{q}m_{j}\bigg] \bigg[1- \frac{\omega (\alpha c_{0}+l_{f}+Ml_{g})}{(1-\alpha )(1-c_{0})} - \frac{\beta}{1-\alpha}\sum _{j=1}^{q}l_{j}\bigg]^{-1} \\ &>0~~~~~\mathrm{for}~c_{0}< 1, \end{aligned} $$
(3.3)

or

$$ \begin{aligned} r&\geq \bigg[\frac{\omega}{1-\alpha}\big(m_{f}+Mm_{g}\big) + \frac{\beta}{1-\alpha}\sum _{j=1}^{q}m_{j}\bigg] \bigg[1- \frac{\omega (\alpha c_{0}+l_{f}+Ml_{g})}{(1-\alpha )(c_{1}-1)} - \frac{\beta}{1-\alpha}\sum _{j=1}^{q}l_{j}\bigg]^{-1} \\ &>0~~~~~\mathrm{for}~c_{1}>1. \end{aligned} $$
(3.4)

Here we use (3.1) and (3.2) tor guarantee \(r>0\). Define the operator \(\Gamma : B_{r}\rightarrow B_{r}\) by

$$ \begin{aligned} (\Gamma u)(t)&=\int _{t}^{t+\omega}\Theta (t,s)\bigg(-a(s)c(s)( \mathcal{A}^{-1}u)(s) +f(s,\mathcal{A}^{-1}u(s-\tau (s))) \\ &\quad {}+\int _{0}^{s} K(\xi )g(s,\mathcal{A}^{-1}u(\xi ))\Delta \xi \bigg)\Delta s \\ &\quad {}+\sum _{t_{j}\in [t,t+\omega ]_{\mathbb{T}}}\Theta (t,t_{j})e_{-a}( \sigma (t_{j}),t_{j}) (\mathcal{A}I_{j}\mathcal{A}^{-1})u(t_{j}). \end{aligned} $$

From Lemma 2.6, if there exists a fixed point of Γ, i.e., there exists \(u\in \Xi \) such that \(\Gamma u=u\), then the fixed point u is a periodic solution of system (2.2). Hence we prove the existence of a fixed point of Γ by using the Banach contraction mapping principle. For better readability, we divide the proof into two steps.

Step 1: We show that \(\Gamma (B_{r})\subset B_{r}\). If \(c_{0}<1\), then for any \(u\in B_{r}\), using assumptions (H1)–(H3), (3.3), and Lemma 2.5, we have

$$ \begin{aligned} ||(\Gamma u)(t)||&\leq \frac{1}{1-\alpha}\int _{t}^{t+\omega}\bigg(a_{0}c_{0}||( \mathcal{A}^{-1}u)(s) || +||f(s,\mathcal{A}^{-1}u(s-\tau (s)))|| \\ &+\int _{0}^{s} ||K(\xi )g(s,\mathcal{A}^{-1}u(\xi ))||\Delta \xi \bigg)\Delta s \\ &+\frac{\beta}{1-\alpha}\sum _{t_{j} \in [t,t+\omega ]_{\mathbb{T}}}|| (\mathcal{A}I_{j}\mathcal{A}^{-1})u(t_{j})|| \\ &\leq \frac{\omega }{1-\alpha}\bigg(\frac{a_{0}c_{0}}{1-c_{0}}r + \frac{l_{f}r}{1-c_{0}}+m_{f}+\frac{Ml_{g}r}{1-c_{0}}+Mm_{g}\bigg) \\ &+\frac{\beta}{1-\alpha}\sum _{j=1}^{q}(l_{j}r+m_{j}) \\ &\leq r. \end{aligned} $$
(3.5)

If \(c_{1}>1\), then for any \(u\in B_{r}\), using assumptions (H1)–(H3), (3.4), and Lemma 2.5, we have

$$ \begin{aligned} ||(\Gamma u)(t)||&\leq \frac{1}{1-\alpha}\int _{t}^{t+\omega}\bigg(a_{0}c_{0}||( \mathcal{A}^{-1}u)(s)|| +||f(s,\mathcal{A}^{-1}u(s-\tau (s)))|| \\ &+\int _{0}^{s} ||K(\xi )g(s,\mathcal{A}^{-1}u(\xi ))||\Delta \xi \bigg)\Delta s \\ &+\frac{\beta}{1-\alpha}\sum _{t_{j} \in [t,t+\omega ]_{\mathbb{T}}}|| (\mathcal{A}I_{j}\mathcal{A}^{-1})u(t_{j})|| \\ &\leq \frac{\omega }{1-\alpha}\bigg(\frac{a_{0}c_{0}}{c_{1}-1}r + \frac{l_{f}r}{c_{1}-1}+m_{f}+\frac{Ml_{g}r}{c_{1}-1}+Mm_{g}\bigg) \\ &+\frac{\beta}{1-\alpha}\sum _{j=1}^{q}(l_{j}r+m_{j}) \\ &\leq r. \end{aligned} $$
(3.6)

From (3.5) and (3.6) it follows that the operator Γ maps \(B_{r}\) into \(B_{r}\).

Step 2: We show that the operator Γ is a contraction. If \(c_{0}<1\), then for any \(u,v\in B_{r}\), using assumptions (H1)–(H3), we have

$$\begin{aligned} ||(\Gamma u)(t)-(\Gamma v)(t)|| &\leq \frac{1}{1-\alpha}\int _{t}^{t+ \omega}\bigg(a_{0}c_{0}||(\mathcal{A}^{-1}u)(s) -(\mathcal{A}^{-1}v)(s)|| \\ &+||f(s,\mathcal{A}^{-1}u(s-\tau (s)))-f(s,\mathcal{A}^{-1}v(s-\tau (s)))|| \\ &+\int _{0}^{s} ||K(\xi )|||| g(s,\mathcal{A}^{-1}u(\xi ))-g(s, \mathcal{A}^{-1}v(\xi ))||\Delta \xi \bigg)\Delta s \\ &+\frac{\beta}{1-\alpha}\sum _{t_{j} \in [t,t+\omega ]_{\mathbb{T}}}|| (\mathcal{A}I_{j}\mathcal{A}^{-1})u(t_{j})-(\mathcal{A}I_{j} \mathcal{A}^{-1})v(t_{j})|| \\ &\leq \frac{\omega }{1-\alpha}\bigg(\frac{a_{0}c_{0}}{1-c_{0}} + \frac{l_{f}}{1-c_{0}}+\frac{Ml_{g}}{1-c_{0}}\bigg)||u-v|| \\ &+\frac{\beta}{1-\alpha}\sum _{j=1}^{q}l_{j}||u-v|| \\ &=\bigg[ \frac{\omega (\alpha c_{0}+l_{f}+Ml_{g})}{(1-\alpha )(1-c_{0})} + \frac{\beta}{1-\alpha}\sum _{j=1}^{q}l_{j}\bigg]||u-v||. \end{aligned}$$
(3.7)

If \(c_{1}>1\), then for any \(u,v\in B_{r}\), using assumptions (H1)–(H3), we have

$$ \begin{aligned} ||(\Gamma u)(t)-(\Gamma v)(t)|| &\leq \frac{1}{1-\alpha}\int _{t}^{t+ \omega}\bigg(a_{0}c_{0}||(\mathcal{A}^{-1}u)(s) -(\mathcal{A}^{-1}v)(s)|| \\ &+||f(s,\mathcal{A}^{-1}u(s-\tau (s)))-f(s,\mathcal{A}^{-1}v(s-\tau (s)))|| \\ &+\int _{0}^{s} ||K(\xi )|||| g(s,\mathcal{A}^{-1}u(\xi ))-g(s, \mathcal{A}^{-1}v(\xi ))||\Delta \xi \bigg)\Delta s \\ &+\frac{\beta}{1-\alpha}\sum _{t_{j} \in [t,t+\omega ]_{\mathbb{T}}}|| (\mathcal{A}I_{j}\mathcal{A}^{-1})u(t_{j})-(\mathcal{A}I_{j} \mathcal{A}^{-1})v(t_{j})|| \\ &\leq \frac{\omega }{1-\alpha}\bigg(\frac{a_{0}c_{0}}{c_{1}-1} + \frac{l_{f}}{c_{1}-1}+\frac{Ml_{g}}{c_{1}-1}\bigg)||u-v|| \\ &+\frac{\beta}{1-\alpha}\sum _{j=1}^{q}l_{j}||u-v|| \\ &=\bigg[ \frac{\omega (\alpha c_{0}+l_{f}+Ml_{g})}{(1-\alpha )(c_{1}-1)} + \frac{\beta}{1-\alpha}\sum _{j=1}^{q}l_{j}\bigg]||u-v||. \end{aligned} $$
(3.8)

In view of (3.1), (3.2), (3.7), and (3.8), the operator Γ is a contraction.

From the proof of steps 1 and 2 we can see that the operator Γ fulfills all the requirements of the Banach contraction mapping principle, and hence system (2.2) has a unique periodic solution u, i.e., system (1.3) has a unique periodic solution \(\mathcal{A}^{-1}u\). □

Next, we establish the existence of at least one periodic solution of system (1.3) by using the Schauder fixed point theorem.

Theorem 3.2

If assumptions (H3)–(H5) hold, then system (1.3) has at least one periodic solution, provided that

$$ \frac{\omega \alpha c_{0}}{(1-\alpha )(1-c_{0})} < 1~~~~~\mathrm{for}~c_{0}< 1 $$
(3.9)

or

$$ \frac{\omega \alpha c_{0}}{(1-\alpha )(c_{1}-1)} < 1~~~~~\mathrm{for}~c_{1}>1. $$
(3.10)

Proof

In view of (3.9) and (3.10), let \(B_{\tilde{r}}=\{x:x\in \Xi ,~||x||\leq \tilde{r}\}\), where satisfies

$$ \begin{aligned} \tilde{r}\geq \bigg[\frac{\omega}{1-\alpha}\big(\tilde{l}_{f}+M \tilde{l}_{g}\big) +\frac{\beta}{1-\alpha}\sum _{j=1}^{q}\tilde{l}_{j} \bigg] \bigg[1-\frac{\omega \alpha c_{0}}{(1-\alpha )(1-c_{0})}\bigg]^{-1} >0~~~~~\mathrm{for}~c_{0}< 1 \end{aligned} $$
(3.11)

or

$$ \begin{aligned} \tilde{r}\geq \bigg[\frac{\omega}{1-\alpha}\big(\tilde{l}_{f}+M \tilde{l}_{g}\big) +\frac{\beta}{1-\alpha}\sum _{j=1}^{q}\tilde{l}_{j} \bigg] \bigg[1-\frac{\omega \alpha c_{0}}{(1-\alpha )(c_{1}-1)}\bigg]^{-1} >0~~~~~\mathrm{for}~c_{1}>1, \end{aligned} $$
(3.12)

where \(\beta =\exp \bigg\{-\int _{0}^{\omega }a(u)\Delta u\bigg\}\). Define the operator \(\Gamma : B_{\tilde{r}}\rightarrow B_{\tilde{r}}\) by

$$ \begin{aligned} (\Gamma u)(t)&=\int _{t}^{t+\omega}\Theta (t,s)\bigg(-a(s)c(s)( \mathcal{A}^{-1}u)(s) +f(s,\mathcal{A}^{-1}u(s-\tau (s))) \\ &\quad{} +\int _{0}^{s} K(\xi )g(s,\mathcal{A}^{-1}u(\xi ))\Delta \xi \bigg)\Delta s \\ &\quad {}+\sum _{t_{j}\in [t,t+\omega ]_{\mathbb{T}}}\Theta (t,t_{j})e_{-a}( \sigma (t_{j}),t_{j}) (\mathcal{A}I_{j}\mathcal{A}^{-1})u(t_{j}). \end{aligned} $$

We divide the proof into three steps.

Step 1: We show that \(\Gamma (B_{\tilde{r}})\subset B_{\tilde{r}}\). If \(c_{0}<1\), then for any \(u\in B_{\tilde{r}}\), using assumptions (H3)–(H5), (3.11), and Lemma 2.5, we have

$$ \begin{aligned} ||(\Gamma u)(t)||&\leq \frac{1}{1-\alpha}\int _{t}^{t+\omega}\bigg(a_{0}c_{0}||( \mathcal{A}^{-1}u)(s) || +||f(s,\mathcal{A}^{-1}u(s-\tau (s)))|| \\ &+\int _{0}^{s} ||K(\xi )g(s,\mathcal{A}^{-1}u(\xi ))||\Delta \xi \bigg)\Delta s \\ &+\frac{\beta}{1-\alpha}\sum _{t_{j} \in [t,t+\omega ]_{\mathbb{T}}}|| (\mathcal{A}I_{j}\mathcal{A}^{-1})u(t_{j})|| \\ &\leq \frac{\omega }{1-\alpha}\bigg(\frac{a_{0}c_{0}}{1-c_{0}} \tilde{r} +\tilde{l}_{f}+M\tilde{l}_{g}\bigg) +\frac{\beta}{1-\alpha} \sum _{j=1}^{q}\tilde{l}_{j} \\ &\leq \tilde{r}. \end{aligned} $$
(3.13)

If \(c_{1}>1\), then for any \(u\in B_{\tilde{r}}\), using assumptions (H3)–(H5), (3.12), and Lemma 2.5, we have

$$ \begin{aligned} ||(\Gamma u)(t)||&\leq \frac{1}{1-\alpha}\int _{t}^{t+\omega}\bigg(a_{0}c_{0}||( \mathcal{A}^{-1}u)(s) || +||f(s,\mathcal{A}^{-1}u(s-\tau (s)))|| \\ &+\int _{0}^{s} ||K(\xi )g(s,\mathcal{A}^{-1}u(\xi ))||\Delta \xi \bigg)\Delta s \\ &+\frac{\beta}{1-\alpha}\sum _{t_{j} \in [t,t+\omega ]_{\mathbb{T}}}|| (\mathcal{A}I_{j}\mathcal{A}^{-1})u(t_{j})|| \\ &\leq \frac{\omega }{1-\alpha}\bigg(\frac{a_{0}c_{0}}{c_{1}-1} \tilde{r} +\tilde{l}_{f}+M\tilde{l}_{g}\bigg) +\frac{\beta}{1-\alpha} \sum _{j=1}^{q}\tilde{l}_{j} \\ &\leq \tilde{r}. \end{aligned} $$
(3.14)

From (3.13) and (3.14) it follows that the operator Γ maps \(B_{\tilde{r}}\) into \(B_{\tilde{r}}\).

Step 2: We prove that the operator Γ is continuous. Let \(\{u_{n}\}_{n=1}^{\infty}\) be an arbitrary sequence in \(B_{\tilde{r}}\) with \(\lim _{n\rightarrow \infty}||u_{n}-u||=0\), where \(~u\in B_{\tilde{r}}\). We claim that \(\lim _{n\rightarrow \infty}||\Gamma u_{n}-\Gamma u||=0\). Indeed, for \(t\in \mathbb{T}^{+}\), we have

$$ \begin{aligned} ||(\Gamma u_{n})(t)-(\Gamma u)(t)|| &\leq \frac{1}{1-\alpha}\int _{t}^{t+ \omega}\bigg(a_{0}c_{0}||(\mathcal{A}^{-1}u_{n})(s) -(\mathcal{A}^{-1}u)(s)|| \\ &+||f(s,\mathcal{A}^{-1}u_{n}(s-\tau (s)))-f(s,\mathcal{A}^{-1}u(s- \tau (s)))|| \\ &+\int _{0}^{s} ||K(\xi )|||| g(s,\mathcal{A}^{-1}u_{n}(\xi ))-g(s, \mathcal{A}^{-1}u(\xi ))||\Delta \xi \bigg)\Delta s \\ &+\frac{\beta}{1-\alpha}\sum _{t_{j} \in [t,t+\omega ]_{\mathbb{T}}}|| (\mathcal{A}I_{j}\mathcal{A}^{-1})u_{n}(t_{j})-(\mathcal{A}I_{j} \mathcal{A}^{-1})u(t_{j})||. \end{aligned} $$
(3.15)

From the continuity of f, g, K, \(I_{j}\), and \(~\mathcal{A}\) in their definition domains it follows by (3.15) that

$$ \lim _{n\rightarrow \infty}||\Gamma u_{n}-\Gamma u||=0 ~\mathrm{as}~ \lim _{n\rightarrow \infty}|| u_{n}- u||=0. $$

Hence the operator Γ is continuous.

Step 3: We prove that \(\Gamma (B_{\tilde{r}})\) is relatively compact. We first show that Γ is an equicontinuous operator. For \(t_{1},t_{2}\in [0,\omega ]_{\mathbb{T}}\) with \(t_{1}< t_{2}\) and \(u\in B_{\tilde{r}}\), if \(c_{0}<1\), then we have

$$ \begin{aligned} &||(\Gamma u)(t_{2})-(\Gamma u)(t_{1})|| \\ &\leq \int _{t_{1}}^{t_{2}}||\Theta (t_{1},s)||\bigg|\bigg(-a(s)c(s)( \mathcal{A}^{-1}u)(s) \\ &+f(s,\mathcal{A}^{-1}u(s-\tau (s)))+\int _{0}^{s} K(\xi )g(s, \mathcal{A}^{-1}u(\xi ))\Delta \xi \bigg)\bigg|\Delta s \\ &+\int _{t_{2}}^{t_{1}+\omega}||\Theta (t_{1},s)-\Theta (t_{2},s)|| \bigg|\bigg(-a(s)c(s)(\mathcal{A}^{-1}u)(s) \\ &+f(s,\mathcal{A}^{-1}u(s-\tau (s)))+\int _{0}^{s} K(\xi )g(s, \mathcal{A}^{-1}u(\xi ))\Delta \xi \bigg)\bigg|\Delta s \\ &+\int _{t_{1}+\omega}^{t_{2}+\omega}||\Theta (t_{2},s)||\bigg|\bigg(-a(s)c(s)( \mathcal{A}^{-1}u)(s) \\ &+f(s,\mathcal{A}^{-1}u(s-\tau (s)))+\int _{0}^{s} K(\xi )g(s, \mathcal{A}^{-1}u(\xi ))\Delta \xi \bigg)\bigg|\Delta s \\ &+\frac{\beta}{1-\alpha}\sum _{j=1}^{q}\tilde{l}_{j}||\Theta (t_{2},t_{j})- \Theta (t_{1},t_{j})|| \\ &\leq \frac{2}{1-\alpha}\bigg(\frac{a_{0}c_{0}\tilde{r}}{1-c_{0}} + \tilde{l}_{f}+\tilde{l}_{g}M\bigg)(t_{2}-t_{1}) \\ &+\bigg(\frac{a_{0}c_{0}\tilde{r}}{1-c_{0}} +\tilde{l}_{f}+\tilde{l}_{g}M \bigg)(t_{1}+\omega -t_{2})||\Theta (t_{1},s)-\Theta (t_{2},s)||. \end{aligned} $$
(3.16)

Also, for \(t_{1},t_{2}\in [0,\omega ]_{\mathbb{T}}\) with \(t_{1}< t_{2}\) and \(u\in B_{\tilde{r}}\), if \(c_{1}>1\), then we have

$$ \begin{aligned} &||(\Gamma u)(t_{2})-(\Gamma u)(t_{1})|| \\ &\leq \int _{t_{1}}^{t_{2}}||\Theta (t_{1},s)||\bigg|\bigg(-a(s)c(s)( \mathcal{A}^{-1}u)(s) \\ &+f(s,\mathcal{A}^{-1}u(s-\tau (s)))+\int _{0}^{s} K(\xi )g(s, \mathcal{A}^{-1}u(\xi ))\Delta \xi \bigg)\bigg|\Delta s \\ &+\int _{t_{2}}^{t_{1}+\omega}||\Theta (t_{1},s)-\Theta (t_{2},s)|| \bigg|\bigg(-a(s)c(s)(\mathcal{A}^{-1}u)(s) \\ &+f(s,\mathcal{A}^{-1}u(s-\tau (s)))+\int _{0}^{s} K(\xi )g(s, \mathcal{A}^{-1}u(\xi ))\Delta \xi \bigg)\bigg|\Delta s \\ &+\int _{t_{1}+\omega}^{t_{2}+\omega}||\Theta (t_{2},s)||\bigg|\bigg(-a(s)c(s)( \mathcal{A}^{-1}u)(s) \\ &+f(s,\mathcal{A}^{-1}u(s-\tau (s)))+\int _{0}^{s} K(\xi )g(s, \mathcal{A}^{-1}u(\xi ))\Delta \xi \bigg)\bigg|\Delta s \\ &+\frac{\beta}{1-\alpha}\sum _{j=1}^{q}\tilde{l}_{j}||\Theta (t_{2},t_{j})- \Theta (t_{1},t_{j})|| \\ &\leq \frac{2}{1-\alpha}\bigg(\frac{a_{0}c_{0}\tilde{r}}{c_{1}-1} + \tilde{l}_{f}+\tilde{l}_{g}M\bigg)(t_{2}-t_{1}) \\ &+\bigg(\frac{a_{0}c_{0}\tilde{r}}{c_{1}-1} +\tilde{l}_{f}+\tilde{l}_{g}M \bigg)(t_{1}+\omega -t_{2})||\Theta (t_{1},s)-\Theta (t_{2},s)||. \end{aligned} $$
(3.17)

Since \(\Theta (t,s)\) is continuous, \(||\Theta (t_{1},s)-\Theta (t_{2},s)||\rightarrow 0\) as \(t_{2}\rightarrow t_{1}\). Hence, in view of (3.16) and (3.17), we obtain that

$$ ||(\Gamma u)(t_{2})-(\Gamma u)(t_{1})||\rightarrow 0~\mathrm{as}~t_{2} \rightarrow t_{1} $$

and thus \(\Gamma (B_{\tilde{r}})\) is equicontinuous. From step 1, \(\Gamma (B_{\tilde{r}})\) is uniformly bounded. Thus \(\Gamma (B_{\tilde{r}})\) is relatively compact.

From the above proof, by the Arzelà–Ascoli theorem we can conclude that \(\Gamma : B_{\tilde{r}}\rightarrow B_{\tilde{r}}\) is completely continuous. Hence all the conditions of Lemma 2.4 hold, and system (2.2) has at least one periodic solution u, i.e., system (1.3) has at least one periodic solution \(\mathcal{A}^{-1}u\). □

Remark 3.1

In [27], when \(|c|<1\), the authors obtained the existence of three positive periodic solutions to the nonlinear neutral-type equations with impulses and parameters on time scales by using the Leggett–Williams fixed point theorem. In this paper, we have expanded the scope of c for ensuring the existence of periodic solutions.

4 Stability of periodic solutions

Definition 4.1

A periodic solution u of system (2.2) is called stable if for any \(\delta >0\), there exists \(\varepsilon =\varepsilon (\delta )>0\) such that

$$ ||u(t)-\tilde{u}(t)||\leq \delta ~\mathrm{for~all}~t\in \mathbb{T}^{+} $$

whenever \(||u(0)-\tilde{u}(0)||\leq \varepsilon \), where ũ is the solution of system (2.2) with \(\tilde{u}(t_{j}^{-})-\tilde{u}(t_{j}^{+})=(\mathcal{A}I_{j} \mathcal{A}^{-1})\tilde{u}(t_{j})\), \(j=1,2,\ldots ,q\).

Theorem 4.1

If all the conditions of Theorem 3.1are satisfied, then system (1.3) is stable.

Proof

Since all the conditions of Theorem 3.1 are satisfied, system (2.2) has a unique periodic solution u. Let ũ be another solution of system (2.2). If \(c_{0}<1\), then for \(u,\tilde{u}\in B_{r}\), using assumptions (H1)–(H3) and (3.1), we have

$$ \begin{aligned} || u(t)-\tilde{u}(t)|| &\leq \frac{1}{1-\alpha}\int _{t}^{t+\omega} \bigg(a_{0}c_{0}||(\mathcal{A}^{-1}u)(s) -(\mathcal{A}^{-1}\tilde{u})(s)|| \\ &+||f(s,\mathcal{A}^{-1}u(s-\tau (s)))-f(s,\mathcal{A}^{-1}\tilde{u}(s- \tau (s)))|| \\ &+\int _{0}^{s} ||K(\xi )|||| g(s,\mathcal{A}^{-1}u(\xi ))-g(s, \mathcal{A}^{-1}\tilde{u}(\xi ))||\Delta \xi \bigg)\Delta s \\ &+\frac{\beta}{1-\alpha}\sum _{t_{j} \in [t,t+\omega ]_{\mathbb{T}}}|| (\mathcal{A}I_{j}\mathcal{A}^{-1})u(t_{j})-(\mathcal{A}I_{j} \mathcal{A}^{-1})\tilde{u}(t_{j})|| \\ &\leq \frac{\omega }{1-\alpha}\bigg(\frac{a_{0}c_{0}}{1-c_{0}}||u- \tilde{u}|| +\frac{4l_{f}r}{1-c_{0}}+\frac{4Ml_{g}r}{1-c_{0}}+ \frac{l_{f}+Ml_{g}}{1-c_{0}}||u(0)-\tilde{u}(0)||\bigg) \\ &+\frac{\beta}{1-\alpha}\sum _{j=1}^{q}l_{j}||u-\tilde{u}|| \end{aligned} $$

and

$$ \begin{aligned} || u(t)-\tilde{u}(t)||&\leq \frac{(4l_{f}r+4Ml_{g}r)\omega}{(1-c_{0})(1-\alpha )} \bigg[1- \frac{\omega a_{0}c_{0}}{(1-c_{0})(1-\alpha )}-\frac{\beta}{1-\alpha} \sum _{j=1}^{q}l_{j}\bigg]^{-1} \\ &+\frac{(l_{f}+Ml_{g})\omega}{(1-c_{0})(1-\alpha )}\bigg[1- \frac{\omega a_{0}c_{0}}{(1-c_{0})(1-\alpha )}- \frac{\beta}{1-\alpha}\sum _{j=1}^{q}l_{j}\bigg]^{-1}||u(0)-\tilde{u}(0)||. \end{aligned} $$
(4.1)

Also, similarly to the proof of (4.1), if \(c_{1}>1\), then we have

$$ \begin{aligned} || u(t)-\tilde{u}(t)||&\leq \frac{(4l_{f}r+4Ml_{g}r)\omega}{(c_{1}-1)(1-\alpha )} \bigg[1- \frac{\omega a_{0}c_{0}}{(c_{1}-1)(1-\alpha )}-\frac{\beta}{1-\alpha} \sum _{j=1}^{q}l_{j}\bigg]^{-1} \\ &+\frac{(l_{f}+Ml_{g})\omega}{(c_{1}-1)(1-\alpha )}\bigg[1- \frac{\omega a_{0}c_{0}}{(c_{1}-1)(1-\alpha )}- \frac{\beta}{1-\alpha}\sum _{j=1}^{q}l_{j}\bigg]^{-1}||u(0)-\tilde{u}(0)||. \end{aligned} $$
(4.2)

From (4.1) and (4.2) we have

$$ || u(t)-\tilde{u}(t)||\leq \Delta _{1}+\Delta _{2}\varepsilon , $$
(4.3)

where

$$\begin{aligned}& \begin{aligned} \Delta _{1}=\max &\bigg\{ \frac{(4l_{f}r+4Ml_{g}r)\omega}{(1-c_{0})(1-\alpha )} \bigg[1- \frac{\omega a_{0}c_{0}}{(1-c_{0})(1-\alpha )}-\frac{\beta}{1-\alpha} \sum _{j=1}^{q}l_{j}\bigg]^{-1}, \\ &\frac{(4l_{f}r+4Ml_{g}r)\omega}{(c_{1}-1)(1-\alpha )} \bigg[1- \frac{\omega a_{0}c_{0}}{(c_{1}-1)(1-\alpha )}-\frac{\beta}{1-\alpha} \sum _{j=1}^{q}l_{j}\bigg]^{-1}\bigg\} , \end{aligned} \\& \begin{aligned} \Delta _{2}=\max &\bigg\{ \frac{(l_{f}+Ml_{g})\omega}{(1-c_{0})(1-\alpha )}\bigg[1- \frac{\omega a_{0}c_{0}}{(1-c_{0})(1-\alpha )}- \frac{\beta}{1-\alpha}\sum _{j=1}^{q}l_{j}\bigg]^{-1}, \\ &\frac{(l_{f}+Ml_{g})\omega}{(c_{1}-1)(1-\alpha )}\bigg[1- \frac{\omega a_{0}c_{0}}{(c_{1}-1)(1-\alpha )}- \frac{\beta}{1-\alpha}\sum _{j=1}^{q}l_{j}\bigg]^{-1}\bigg\} . \end{aligned} \end{aligned}$$

Now by choosing \(\varepsilon \leq \frac{\delta -\Delta _{1}}{\Delta _{2}}\), in view of (4.3), we get

$$ ||u(t)-\tilde{u}(t)||\leq \delta ~\mathrm{for~all}~t\in \mathbb{T}^{+}, $$

and thus system (2.2) is stable. Furthermore, by Lemma 2.5 we get

$$ ||x(t)-\tilde{x}(t)||=||(\mathcal{A}^{-1}u)(t) -(\mathcal{A}^{-1} \tilde{u})(t)|| \leq \frac{\delta}{1-c_{0}}~\mathrm{for~all}~t\in \mathbb{T}^{+},~c_{0}< 1, $$

or

$$ ||x(t)-\tilde{x}(t)||=||(\mathcal{A}^{-1}u)(t) -(\mathcal{A}^{-1} \tilde{u})(t)|| \leq \frac{\delta}{c_{1}-1}~\mathrm{for~all}~t\in \mathbb{T}^{+},~c_{1}>1. $$

Hence system (1.3) is stable. □

5 An example

In this section, we give an example for different time scales to verify our theoretical outcomes. Consider the following neutral-type differential equation with piecewise impulses on time scales:

$$ \left \{ \textstyle\begin{array}{l} (x(t)+c(t)x(t-\gamma ))^{\Delta}=-a(t)x(t) +f(t,x(t-\tau (t))) \\ \hphantom{(x(t)+c(t)x(t-\gamma ))^{\Delta}=}{} +\int _{0}^{t} K(s)g(t,x(s))\Delta s,~t\geq 0,~t\neq t_{j}, \\ x(t_{j}^{-})-x(t_{j}^{+})=I_{j}(x(t_{j})),~~t= t_{j},~j=1,2,\ldots ,q, \end{array}\displaystyle \right . $$
(5.1)

where

$$\begin{aligned}& c(t)=0.1\sin t,~\gamma =\pi ,~a(t)=\cos t-1.5,~\tau (t)=e_{0.2}( \sigma (t),t),\\& f(t,x)=\frac{1}{30}+\frac{1}{30}\cos x,~g(t,x)=\frac{1}{50}+ \frac{1}{50}\sin x,~K(t)=e^{-t}, \\& I_{j}(x(t_{j}))=8\times 10^{-4} \bigg(\frac{2}{3}\bigg)^{j}x(t_{j}). \end{aligned}$$

When \(\mathbb{T}=\mathbb{R}\), it is easy to see that assumptions (H1)–(H3) are satisfied. After simple calculations, we can conclude that

$$ \omega =2\pi ,~ c_{0}=0.1,~l_{f}=\frac{1}{30},~l_{g}=\frac{1}{50},~M=1,~ \alpha =e^{-5\pi}, ~\beta =e^{3\pi}, $$

and

$$ l_{j}=0.08\bigg(\frac{2}{3}\bigg)^{j}, ~\sum _{j=1}^{q}l_{j}\leq \sum _{j=1}^{\infty }l_{j}=1.6\times 10^{-3}. $$

Thus

$$ \frac{\omega (\alpha c_{0}+l_{f}+Ml_{g})}{(1-\alpha )(1-c_{0})} + \frac{\beta}{1-\alpha}\sum _{j=1}^{q}l_{j}\approx 0.94< 1, $$

and all conditions of Theorems 3.1 and 4.1 are satisfied. Hence system (5.1) has a unique stable periodic solution. When \(\mathbb{T}=\mathbb{Z}\), we have \(\alpha =\frac{1}{3.5^{2\pi}}\), and other parameters remain unchanged. Similarly to the above proof, we also obtain that system (5.1) has a unique stable periodic solution.

6 Conclusions

In this paper, we considered the existence and stability of a periodic solution for a neutral-type differential equation with piecewise impulses on time scales. By using time scale theory, the properties of neutral-type operator, and the Banach contraction mapping principle, we prove the existence of a unique periodic solution. We also prove the existence of at least one periodic solution by using the Schauder fixed point theorem. Further, we establish the stability results.

Another topic for a future work related to this paper would be the controllability of piecewise impulsive dynamic systems on time scales. This would require extending the class of systems to systems involving control.

Data availability

No datasets were generated or analysed during the current study.

References

  1. Hilger, S.: Ein Masskettenkalkul mit Anwendung auf Zentrumsmanningfaltigkeiten. PhD thesis, Universität Würzburg (1988)

  2. Bohner, M., Peterson, A.: Dynamic Equations on Time Scales, an Introduction with Applications. Birkhäuser, Boston (2001)

    Book  Google Scholar 

  3. Bohner, M., Peterson, A.: Advances in Dynamic Equations on Time Scales. Birkhäuser, Boston (2003)

    Book  Google Scholar 

  4. Lu, X., Zhang, X., Liu, Q.: Finite-time synchronization of nonlinear complex dynamical networks on time scales via pinning impulsive control. Neurocomputing 275, 2104–2110 (2018)

    Article  Google Scholar 

  5. Dogan, A.: Positive solutions of the p-Laplacian dynamic equations on time scales with sign changing nonlinearity. Electron. J. Differ. Equ. 2018, 39 (2018)

    MathSciNet  Google Scholar 

  6. Zhu, P.: Dynamics of the positive almost periodic solution to a class of recruitment delayed model on time scales. AIMS Math. 8, 7292–7309 (2023)

    Article  MathSciNet  Google Scholar 

  7. Xiao, Q., Zeng, Z.: Scale-limited Lagrange stability and finite-time synchronization for memristive recurrent neural networks on time scales. IEEE Trans. Cybern. 47, 2984–2994 (2017)

    Article  Google Scholar 

  8. Ou, B.: Halanay inequality on time scales with unbounded coefficient and its applications. Indian J. Pure Appl. Math. 51, 1023–1038 (2020)

    Article  MathSciNet  Google Scholar 

  9. Kaufmann, E.R., Raffoul, Y.N.: Periodicity and stability in neutral nonlinear dynamic equations with functional delay on a time scale. Electron. J. Differ. Equ. 2007, 27 (2007)

    MathSciNet  Google Scholar 

  10. Ardjouni, A., Djoudi, A.: Existence of periodic solutions for nonlinear neutral dynamic equations with variable delay on a time scale. Commun. Nonlinear Sci. Numer. Simul. 17, 3061–3069 (2012)

    Article  MathSciNet  Google Scholar 

  11. Alam, S., Abbas, S., Nieto, J.: Periodic solutions of a nonautonomous Leslie–Gower predator–prey model with non-linear type prey harvesting on time scales. Differ. Equ. Dyn. Syst. 27, 357–367 (2019)

    Article  MathSciNet  Google Scholar 

  12. Bohner, M., Fan, M., Zhang, J.: Existence of periodic solutions in predator prey and competition dynamic systems. Nonlinear Anal., Real World Appl. 7, 1193–1204 (2006)

    Article  MathSciNet  Google Scholar 

  13. Li, Y., Li, B.: Almost periodic time scales and almost periodic functions on time scales. J. Appl. Math. 8, 730672 (2015)

    MathSciNet  Google Scholar 

  14. Adivar, M.: A new periodic concept for time scales. Math. Slovaca 63, 817–828 (2013)

    Article  MathSciNet  Google Scholar 

  15. Wang, J., Jiang, H., Ma, T., Hu, C.: Delay-dependent dynamical analysis of complex-valued memristive neural networks: continuous-time and discrete-time cases. Neural Netw. 101, 33–46 (2018)

    Article  Google Scholar 

  16. Fang, H., Wang, Y.: Four periodic solutions for a food-limited two-species Gilpin–Ayala type predator–prey system with harvesting terms on time scales. Adv. Differ. Equ. 2013, 278 (2013)

    Article  MathSciNet  Google Scholar 

  17. Liu, Z.: Double periodic solutions for a ratio-dependent predator–prey system with harvesting terms on time scales. Discrete Dyn. Nat. Soc. 12, 243974 (2009)

    Article  MathSciNet  Google Scholar 

  18. Li, Y., Wang, C.: Pseudo almost periodic functions and pseudo almost periodic solutions to dynamic equations on time scales. Adv. Differ. Equ. 2012, 77 (2012)

    Article  MathSciNet  Google Scholar 

  19. Kumar, V., Djemai, M.: Existence, stability and controllability of piecewise impulsive dynamic systems on arbitrary time domain. Appl. Math. Model. 117, 529–548 (2023)

    Article  MathSciNet  Google Scholar 

  20. Davis, J., Gravagne, I., Jackson, B., Marks, I.: Controllability, observability, realizability, and stability of dynamic linear systems. Electron. J. Differ. Equ. 2009, 37 (2009)

    MathSciNet  Google Scholar 

  21. Lupulescu, V., Younus, A.: On controllability and observability for a class of linear impulsive dynamic systems on time scales. Math. Comput. Model. 54, 1300–1310 (2011)

    Article  MathSciNet  Google Scholar 

  22. Duque, C., Uzcátegui, J., Leiva, H.: Approximate controllability of semilinear dynamic equations on time scale. Asian J. Control 21, 2301–2307 (2019)

    Article  MathSciNet  Google Scholar 

  23. Malik, M., Kumar, V.: Controllability of neutral differential equation with impulses on time scales. Differ. Equ. Dyn. Syst. 29, 211–225 (2021)

    Article  MathSciNet  Google Scholar 

  24. Kumar, V., Malik, M.: Stability and controllability results of evolution system with impulsive condition on time scales. Differ. Equ. Appl. 11, 543–561 (2019)

    MathSciNet  Google Scholar 

  25. Kumar, V., Djemai, M., Defoort, M., Malik, M.: Total controllability results for a class of time-varying switched dynamical systems with impulses on time scales. Asian J. Control 24, 474–482 (2022)

    Article  MathSciNet  Google Scholar 

  26. Kumar, V., Malik, M., Djemai, M.: Results on abstract integro hybrid evolution system with impulses on time scales. Nonlinear Anal. Hybrid Syst. 39, 100986 (2021)

    Article  MathSciNet  Google Scholar 

  27. Wang, C., Li, Y., Fei, Y.: Three positive periodic solutions to nonlinear neutral functional differential equations with impulses and parameters on time scales. Math. Comput. Model. 52, 1451–1462 (2010)

    Article  MathSciNet  Google Scholar 

  28. Kaufmann, E., Raffoul, Y.: Periodic solutions for a neutral nonlinear dynamical equation on a time scale. J. Math. Anal. Appl. 319, 315–325 (2006)

    Article  MathSciNet  Google Scholar 

  29. Adivar, M., Bohner, E.A.: Halanay type inequalities on time scales with applications. Nonlinear Anal. 74, 7519–7531 (2011)

    Article  MathSciNet  Google Scholar 

  30. Hadz̆ić, O.: Fixed Point Theory in Topological Vector Spaces, Novi Sad (1984)

    Google Scholar 

  31. Zeidler, E.: Nonlinear Functional Analysis and Its Applications, Fixed-Point Theorems. Springer, Berlin (1993)

    Google Scholar 

  32. Xin, Y., Cheng, Z.: Neutral operator with variable parameter and third-order neutral differential equation. Adv. Differ. Equ. 2014, 273 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The second author would like to thank Huaiyin Normal University.

Funding

This work is supported by the Doctor Training Program of Jiyang College, Zhejiang Agriculture and Forestry University (RC2022D03).

Author information

Authors and Affiliations

Authors

Contributions

B. Du and C. Peng wrote the main manuscript text and X. Li prepared research methods. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Xiaoliang Li or Bo Du.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, C., Li, X. & Du, B. Periodic solution for neutral-type differential equation with piecewise impulses on time scales. Bound Value Probl 2024, 104 (2024). https://doi.org/10.1186/s13661-024-01916-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13661-024-01916-5

Mathematics Subject Classification

Keywords