Skip to main content

Some existence results for a nonlinear q-integral equations via M.N.C and fixed point theorem Petryshyn

Abstract

The paper focuses on establishing sufficient conditions for the existence of the solutions in some functional q-integral equations, particularly in Banach spaces. In this method, the technique of measures of noncompactness and Petryshyn’s fixed point theorem in Banach space is used. We provide some examples of equations, which confirm that our result is applicable to a wide class of integral equations.

1 Introduction

Nonlinear integral equations (N\(\mathbb{IE}\)) can describe many phenomena in nature. Many researchers consider this subject an important branch of mathematics. It helps solve many problems in physics, engineering, and other fields. In fact, the existence of a solution for N\(\mathbb{IE}\) is one of the most important challenges for researchers. Authors have proposed many techniques. But, among them, Darbo’s fixed point theorem (\(F.P.T\)) has become more popular. The concept of measure of noncompactness (M.N.C) plays a basic role in it. The M.N.C method serves as the foundation for almost all methods used for this purpose [19].

In 1910, Jackson introduced the q-integral [10]. Afterward, he published many works on it. There are several applications of q-calculus in physical problems such as molecular problems [11], elementary particle physics, and chemical physics [12, 13]. One can find basic definitions and properties of quantum calculus in the book [14]. Several researchers have analyzed the existence of solutions of q-integral equations [1523]. In [24], the authors discussed the q-integral equation (q-\(\mathbb{IE}\)s)

$$ \mathcal{C}(\zeta ) = \Delta \bigg( \zeta , \mathcal{C} \left ( a ( \zeta ) \right ), \tfrac{ \mathfrak{f}\left ( \zeta , \mathcal{C} \left ( b (\zeta ) \right ) \right ) }{ \Gamma _{q} (\varsigma )} \int _{0}^{\zeta} ( \zeta -qs)^{(\varsigma -1)} \mathfrak{u}(s, \mathcal{C}(s))\, \mathrm{d}_{q} s \bigg), $$
(1)

for \(\zeta \in \Upsilon _{\circ}:=\lbrack 0,1 \rbrack \), where \(\varsigma >1\), \(0 < q < 1\), \(a, b : \Upsilon _{\circ }\to \Upsilon _{\circ }\), \(\mathfrak{f},\mathfrak{u} : \Upsilon _{\circ }\times \mathbb{R}\to \mathbb{R}\) and \(\Delta : \Upsilon _{\circ}\times \mathbb{R}^{2} \to \mathbb{R}\). In fact, they provided sufficient conditions for the existence of a solutions of \(\mathbb{IE}\),

$$ \mathcal{C}(\zeta ) = \Delta \big( \zeta , \mathcal{C} \left ( a ( \zeta ) \right ), \mathfrak{f} \left ( \zeta , \mathcal{C} \left ( b ( \zeta ) \right ) \right ) I_{q}^{\varsigma} \mathfrak{u}(\zeta , \mathcal{C}(\zeta )) \big), $$
(2)

by using the definition of q-fractional integral and a general version of Darbo’s \(F.P.T\) [24]. In [25], the author examined quadratic \(\mathbb{IE}\)s as follows

$$ \mathcal{C}(\zeta ) = \mathfrak{f}(\zeta , \mathcal{C}(\zeta )) + \tfrac{ (\mathcal{A}\mathcal{C}) (\zeta )}{ \Gamma _{q} ( \varsigma ) } \int _{0}^{\zeta} k(\zeta ,s) ( \zeta -qs)^{(\varsigma -1)} ( \mathcal{B} \mathcal{C})(s)\, \mathrm{d}_{q}s, \qquad \zeta \in \Upsilon _{\circ}, $$
(3)

where \(\varsigma >0\), \(0 < q < 1\), \(\mathcal{A}, \mathcal{B} : C(\Upsilon _{\circ}) \to C(\Upsilon _{ \circ})\) and \(k: \Upsilon _{\circ}^{2} \to \mathbb{R}\). They demonstrated that Petryshyn’s theorem is much more useful than Darbo’s theorem. In fact, it dose not require to confirm the operator used, which maps a closed convex subset onto itself [26, 27].

In this paper, we employ the idea of Kazemi and Ezzati [28] and authors of [2932], to study the existence of solution for a class of functional nonlinear q-integral equations (Nq-\(\mathbb{IE}\)s) as follows

$$\begin{aligned} \chi (\zeta ) & = \nabla \bigg( \zeta , \chi \left (a(\zeta ) \right ), \varrho \left (\zeta , \chi \left (c(\zeta ) \right ) \right ), \\ & \quad \int _{0}^{\eta (\zeta )} \tfrac{s^{\beta} (\eta (\zeta )-qs)^{ ( \varsigma -1)} }{ \Gamma _{q}(\varsigma )} p \left ( \zeta ,s,\chi \left (b (s) \right ) \right ) \, \mathrm{d}_{q}s \bigg), \end{aligned}$$
(4)

for \(\zeta \in \Upsilon : = \lbrack 0, \alpha \rbrack \) and \(0< q<1\), where \(\beta >0\), \(\varsigma >1\), \(\chi \in C(\Upsilon )\), \(\nabla \in C(\Upsilon \times \mathbb{R}^{3})\), \(\varrho \in C(\Upsilon \times \mathbb{R})\), \(p\in C(\Upsilon \times [0,\Omega ]\times \mathbb{R})\), and \(a, b, c :\Upsilon \to \Upsilon \), \(\eta : \Upsilon \to \mathbb{R}^{+}\) are continuous functions with \(\eta (\zeta )\leq \Omega \), for each \(\zeta \in \Upsilon \).

The paper is structured as follows. In Sect. 2, we collect some definitions, lemmas and theorems, which are essential to prove our main results. In Sect. 3.1, we establish and prove a new existence theorem by utilized Petryshyn’s \(F.P.T\) for Nq-\(\mathbb{IE}\) (4). In Sect. 3.2, we also give some examples to support our main theorem. Finally, in Sect. 4, we conclude the paper.

2 Auxiliary facts and notations

In this section, we review some definitions and theorems. We do this by stating some extra facts. Let X be a Banach space, \(N_{r_{0}}\) be a ball of radius \(r_{0}\), \(\bar{N_{r_{0}}}\) sphere in X with radius \(r_{0}\), \(\mathcal{B}_{X}\) be a bounded subset of X and \(\operatorname{Fix} ( \mathcal{T})\) be the set of fixed points of \(\mathcal{T}\) in X.

In what follows, we recall some basic facts on quantum calculus, also present extra properties that we will use later. For \(0 < q <1\), we define \([ \chi ]_{q} = \frac{1-q^{\chi}}{ 1 - q}\), \(\chi \in \mathbb{R}\). The q-analogue of the power function \((1-\vartheta )^{k}\) with \(k \in \{0,1,2,\ldots \}\) is

$$ ( 1 - \vartheta )^{(0)}=1, \qquad (1-\vartheta )^{(k)}=\prod _{i=0}^{k-1}(1- \vartheta q^{i}),\quad k\in N,\, \vartheta \in \mathbb{R}. $$
(5)

In fact, by using (5), the q-Gamma function is expressed by

$$ \Gamma _{q} (\varsigma ) = (1 - q)^{1-\varsigma} \prod _{k=0}^{ \infty }\frac{ 1 - q^{k+1} }{1 -q^{ \varsigma + k-1}}. $$
(6)

Note that, \(\Gamma _{q} (\chi +1) = [\chi ]_{q} \Gamma _{q} (\chi )\) [33, Lemma 1]. For any \(m,n>0\),

$$ B_{q}(m,n) = \int _{\Upsilon _{\circ}} \zeta ^{(m-1)}(1-q\zeta )^{( n-1)} \, \mathrm{d}_{q} \zeta , $$
(7)

is called the q-beta function. Also, the q-integral of a function χ defined on the interval ϒ is given by

$$ \int _{0}^{\nu} \chi (\zeta ) \, \mathrm{d}_{q} \zeta = \nu (1-q) \sum _{i=0}^{\infty} \chi (\nu q^{i} ) q^{i}, \qquad \nu \in \Upsilon . $$
(8)

Lemma 2.1

([34])

Let \(m,n>0\), and \(0< q<1\). Then, we have

$$ \int _{0}^{\nu} ( \nu -q\zeta )^{(m-1)}\zeta ^{(n)}\, \mathrm{d}_{q} \zeta =\nu ^{m+n}B_{q} (m,n+1). $$
(9)

Definition 2.2

([35])

Let \(W \subset \mathcal{B}_{X}\), then \(\phi (W) = \inf \big\{ \tau \, :\, \text{there exist a finite number of sets}\ \text{of diameter } \leq \tau \text{ that can cover } W \big\}\), is said to be the Kuratowski M.N.C.

Definition 2.3

([36])

Let \(W \subset \mathcal{B}_{X}\), then \(\pi (W) = \inf \big\{ \tau >0 \, : \, W \text{ has a finite }\tau \text{ net in } X \big\}\), is said to be the Hausdorff M.N.C.

Definition 2.4

([36])

For \(W\subset \mathcal{B}_{X}\), the M.N.C.s ϕ and π fulfill \(\pi (W) \leq \phi (W) \leq 2 \pi (W)\).

For \(h\in C(\Upsilon )\) and \(\tau \geq 0\) denoted by \(\delta (h, \tau )\), the modulus of continuity of the function h, i.e., \(\delta (h,\tau ) = \sup \, \big\{| h(\zeta ) - h(\hat{\zeta})| \, : \, |\zeta -\hat{\zeta}| \leq \tau \big\}\). The uniformly continuous h on ϒ implies that \(\delta (h,\tau ) \to 0\) as \(\tau \to 0\).

Theorem 2.5

([37])

For \(W\subset \mathcal{B}_{X}\), the M.N.C in \(C(\Upsilon )\) is denoted by

$$ \pi (W) = \limsup _{\tau \to 0}\delta ( \zeta ,\tau ), \qquad \zeta \in W. $$
(10)

Theorem 2.6

([38])

Let \(W,Y \subset \mathcal{B}_{X}\) and \(\varsigma \in \mathbb{R}\). Then

  1. 1.

    \(\pi (W\cup Y) = \max \big\{ \pi (W), \pi (Y) \big\}\);

  2. 2.

    \(\pi (W+Y) \leq \pi ( W) + \pi (Y)\) where \(W+Y = \big\{m+u \, : \, m\in W, u \in Y\big\}\);

  3. 3.

    \(\pi ( W )\leq \pi (Y)\), for \(W \subset Y\);

  4. 4.

    \(\pi (\varsigma W) = |\varsigma |\pi (W)\), where \(\varsigma W = \big\{\varsigma m \, : \, m\in W\big\}\);

  5. 5.

    \(\pi ( W )\leq \pi (Y)\), for \(W \subset Y\);

  6. 6.

    \(\pi \left ( \overline{\operatorname{co}}(W) \right ) = \pi ( W )\).

Recall that \(\Lambda \in C(X)\) is called a κ-set contraction if for \(\Lambda \subset \mathcal{B}_{X}\), Λ is bounded and \(\phi (\Lambda K) \leq \kappa \phi (K)\) for all \(0<\kappa <1\). Moreover, if \(\phi (\Lambda K)\leq \phi (K)\), Λ is called condensing map [29, 30].

Theorem 2.7

(Petryshyn’s \(F.P.T\) [38])

Let \(\Lambda :N_{r} \to X\) be a condensing mapping, satisfying the following boundary condition, if \(\Lambda (x) = \kappa x\), for some \(x\in \bar{N_{r}}\), with \(\kappa \leq 1\), then \(\operatorname{Fix}_{ N_{r}}( \Lambda )\neq \varnothing \).

3 Main results

3.1 An existence theorem for q-\(\mathbb{IE}\)s

In this section, we will study the existence of q-\(\mathbb{IE}\)s (4) under the following assumptions:

  1. S1)

    There exist nonnegative constant \(k_{1}\), \(k_{2}\), \(k_{3}\) and \(k_{4}\) with \(k_{1}+ k_{2}k_{4}\leq 1\) s.t.

    $$ |\nabla (\zeta , \zeta _{1},\zeta _{2}, \zeta _{3})-\nabla (\zeta , \hat{\zeta _{1}}, \hat{\zeta _{2}},\hat{\zeta _{3}})| \leq k_{1}| \zeta _{1}-\hat{\zeta _{1}}|+k_{2}|\zeta _{2}-\hat{\zeta _{2}}|+k_{3}| \zeta _{3}-\hat{\zeta _{3}}|, $$
    (11)

    and

    $$ |\varrho (x,y) - \varrho (x,\hat{y})|\leq k_{4}|y - \hat{y}|; $$
    (12)
  2. S2)

    For \(r_{0}\geq 0\), the operator satisfies the following condition

    $$\begin{aligned} \sup \, & \Big\{ |\nabla (\zeta ,x,y,z)| \, : \, \zeta \in \Upsilon , \, x,y\in [ - r_{0}, r_{0}], \, \\ & \quad |z| \leq \tfrac{ \Omega ^{\varsigma + \beta}}{\Gamma _{q}(\varsigma )} L B_{q}( \varsigma , \beta +1) \Big\} {\leq r_{0},} \end{aligned}$$
    (13)

    where \(L = \sup \Big\{ |p(\zeta ,s,z)| \, : \, \zeta \in \Upsilon , \, s \in [0,\Omega ], z\in [ - r_{0}, r_{0}] \Big\}\).

To prove the main results, we first establish the following key lemma.

Lemma 3.1

The following inequality holds:

$$\begin{aligned} \bigg|\int _{0}^{\eta (\zeta )} s^{\beta} & (\eta (\zeta )-qs)^{( \varsigma -1)} p(\zeta ,s,\chi (b(s))) \, \mathrm{d}_{q}s \\ & \quad - \int _{0}^{\eta (\hat{\zeta})} s^{\beta}(\eta (\hat{\zeta}) -qs )^{ (\varsigma -1)} p(\hat{\zeta},s,\chi (b(s))) \, \mathrm{d}_{q}s \bigg| \\ &\leq \hat{\delta}(p,\tau ) \Omega ^{ \varsigma + \beta} B_{q} ( \varsigma , \beta +1) +\, 2 L B_{q} ( \varsigma ,\beta +1) \hat{\delta}(\eta ,\tau )^{\varsigma +\beta}, \end{aligned}$$
(14)

where

$$\begin{aligned} \hat{\delta}(p,\tau ) & = \sup \Big\{ | p( \zeta ,x,y) - p( \hat{\zeta},x,y)| \, : \, |\zeta -\hat{\zeta}|\leq \tau , \, \\ & \quad x \in [0,\Omega ], \, y\in [ - r_{0}, r_{0}]\Big\} , \\ \hat{\delta}(\eta ,\tau ) & = \sup \Big\{ |\eta (\zeta )-\eta ( \hat{\zeta})| \, :\, \zeta , \hat{\zeta}\in \Upsilon , \, |\zeta - \hat{\zeta}|\leq \tau \Big\} . \end{aligned}$$
(15)

Proof

We have

$$\begin{aligned} \bigg|\int _{0}^{\eta (\zeta )} & s^{\beta}(\eta (\zeta )- qs)^{ ( \varsigma -1)} p(\zeta ,s,\chi (b(s)))\, \mathrm{d}_{q}s \\ & \quad - \int _{0}^{\eta (\hat{\zeta})}s^{\beta} ( \eta (\hat{\zeta})-qs)^{( \varsigma -1)} p(\hat{\zeta},s, \chi (b(s))) \, \mathrm{d}_{q}s\bigg| \\ &\leq \bigg| \int _{0}^{ \eta (\zeta )} s^{\beta}(\eta (\zeta )-qs)^{( \varsigma -1)} p(\zeta ,s, \chi (b(s))) \, \mathrm{d}_{q}s \\ & \quad - \int _{0}^{\eta (\zeta )} s^{ \beta}(\eta (\zeta )-qs)^{ ( \varsigma -1)} p ( \hat{\zeta},s, \chi (b(s)) )\, \mathrm{d}_{q}s \bigg| \\ &\quad + \bigg| \int _{0}^{ \eta (\zeta )} s^{\beta}(\eta (\zeta )-qs)^{ ( \varsigma -1)} p ( \hat{\zeta}, s, \chi (b(s)))\, \mathrm{d}_{q}s \\ & \quad - \int _{0}^{\eta (\hat{\zeta})} s^{ \beta}(\eta (\zeta ) - qs)^{( \varsigma -1)} p (\hat{\zeta},s, \chi (b(s))) \, \mathrm{d}_{q} s \bigg| \\ &\quad + \bigg| \int _{0}^{\eta ( \hat{\zeta})} s^{\beta}(\eta ( \zeta ) - qs)^{(\varsigma -1)} p(\hat{\zeta},s, \chi (b(s)))\, \mathrm{d}_{q}s \\ & \quad - \int _{0}^{\eta (\hat{\zeta})} s^{\beta}(\eta (\hat{\zeta})-qs)^{ ( \varsigma -1)} p ( \hat{\zeta},s, \chi (b(s)))\, \mathrm{d}_{q}s \bigg| \\ &\leq \int _{0}^{\eta (\zeta )} s^{\beta}(\eta (\zeta )-qs)^{( \varsigma -1)} {\Big| p(\zeta ,s,\chi (b(s)))- p( \hat{\zeta},s, \chi (b(s)))\Big|\, \mathrm{d}_{q}s} \\ &\quad + \int _{ \eta (\hat{ \zeta})}^{ \eta (\zeta )} s^{\beta} ( \eta (\zeta )-qs)^{(\varsigma -1)} \Big| p(\hat{\zeta},s, \chi (b(s))) \Big| \, \mathrm{d}_{q}s \\ & \quad + \int _{0}^{\eta (\hat{\zeta})} s^{\beta} \Big[ (\eta ( \hat{\zeta})-qs)^{(\varsigma -1)}-(\eta (\zeta )-qs)^{(\varsigma -1)} \Big] \, \left | p( \hat{\zeta},s, \chi (b(s))) \right |\, \mathrm{d}_{q}s \\ &\leq \hat{\delta}(p,\tau ) \int _{0}^{\eta (\zeta )} s^{\beta}(\eta ( \zeta ) - qs)^{(\varsigma -1)} \, \mathrm{d}_{q}s \\ & \quad + L \bigg[ \int _{0}^{\eta (\hat{\zeta})} s^{\beta}(\eta ( \hat{\zeta})-qs)^{(\varsigma -1)} \, \mathrm{d}_{q}s - \int _{0}^{ \eta (\hat{\zeta})} s^{\beta}(\eta (\zeta )-qs)^{(\varsigma -1)}\, \mathrm{d}_{q}s \\ & \quad + \int _{0}^{\eta (\zeta )} s^{\beta}( \eta (\zeta ) -qs)^{ ( \varsigma -1)}\, \mathrm{d}_{q}s - \int _{0}^{\eta (\hat{\zeta})} s^{ \beta}( \eta (\zeta ) -qs)^{ ( \varsigma -1)}\, \mathrm{d}_{q}s\bigg] \\ & = \hat{\delta}(p,\tau ) (\eta (\zeta ))^{\varsigma +\beta} B_{q}( \varsigma ,\beta +1) +L \Big[ B_{q}(\varsigma ,\beta +1) (\eta ( \hat{\zeta}))^{\varsigma +\beta} \\ & \quad + B_{q}(\varsigma , \beta +1) (\eta (\zeta ))^{ \varsigma + \beta} + 2 (\eta (\zeta )-\eta (\hat{\zeta}))^{\varsigma +\beta} \Big] \\ &\leq B_{q}(\varsigma ,\beta +1) \Big[ \hat{\delta}(p,\tau ) (\eta ( \zeta ))^{\varsigma +\beta} + 2L (\eta (\zeta ) - \eta (\hat{ \zeta}))^{ \varsigma +\beta} \Big] \\ &\leq B_{q}(\varsigma ,\beta +1) \Big[ \hat{\delta}(p,\tau ) \Omega ^{ \varsigma +\beta} + 2L (\hat{\delta}( \eta ,\tau ))^{\varsigma + \beta} \Big]. \end{aligned}$$

This complete the proof. □

Theorem 3.2

Under the tacit assumptions (S1)(S2), the q-\(\mathbb{IE}\)(4) has at least one solution in \(C(\Upsilon )\).

Proof

Let

$$ \left \{ \textstyle\begin{array}{l} \Sigma : N_{\tau} \to X, \\ \displaystyle (\Sigma \chi )(\zeta )= \nabla \bigg( \zeta , a(\chi ( \zeta )), \varrho ( \zeta , c(\chi (\zeta ))), \\ \displaystyle \quad \quad \quad \int _{0}^{ \eta (\zeta )} \tfrac{ s^{\beta}(\eta ( \zeta )-qs)^{ ( \varsigma -1)}}{ \Gamma _{q}( \varsigma )} p(\zeta , s, \chi (b(s)))\, \mathrm{d}_{ q}s \bigg). \end{array}\displaystyle \right . $$
(16)

We divided the proof into several steps.

Step 1. The operator Σ is continuous on the ball \(N_{r_{0}}\). Consider \(\tau >0\) and any \(\chi , \hat{\chi}\in N_{r_{0}}\) s.t. \(\|\chi - \hat{\chi}\|<\tau \). We have

$$\begin{aligned} |(\Sigma \chi )(\zeta ) & - (\Sigma \hat{\chi})(\zeta )| \\ & = \bigg| \nabla \bigg( \zeta , \chi ( a ( \zeta )), \varrho (\zeta , \chi (c(\zeta ))), \\ & \quad \int _{0}^{\eta (\zeta )} \tfrac{s^{\beta}(\eta (\zeta )-qs)^{ (\varsigma -1)}}{ \Gamma _{q}(\varsigma )} p(\zeta ,s,\chi (b(s))) \, \mathrm{d}_{q}s \bigg) \\ & \quad -\nabla \bigg( \zeta , \hat{\chi}(a(\zeta )), \varrho (\zeta , \hat{\chi}(c(\zeta ))), \\ & \quad \int _{0}^{\eta (\zeta )} \tfrac{s^{\beta}(\eta (\zeta )-qs)^{ (\varsigma -1)}}{ \Gamma _{q}( \varsigma )} p(\zeta ,s, \hat{\chi}(b(s)))\, \mathrm{d}_{q}s \bigg)\bigg| \\ & \leq \bigg| \nabla \bigg(\zeta , \chi (a( \zeta )), \varrho (\zeta , \chi (c( \zeta ))), \\ & \quad \int _{0}^{\eta (\zeta )} \tfrac{s^{\beta} ( \eta (\zeta )-qs)^{ ( \varsigma -1)}}{\Gamma _{q}( \varsigma )} p(\zeta ,s, \chi (b(s))) \, \mathrm{d}_{q}s\bigg) \\ & \quad - \nabla \bigg( \zeta , \hat{\chi}(a(\zeta )), \varrho ( \zeta , \chi (c( \zeta ))), \\ & \quad \int _{0}^{\eta (\zeta )} \tfrac{s^{\beta}(\eta (\zeta )-qs)^{(\varsigma -1)}}{\Gamma _{q}( \varsigma )} p(\zeta ,s,\chi (b(s)) ) \, \mathrm{d}_{q}s\bigg)\bigg| \\ & \quad + \bigg| \nabla \bigg(\zeta , \hat{\chi}(a( \zeta )), \varrho (\zeta ,\chi (c(\zeta ))), \\ & \quad \int _{0}^{\eta (\zeta )} \tfrac{s^{\beta} (\eta (\zeta )-qs)^{(\varsigma -1)}}{\Gamma _{q}(\varsigma )} p(\zeta ,s, \chi (b(s))) \, \mathrm{d}_{q}s \bigg) \\ & \quad - \nabla \bigg(\zeta , \hat{\chi}( a( \zeta )), \varrho ( \zeta , \hat{\chi}(c( \zeta ))), \\ & \quad \int _{0}^{\eta (\zeta )} \tfrac{s^{\beta}(\eta (\zeta )-qs)^{ ( \varsigma -1)}}{\Gamma _{q}(\varsigma )} p (\zeta ,s, \chi (b(s))) \, \mathrm{d}_{q}s\bigg) \bigg| \\ &\quad + \bigg| \nabla \bigg(\zeta , \hat{\chi}(a(\zeta )), \varrho ( \zeta , \hat{\chi} ( c (\zeta ))), \\ & \quad \int _{0}^{\eta (\zeta )} \tfrac{s^{\beta}(\eta (\zeta )-qs)^{ ( \varsigma -1)}}{ \Gamma _{q} ( \varsigma )} p(\zeta ,s, \chi (b(s)) ) \, \mathrm{d}_{q}s\bigg) \\ & \quad - \nabla \bigg( \zeta , a( \hat{\chi}( \zeta )), \varrho ( \zeta , \hat{\chi}(c(\zeta ))), \\ & \quad \int _{0}^{\eta (\zeta )} \tfrac{s^{\beta}(\eta (\zeta )-qs)^{(\varsigma -1)}}{\Gamma _{q}(\varsigma )} p(\zeta ,s, \hat{\chi}(b(s))) \, \mathrm{d}_{q}s\bigg)\bigg| \\ & \leq k_{1} \left | \chi ( a ( \zeta ))- \hat{\chi}( a( \zeta )) \right | + k_{2} \left | \varrho (\zeta , \chi ( c(\zeta )))- \varrho ( \zeta , \hat{\chi}( c( \zeta )))\right | \\ & \quad + k_{3} \int _{0}^{\eta (\zeta )} \tfrac{s^{\beta}(\eta (\zeta )-qs)^{(\varsigma -1)} }{\Gamma _{q}( \varsigma )} \left | p ( \zeta ,s, \chi (b(s))) - p ( \zeta ,s, \hat{\chi}(b(s))) \right |\, \mathrm{d}_{q}s \\ & \leq k_{1} \left | \chi (a(\zeta )) - \hat{\chi}(a( \zeta ))\right | + k_{2}k_{4} \left | \chi ( c(\zeta )) - \hat{\chi}(c(\zeta )) \right | \\ & \quad + \tfrac{k_{3}}{ \Gamma _{q}( \varsigma )}\delta (p, \tau ) \eta (\zeta )^{(\varsigma +\beta )} B_{q} (\varsigma , \beta +1) \\ & \leq ( k_{1}+ k_{2}k_{4} ) \|\chi - \hat{\chi}\| + \tfrac{k_{3}}{\Gamma _{q} (\varsigma )} \delta (p,\tau ) \Omega ^{ \varsigma +\beta} B_{q}(\varsigma ,\beta +1), \end{aligned}$$

where

$$\begin{aligned} \delta (p,\tau ) & = \sup \Big\{ |p(\zeta ,x,y) - p(\zeta ,x,\hat{y})| \, : \, \zeta \in \Upsilon ,\, x\in [0,\Omega ], \, \\ & \quad y,\hat{y} \in [-r_{0},r_{0}], \, |y - \hat{y}|\leq \tau \Big\} . \end{aligned}$$
(17)

The uniformly continuity of \(p(\cdot ,\cdot , \cdot )\) on the subset \(\Upsilon \times [0,\Omega ]\times \mathbb{R}\) implies that \(\lim _{\tau \to 0}\delta (p,\tau )=0\). This shows that the operator Σ is continuous on \(N_{\tau}\).

Step 2. The condensation condition operator Σ. Let \(E_{\tau}\in \mathcal{B}_{X}\) and \(\zeta ,\hat{\zeta}\in \Upsilon \) s.t. \(\zeta \leq \hat{\zeta}\) and \(\zeta -\hat{\zeta}\leq \tau \) for \(\tau >0\), the Lemma 3.1 implies that

$$\begin{aligned} |(\Sigma \chi ) (\zeta ) & -(\Sigma \chi )( \hat{\zeta})| \\ & = \bigg| \nabla \bigg( \zeta , a(\chi (\zeta )), \varrho (\zeta , \chi (c( \zeta ))), \\ & \quad \int _{0}^{\eta (\zeta )} \tfrac{s^{\beta}(\eta (\zeta )-qs)^{(\varsigma -1)}}{\Gamma _{q}(\varsigma )} p(\zeta ,s, \chi (b( s))) \, \mathrm{d}_{q}s\bigg) \\ & \quad - \nabla \bigg(\hat{\zeta}, f( \hat{\zeta}, \chi (a( \hat{\zeta})) ), \varrho (\zeta , \chi (c(\hat{\zeta}))), \\ & \quad \int _{0}^{\eta ( \hat{\zeta})} \tfrac{s^{\beta}(\eta ( \hat{\zeta})-qs)^{ (\varsigma -1)}}{ \Gamma _{q}( \varsigma )} p(\hat{\zeta},s, \chi (b(s))) \, \mathrm{d}_{q}s \bigg)\bigg| \\ & \leq \bigg| \nabla \bigg(\zeta , \chi (a( \zeta )),\varrho (\zeta , \chi (c( \zeta ))), \\ & \quad \int _{0}^{ \eta (\zeta )} \tfrac{ s^{\beta} ( \eta (\zeta )-qs)^{(\varsigma -1)} }{\Gamma _{q}(\varsigma )} p(\zeta ,s, \chi (b(s))) \, \mathrm{d}_{q}s \bigg) \\ & \quad - \nabla \bigg(\zeta , \chi (a( \zeta )),\varrho (\zeta , \chi (c( \zeta ))), \\ & \quad \int _{0}^{\eta (\hat{\zeta})} \tfrac{s^{\beta}(\eta (\hat{\zeta})-qs)^{( \varsigma -1)}}{ \Gamma _{q}( \varsigma )} p( \hat{\zeta},s, \chi (b(s))) \, \mathrm{d}_{q}s\bigg)\bigg| \\ & \quad + \bigg|\nabla \bigg( \zeta , \chi (a(\zeta )),\varrho ( \zeta , \chi (c( \zeta ))), \\ & \quad \int _{0}^{\eta (\hat{\zeta})} \tfrac{s^{\beta}( \eta (\hat{\zeta})-qs)^{ ( \varsigma -1)}}{\Gamma _{q}(\varsigma )} p( \hat{\zeta},s, \chi (b(s))) \, \mathrm{d}_{q}s\bigg) \\ & \quad - \nabla \bigg(\zeta , \chi (a( \zeta )),\varrho (\hat{\zeta}, \chi (c(\hat{\zeta}))), \\ & \quad \int _{0}^{\eta (\hat{\zeta})} \tfrac{ s^{\beta} (\eta (\hat{ \zeta})-qs)^{ (\varsigma -1)} }{ \Gamma _{q}(\varsigma )} p(\hat{\zeta},s , \chi (b(s)))\, \mathrm{d}_{q}s \bigg)\bigg| \\ & \quad + \bigg|\nabla \bigg(\zeta , \chi (a( \hat{\zeta}))), \varrho (\hat{\zeta}, \chi (c( \hat{\zeta}))), \\ & \quad \int _{0}^{ \eta ( \hat{\zeta})} \tfrac{ s^{\beta}(\eta (\hat{\zeta})-qs)^{ (\varsigma -1)} }{\Gamma _{q}(\varsigma )} p(\hat{\zeta},s, \chi (b(s)))\, \mathrm{d}_{q} s \bigg)\bigg| \\ & \quad - \nabla \bigg(\zeta , \chi (a( \hat{\zeta}))), \varrho ( \hat{\zeta}, \chi ( c( \hat{\zeta}))), \\ & \quad \int _{0}^{\eta (\hat{\zeta})} \tfrac{s^{\beta}( \eta (\hat{\zeta})-qs)^{ ( \varsigma -1)} }{ \Gamma _{q} ( \varsigma )} p (\hat{\zeta},s, \chi (b(s))) \, \mathrm{d}_{q}s \bigg) \bigg| \\ &\quad + \bigg|\nabla \bigg(\zeta , \chi ( a (\hat{\zeta})), \varrho ( \hat{\zeta}, \chi ( c( \hat{\zeta}))), \\ & \quad \int _{0}^{\eta (\hat{\zeta})} \tfrac{s^{\beta}( \eta (\hat{\zeta})-qs)^{ ( \varsigma -1)} }{ \Gamma _{q}( \varsigma )} p( \hat{\zeta},s, \chi (b( s))) \, \mathrm{d}_{q}s \bigg) \\ &\quad - \nabla \bigg(\hat{\zeta}, \chi ( a ( \hat{\zeta})), \varrho ( \hat{\zeta}, \chi ( c( \hat{\zeta}))), \\ & \quad \int _{0}^{\eta (\hat{\zeta})} \tfrac{s^{\beta}(\eta (\hat{\zeta})-qs)^{(\varsigma -1)} }{\Gamma _{q} ( \varsigma )} p(\hat{\zeta},s, \chi (b( s))) \, \mathrm{d}_{q}s\bigg)\bigg| \\ &\leq \tfrac{k_{3}}{\Gamma _{q}(\varsigma )} \bigg|\int _{0}^{\eta ( \zeta )} s^{\beta}(\eta (\zeta )-qs)^{(\varsigma -1)} p(\zeta ,s, \chi (b( s))) \, \mathrm{d}_{q}s \\ & \quad - \int _{0}^{ \eta (\hat{\zeta})} s^{\beta}(\eta ( \hat{ \zeta})-qs)^{ (\varsigma -1)} p(\hat{\zeta},s, \chi (b( s))) \, \mathrm{d}_{q}s \bigg| \\ &\quad + k_{2} \left |\varrho (\zeta , \chi (c( \zeta )) - \varrho ( \zeta , \chi (c( \hat{t}))\right | \\ & \quad + k_{2}\left |\varrho (\zeta , \chi (c( \zeta ))-\varrho ( \hat{\zeta}, \chi (c(\hat{\zeta})))\right | \\ & \quad + k_{1} \left | \chi (a( \zeta )) - \chi (a( \hat{\zeta})) \right | +\hat{\delta}(\nabla ,\tau ) \\ &\leq \tfrac{k_{3}\hat{\delta} (p,\tau )}{ \Gamma _{q}(\varsigma )} \Omega ^{\varsigma +\beta} B_{q}( \varsigma ,\beta +1) + \tfrac{2k_{3}L}{\Gamma _{q}(\varsigma )} B_{q}( \varsigma , \beta +1) \hat{\delta}(\eta ,\tau )^{\beta +\varsigma} \\ &\quad + k_{2} k_{4} \left | \chi (c(\zeta )) - \chi (c( \hat{\zeta}) \right | + k_{2}\hat{\delta}(\varrho ,\tau ) \\ & \quad +k_{1} \left | \chi (a( \zeta )) - \chi (a( \hat{\zeta})) \right | +\hat{\delta}(\nabla ,\tau ), \end{aligned}$$

where

$$\begin{aligned} \hat{\delta}(\nabla ,\tau )& =\sup \Big\{ |\nabla (\zeta ,x,y,z)- \nabla (\hat{\zeta},x,y,z)| \, :\, |\zeta -\hat{\zeta}| \leq \tau , \, \\ & \quad x,y\in [-r_{0},r_{0}], \, z\in [-\Omega L,\Omega L] \Big\} , \\ \hat{\delta}(\varrho ,\tau )& = \sup \Big\{ |\varrho (\zeta ,x)- \varrho (\hat{\zeta},x)| \, : \, |\zeta -\hat{\zeta}| \leq \tau , x \in [-r_{0},r_{0}] \Big\} . \end{aligned}$$
(18)

So,

$$\begin{aligned} \delta (\Sigma \chi ,\tau )& \leq \tfrac{k_{3}\hat{\delta}(p,\tau )}{\Gamma _{q}(\varsigma )}\Omega ^{ \varsigma +\beta}B_{q}(\varsigma ,\beta +1)+ \tfrac{2k_{3}L}{\Gamma _{q}(\varsigma ) } B_{q} (\varsigma ,\beta +1) \hat{\delta}(\eta ,\tau )^{\beta +\varsigma} \\ & \quad +k_{1}\delta (\chi ,\delta ( a (\zeta ),\tau ))+k_{2}k_{4} \delta (\chi ,\delta ( c( \zeta ),\tau ))+\hat{\delta}(\nabla ,\tau ). \end{aligned}$$
(19)

Now, taking limit of (19) equation as \(\tau \to 0\) would give easily following inequality

$$ \delta (\Sigma \chi ,\tau )\leq (k_{1}+k_{2}k_{4})\delta (\chi ,\tau ), $$
(20)

this provide \(\pi (\Sigma E_{\tau})\leq (k_{1}+k_{2}k_{4})\pi (E_{\tau})\). Therefore, is condensing map.

Step 3. The boundary condition. Suppose that \(z\in \bar{N_{r_{0}}}\). If \(\|\Sigma z\|=k\|z\|=kr_{0}\), the condition (S2) implies that

$$\begin{aligned} |(\Sigma z)(\zeta )| & = \bigg|\nabla \bigg( \zeta , a(\chi (\zeta )), \varrho (\zeta ,\chi (c(\zeta ))), \\ & \quad \int _{0}^{\eta (\zeta )} \tfrac{ s^{\beta} (\eta (\zeta )-qs)^{ ( \varsigma -1)} }{\Gamma _{q}(\varsigma )} p(\zeta ,s, \chi (b(s))) \, \mathrm{d}_{q}s \bigg)\bigg|\leq r_{0}, \qquad \forall \zeta \in \Upsilon , \end{aligned}$$
(21)

hence \(\|\Sigma z\|\leq r_{0}\), i.e., \(k\leq 1\). This complete the proof. □

Corollary 3.1

Consider the features of Nq-\(\mathbb{IE}\) (4) with the following form

$$ \chi (\zeta ) = \nabla \bigg( \zeta ,\chi (a(\zeta )), \tfrac{ \varrho (\zeta , \chi (c(\zeta )))}{ \Gamma _{q}( \varsigma )} \int _{0}^{\zeta}s^{\beta}(\zeta -qs)^{ (\varsigma -1)} p(\zeta ,s, \chi (b(s)))\, \mathrm{d}_{q}s \bigg), $$
(22)

for \(\zeta \in \Upsilon \), \(0< q<1\) and \(\eta (\zeta ) =\zeta \). It is obvious that \(\chi \in C(\Upsilon )\), \(\nabla \in C(\Upsilon \times \mathbb{R}^{)}\), \(a, b, c :\Upsilon \to \Upsilon \), \(\varrho \in C(\Upsilon \times \mathbb{R})\), \(p(\zeta ,s,x)\in C(\Upsilon ^{2}\times \mathbb{R})\), and \(\eta \in C(\Upsilon , \mathbb{R}^{+})\) with \(\eta (\zeta )\leq \Omega \) for \(\zeta \in \Upsilon \). Now, assume that the following conditions are met:

  1. (P1)

    there exist positive constant \(l_{i}\), \(i = 1,\ldots ,5\) s.t.

    $$ |\nabla (\zeta ,x,y)-\nabla (\zeta ,\bar{x},\bar{y})|\leq l_{1} | x - \bar{x}| + l_{2} |y - \bar{y}|,\qquad |\nabla (\zeta ,0,0)|\leq l_{3}, $$
    (23)

    and

    $$ |\varrho (\zeta ,x)-\varrho (\zeta ,\bar{x})|\leq l_{4} |x-\bar{x}|, \qquad |\varrho (\zeta ,0)|\leq l_{5}; $$
    (24)
  2. (P2)

    \(\exists c_{1} , c_{2} >0\) s.t.

    $$ |p(\zeta ,s,x)|\leq c_{1} + c_{2} |x|,\qquad \forall \zeta ,s\in \Upsilon , \, x\in \mathbb{R}. $$
    (25)

Then Nq-\(\mathbb{IE}\) (22) has at least one solution in \(C(\Upsilon )\), whenever

$$ l_{1} + \tfrac{1}{ \Gamma _{q}(\varsigma )}l_{2} (l_{4} +l_{5}) \, \Omega ^{\varsigma +\beta} B_{q} ( \varsigma , \beta +1) (c_{1}+c_{2}){ < 1.} $$
(26)

Proof

One can easily check, (P1) implied that (S1) in theorem 3.2. Now, we prove that (S2) holds. Let \(r_{0}>0\), \(\|\chi \|\leq r_{0}\). We obtain

$$\begin{aligned} |\chi (\zeta )| &= \bigg|\nabla \bigg( \zeta , \chi (a(\zeta )), \tfrac{\varrho (\zeta , \chi (c(\zeta )))}{\Gamma _{q}(\varsigma )} \int _{0}^{\eta (\zeta )} s^{\beta}(\zeta -qs)^{(\varsigma -1)} p( \zeta ,s, \chi (b(s)))\, \mathrm{d}_{q}s\bigg) \bigg| \\ &\leq \bigg|\nabla \bigg(\zeta , \chi (a(\zeta )), \tfrac{\varrho (\zeta , \chi (c( \zeta )))}{\Gamma _{q}(\varsigma )} \int _{0}^{ \eta (\zeta )} s^{\beta} ( \zeta -qs)^{(\varsigma -1)} p( \zeta ,s, \chi (b(s)))\, \mathrm{d}_{q}s\bigg) \\ & \quad - \nabla (\zeta ,0,0)\bigg|+ \big|\nabla (\zeta ,0,0)\big| \\ & \leq l_{1} \|\chi (a(\zeta ))\| \\ & \quad +l_{2}\bigg| \tfrac{\varrho (\zeta ,\chi (c(\zeta )))}{\Gamma _{q}(\varsigma )} \int _{0}^{\eta (\zeta )} s^{\beta}(\zeta -qs)^{(\varsigma -1)} p( \zeta ,s, \chi (b(s)))\, \mathrm{d}_{q}s\bigg| +l_{3} \\ &\leq l_{1} \|\chi (a(\zeta ))\| + \tfrac{l_{2}}{\Gamma _{q}(\varsigma )} \left ( |\varrho (\zeta , \chi (c(\zeta ))) - \varrho (\zeta ,0)| + |\varrho (\zeta ,0)| \right ) \\ & \quad \cdot \bigg| \int _{0}^{\eta (\zeta )} s^{\beta}( \zeta -qs)^{( \varsigma -1)} p(\zeta ,s, \chi (b(s))) \, \mathrm{d}_{q}s\bigg| \\ &\leq l_{1} \|\chi (a(\zeta ))\|+ \tfrac{l_{2}}{ \Gamma _{q}(\varsigma )} \Big(l_{4} \|\chi (c(\zeta )) \|+l_{5} \Big) \\ & \quad \cdot \eta (\zeta )^{\varsigma +\beta} B_{q} ( \varsigma , \beta +1)\Big( c_{1}+c_{2}\|c(\chi (\zeta ))\| \Big). \end{aligned}$$

Hence, \(r_{0}\) in (S2) is real number that satisfies

$$ l_{1} r_{0} + \tfrac{1}{\Gamma _{q} ( \varsigma )}l_{2} \left ( l_{4} r_{0}+l_{5} \right ) \Omega ^{ \varsigma +\beta}B_{q}(\varsigma , \beta +1) \left (c_{1}+c_{2} r_{0} \right )\leq r_{o}. $$
(27)

Now, we define the continuous function \(\Xi : \Upsilon _{\circ }\to \mathbb{R}\) as follows

$$ \Xi (\tau )=l_{1} r_{0} + \tfrac{1}{\Gamma _{q}(\varsigma )}l_{2} \big(l_{4}r_{0}+l_{5}\big) \Omega ^{\varsigma +\beta}B_{q}(\varsigma , \beta +1)\big(c_{1}+c_{2} r_{0}\big)-r_{0}. $$
(28)

The property (26) implies that \(\Xi (0)\cdot \Xi (1)<0\), then \(\exists r_{0} \in (0,1)\) s.t. \(\Xi (r_{0})=0\). □

Remark 3.1

Jleli et al. in [24], introduced a functional q-\(\mathbb{IE}\)s (1) that includes the assumptions (A1)–(A9). They proved the functional q-integral equation has at least one solution in \(C(\Upsilon _{\circ})\). By utilization of suggestion technique in Theorem 3.2 and Corollary 3.1, one can achieve the desired result with the least conditions compared to Jleli’s article [24].

Corollary 3.2

Assume that

$$\begin{aligned} \chi (\zeta ) & = f (\zeta ,\chi (a(\zeta ))) + \varphi \bigg( \zeta , \varrho (\zeta , \chi (c(\zeta ))), \\ & \quad \int _{0}^{\eta (\zeta )} \tfrac{s^{\beta}(\eta (\zeta )-qs)^{(\varsigma -1)}}{\Gamma _{q}( \varsigma )} p(\zeta ,s, \chi (b(s))) \, \mathrm{d}_{q}s\bigg), \end{aligned}$$
(29)

for \(\zeta \in \Upsilon \), where \(\chi \in C(\Upsilon )\), \(\varphi \in C(\Upsilon \times \mathbb{R}^{2})\), \(f, \varrho \in C(\Upsilon \times \mathbb{R})\), \(p\in C(\Upsilon \times [0,\Omega ]\times \mathbb{R})\), \(a, b, c :\Upsilon \to \Upsilon \), \(\eta : \Upsilon \to \mathbb{R}^{+}\) are continuous functions with \(\eta (\zeta )\leq \Omega \) for \(\zeta \in \Upsilon \) and let

  1. (I)

    There exist nonnegative constant \(k_{1}\), \(k_{2}\), \(k_{3}\) and \(k_{4}\) with \(k_{1}k_{3}+k_{4}\leq 1\) s.t.

    $$\begin{aligned}& |\varphi (\zeta , \zeta _{1}, \zeta _{2})-\varphi (\zeta , \hat{\zeta _{1}},\hat{\zeta _{2}})|\leq k_{1}| \zeta _{1}- \hat{\zeta _{1}}|+k_{2}|\zeta _{2}-\hat{\zeta _{2}}|, \end{aligned}$$
    (30)
    $$\begin{aligned}& |\varrho (x,y)-\varrho (x,\hat{y})|\leq k_{3}|y-\hat{y}|,\qquad |f(s, y) - f(s, \bar{y})| \leq k_{4}|y - \bar{y}|; \end{aligned}$$
    (31)
  2. (II)

    For \(r_{0}\geq 0\), the operator φ satisfies the following condition

    $$ \sup \Big\{ |\varphi (\zeta ,y,z)| \, : \, \zeta \in \Upsilon , \, y \in [-r_{0},r_{0}],\, |z| \leq \tfrac{\Omega ^{\varsigma +\beta}}{\Gamma _{q}(\varsigma )}\,L\, B_{q}( \varsigma ,\beta +1) \Big\} \leq r_{0}, $$
    (32)

    where L is defined by assumptions (S2).

Then Nq-\(\mathbb{IE}\) (29) has at least one solution in \(C( \Upsilon )\).

Proof

The proof is done similarly to the previous Corollary 3.1. □

3.2 Illustrative examples

In this section, based on the explained approach, we incline to present some examples by using Maple software to validate Theorem 3.2.

Example 3.1

Consider the following Nq-\(\mathbb{IE}\)

$$\begin{aligned} \chi (\zeta ) & = \tfrac{ \left | \zeta \right | e^{ - \zeta ^{2}} }{ 10 \left ( \sqrt{5} + \left | \zeta \right | \right ) } \tan ^{-1}\left ( \chi \left ( \tfrac{\sqrt{3}}{4} \zeta \right ) \right ) + \tfrac{ 1 + \zeta ^{3} }{ \sqrt{2}\left (3 + 4 \zeta ^{2} \right ) } \sin \left ( \chi \left (\tfrac{2\zeta}{9}\right ) \right ) \\ & \quad + \int _{0}^{ \sqrt{\zeta}} s^{ \ln (10)/3} \tfrac{\left ( \sqrt{\zeta} - qs \right )^{ \left (1/2 \right )} }{ \Gamma _{q} \left ( 3/2 \right ) } \tfrac{(\zeta +1)\chi \left ( s/\sqrt{5} \right )}{2 +s^{2}} \, \mathrm{d}_{q}s, \end{aligned}$$
(33)

for \(\zeta \in \Upsilon \), \(\alpha =1\), and \(q\in \{ \frac{1}{3}, \frac{1}{2}, \frac{4}{5} \} \subseteq (0,1)\). Clearly, \(\beta = \frac{1}{ 3} \ln (10)>0\) and \(\varsigma =\frac{3}{2} >1\). According to the definition of the problem (4), we take \(a(z) = \tfrac{\sqrt{3}}{4} z\),

$$\begin{aligned} & p(\zeta , z, b(z)) = \tfrac{(\zeta +1) \chi (b(z))}{2 + z^{2} }, \qquad b(z) = \tfrac{\sqrt{5}}{5}z, \\ &\varrho (\zeta , \chi (c(z)))= \tfrac{ 1 + \zeta ^{3} }{ \sqrt{2}\left (3 + 4 \zeta ^{2} \right ) } \sin \left ( \chi (c(z) \right ),\qquad c(z)= \tfrac{2}{9}z, \end{aligned}$$
(34)

and \(\eta (z)=\sqrt{z}\). It is easy to examine that \(\varrho \in C(\Upsilon \times \mathbb{R})\), \(p\in C(\Upsilon \times [0,\Omega ]\times \mathbb{R})\), \(\Omega =1\), \(a, b, c \in C(\Upsilon , \Upsilon )\), and \(\eta \in C(\Upsilon , \mathbb{R}^{+})\) with \(\eta (\zeta )\leq \Omega \), for each \(\zeta \in \Upsilon \). Thus, for \(\mathfrak{u}_{i}\), \(\hat{\mathfrak{u}}_{i}\), \(i=1,2,3\) and \(\zeta \in \Upsilon \), by using Lemma 3.1 and Eq. (13), we have

$$\begin{aligned} |\nabla (\zeta , \mathfrak{u}_{1}, \mathfrak{u}_{2}, \mathfrak{u}_{3}) & - \nabla (\zeta , \hat{\mathfrak{u}}_{1}, \hat{\mathfrak{u}}_{2}, \hat{\mathfrak{u}}_{3})| \\ & = \bigg| \tfrac{ \left | \zeta \right | e^{-\zeta ^{2}} }{ 10 \left ( \sqrt{5} + \left | \mathfrak{u}_{1} \right | \right ) } \tan ^{-1}\left ( \mathfrak{u}_{1} \right ) + \tfrac{ 1 + \zeta ^{3}}{ \sqrt{2}\left (3 + 4 \zeta ^{2} \right ) } \sin \left ( \mathfrak{u}_{2} \right ) \\ & \quad + \int _{0}^{ \sqrt{\zeta}} s^{ \ln (10)/3} \tfrac{\left ( \sqrt{\zeta} - qs \right )^{ \left (1/2\right )} }{ \Gamma _{q} \left ( 3/2 \right ) } \tfrac{(\zeta +1) \mathfrak{u}_{3}}{ 2 +s^{2}}\, \mathrm{d}_{q}s \\ & \quad - \bigg[\, \tfrac{ \left | \zeta \right | e^{ - \zeta ^{2}}}{ 10 \left ( \sqrt{5} + \left | \zeta \right | \right ) } \tan ^{-1}\left ( \hat{\mathfrak{u}}_{1} \right ) + \tfrac{ 1 + \zeta ^{3} }{ \sqrt{2}\left (3 + 4 \zeta ^{2} \right ) } \sin \left ( \hat{\mathfrak{u}}_{2} \right ) \\ & \quad + \int _{0}^{ \sqrt{\zeta}} s^{ \ln (10)/3} \tfrac{\left ( \sqrt{\zeta} - qs \right )^{ \left (1/2\right )} }{ \Gamma _{q} \left ( 3/2 \right ) } \tfrac{(\zeta +1) \hat{\mathfrak{u}}_{3}}{ 2 +s^{2}}\, \mathrm{d}_{q}s \bigg] \, \bigg| \\ & \leq \left | \tfrac{ \left | \zeta \right |e^{ - \zeta ^{2}} }{ 10 \left ( \sqrt{5} + \left | \zeta \right | \right ) } \right | \, \left | \tan ^{-1} \left ( \mathfrak{u}_{1} \right )- \tan ^{-1} \left ( \hat{\mathfrak{u}}_{1} \right ) \right | \\ & \quad + \left | \tfrac{ 1 + \zeta ^{3}}{ \sqrt{2} \left (3 + 4 \zeta ^{2} \right ) } \right | \, \left | \sin \left ( \mathfrak{u}_{2} \right ) - \sin \left ( \hat{\mathfrak{u}}_{2} \right ) \right | \\ & \quad + \bigg| \int _{0}^{ \sqrt{\zeta}} s^{ \ln (10)/3} \tfrac{\left ( \sqrt{\zeta} - qs \right )^{ \left (1/2\right )} }{ \Gamma _{q} \left ( 3/2 \right ) } \left | \tfrac{(\zeta +1) \mathfrak{u}_{3}}{ 2 +s^{2}} - \tfrac{(\zeta +1) \hat{\mathfrak{u}}_{3}}{ 2 +s^{2}} \right | \, \mathrm{d}_{q}s \bigg| \\ & \leq \tfrac{1}{10\sqrt{5}} \, \left | \mathfrak{u}_{1} - \hat{\mathfrak{u}}_{1} \right | + \tfrac{\sqrt{2}}{3} \left | \mathfrak{u}_{2} - \hat{\mathfrak{u}}_{2} \right | \\ & \quad + \tfrac{3}{2\Gamma _{q} \left ( 3/2 \right ) } \, B_{q}\left ( \tfrac{3}{2}, \tfrac{3+\ln (10)}{3} \right ) \left | \mathfrak{u}_{3} - \hat{\mathfrak{u}}_{3} \right | \\ & \leq k_{1}| \mathfrak{u}_{1} - \hat{\mathfrak{u}}_{1}| + k_{2} | \mathfrak{u}_{2} - \hat{\mathfrak{u}}_{2}| + k_{3} | \mathfrak{u}_{3} - \hat{\mathfrak{u}}_{3}|, \end{aligned}$$
(35)

where \(k_{1}= \frac{1}{10\sqrt{5}}\), \(k_{2}= \frac{\sqrt{2}}{3}\),

$$ k_{3} = \tfrac{3}{2\Gamma _{q} \left ( 3/2 \right ) } \, B_{q} \left ( \tfrac{3}{2},1+ \tfrac{1}{3}\ln (10) \right )\simeq \left \{ \textstyle\begin{array}{r@{\quad}l} 1.5833, & q= \frac{1}{3}, \\ 1.5842, & q= \frac{1}{2}, \\ 1.5802, & q= \frac{4}{5}, \end{array}\displaystyle \right . $$
(36)

and

$$\begin{aligned} |\varrho (\zeta ,x) - \varrho (\zeta ,\hat{x})|& = \left | \tfrac{ 1 + \zeta ^{3} }{ \sqrt{2}\left (3 + 4 \zeta ^{2} \right ) } \sin (x)- \tfrac{ 1 + \zeta ^{3} }{ \sqrt{2}\left ( 3 + 4 \zeta ^{2} \right ) } \sin (\hat{x}) \right | \\ & \leq \left | \tfrac{ 1 + \zeta ^{3} }{ \sqrt{2} \left (3 + 4 \zeta ^{2} \right ) } \right | \, \left | \sin (x) - \sin (\hat{x}) \right | \leq k_{4}|x- \hat{x} |, \end{aligned}$$
(37)

where \(k_{4}=\frac{\sqrt{2}}{3}\). Hence, \(k_{1}+k_{2}k_{4} \simeq 0.2669<1\). One can easily find that the assumption (S1) of Theorem 3.2 satisfies. Now, we check that (S2) also holds. Suppose that \(\|\chi (\zeta )\|\leq r_{0}\), then

$$\begin{aligned} |\chi (\zeta ) | & =\bigg| \tfrac{ \left | \zeta \right | e^{ - \zeta ^{2}} }{ 10 \left ( \sqrt{5} + \left | \zeta \right | \right ) } \tan ^{-1}\left ( \chi \left ( \tfrac{\sqrt{3}}{4} \zeta \right ) \right ) + \tfrac{ 1 + \zeta ^{3} }{ \sqrt{2}\left (3 + 4 \zeta ^{2} \right ) } \sin \left ( \chi \left (\tfrac{2\zeta}{9} \right )\right ) \\ & \quad + \int _{0}^{ \sqrt{\zeta}} s^{ \ln (10)/3} \tfrac{\left ( \sqrt{\zeta} - qs \right )^{ \left (1/2 \right )} }{ \Gamma _{q} \left ( 3/2 \right ) } \tfrac{(\zeta +1)\chi \left ( s/\sqrt{5} \right )}{2 +s^{2}} \, \mathrm{d}_{q}s\bigg| \\ &< \tfrac{r_{0}}{10\sqrt{5}} + \tfrac{\sqrt{2} r_{0}}{3} + \tfrac{1}{\Gamma _{q} \left ( 3/2 \right ) } B_{q} \left ( \tfrac{3}{2}, 1+\tfrac{\ln (10)}{3} \right ) r_{0} \leq r_{0}. \end{aligned}$$
(38)

Hence, (S2) holds if \(r_{0}\geq 1.0556,\, 1.0562,\, 1.0535\) for \(q=\frac{1}{3}, \, \frac{1}{2},\, \frac{4}{5}\), respectively. These data are shown in Table 1. It can be seen that for \(q=\frac{1}{2}\), the value of \(r_{0}\) is at a higher level. In fact, for \(0< q<0.5\), the value of \(r_{0}\) is ascending, and for \(0.5< q<1\), the value of \(r_{0}\) is descending. Here, to calculate q-Gamma, we have considered the sum of the result in the definition, up to 120. But the values up to 4 decimal places have been observed the same, they have been displayed up to step 45. These changes can be seen in Figs. 1a and 1b. The data in Table 2 show that when the values of q are close to zero, with the number of repetitions of the continuous sum, the gamma product of q results.

Figure 1
figure 1

Graphical representation of \(k_{3}\) and suitable \(r_{0}>0\) of Nq-\(\mathbb{IE}\) (33) for three different values of \(q \in \{ \frac{1}{3},\, \frac{1}{2}, \, \frac{4}{5}\}\) in Example 3.1

Table 1 Numerical results of \(\Gamma _{q} \left ( \varsigma \right )\), \(B_{q} \left ( \varsigma , \beta +1 \right )\), \(k_{3}\) and suitable \(r_{0}>0\) of Nq-\(\mathbb{IE}\) (33) for three different values of \(q\in \{ \frac{1}{3},\, \frac{1}{2}, \, \frac{4}{5}\}\) in Example 3.1
Table 2 Numerical results of \(\Gamma _{q} \left ( \varsigma \right )\), \(B_{q} \left ( \varsigma , \beta +1 \right )\), \(k_{3}\) and suitable \(r_{0}>0\) of Nq-\(\mathbb{IE}\) (39) for three different values of \(q\in \{ \frac{1}{8},\, \frac{1}{6}, \, \frac{1}{4}\}\) in Example 3.2

It can be seen that for \(q=\frac{1}{2}\), the value of \(r_{0}\) is at a higher level. In fact, for \(0< q<0.5\), the value of \(r_{0}\) is ascending, and for \(0.5< q<1\), the value of \(r_{0}\) is descending. Here, to calculate q-Gamma, we have considered the sum of the result in the definition, up to 120. But the values up to 4 decimal places have been observed the same, they have been displayed up to step 45. These changes can be seen in Figs. 1a and 1b. The data in Table 2 show that when the values of q are close to zero, with the number of repetitions of the continuous sum, the gamma product of q results. This implies that the equation has at least one solution in \(C(\Upsilon _{\circ})\).

Example 3.2

Based on the proposed problem, we take Nq-\(\mathbb{IE}\)

$$\begin{aligned} \chi (\zeta ) & = \tfrac{\chi (\zeta ) \, e^{-\zeta ^{-3}}}{ \sqrt{2}( 4 + \zeta ^{4})}+ \tfrac{\sin \left (\chi \left ( \zeta/7 \right )\right ) }{ 4 ( 2 + \zeta ^{2})} \\ & \quad + \int _{0}^{\zeta ^{2}} \tfrac{ s^{2} \left ( \zeta ^{2} - qs \right )^{ \left (3/ 2 \right ) }}{\Gamma _{ q} \left ( 5/2 \right )} \, \left ( \tfrac{s^{2}}{2} + \tfrac{ s e^{-2\zeta} \sin \left ( \chi \left (\zeta/3\right ) \right )}{ 2 + \left | \zeta \right |} \right ) \, \mathrm{d}_{q}s, \end{aligned}$$
(39)

for \(\zeta \in \Upsilon \) with \(\alpha =1\) and \(q\in \{ \frac{1}{8}, \frac{1}{6}, \frac{1}{4}\}\). It can be seen that \(\beta =2\), \(\varsigma =\frac{5}{2}\), \(a(z) = z\),

$$\begin{aligned} & p(\zeta , z, b(z)) = \tfrac{z^{2}}{2} + \tfrac{z e^{ - 2 \zeta} \sin \left (b(z)\right )}{ 2 + \left | z \right |}, \qquad b(z) = \tfrac{\zeta}{3} , \\ &\varrho (\zeta , \chi (c(z)))= \tfrac{\sin \chi \left ( c(z) \right ) }{ 4 ( 2 + \zeta ^{2})} , \qquad c(z)= \tfrac{z}{7}, \end{aligned}$$
(40)

\(\eta (z)=z^{2}\), and can be examine easily that \(\varrho \in C(\Upsilon \times \mathbb{R})\), \(p\in C(\Upsilon \times [0,\Omega ]\times \mathbb{R})\), \(\Omega =1\), \(a, b, c \in C(\Upsilon , \Upsilon )\), and \(\eta \in C(\Upsilon , \mathbb{R}^{+})\) with \(\eta (\zeta )\leq \Omega \), for each \(\zeta \in \Upsilon \). Thus, for \(\mathfrak{u}_{i}\), \(\hat{\mathfrak{u}}_{i}\), \(i=1,2,3\) and \(\zeta \in \Upsilon \), by using Lemma 3.1 and Eq. (13), similar to the method of the previous example, we get

$$\begin{aligned} |\nabla ( \zeta , \mathfrak{u}_{1}, \mathfrak{u}_{2}, \mathfrak{u}_{3}) & -\nabla (\zeta , \hat{ \mathfrak{u}}_{1}, \hat{ \mathfrak{u}}_{2}, \hat{ \mathfrak{u}}_{3})| \\ & = \bigg| \tfrac{\mathfrak{u}_{1} \, e^{-\zeta ^{-3}}}{ \sqrt{2}( 4 + \zeta ^{4})} + \tfrac{\sin \left (\mathfrak{u}_{2}\right ) }{ 4 ( 2 + \zeta ^{2})} \\ & \quad + \int _{0}^{\zeta ^{2}} \tfrac{ s^{2} \left ( \zeta ^{2} - qs \right )^{ \left (3/2 \right ) }}{\Gamma _{ q} \left ( 5/2 \right )} \, \left ( \tfrac{s^{2}}{2} + \tfrac{ s e^{-2\zeta} \sin \left ( \mathfrak{u}_{3} \right )}{ 2 + \left | \zeta \right |} \right ) \, \mathrm{d}_{q}s \\ & \quad - \bigg[ \tfrac{\hat{\mathfrak{u}}_{1} \, e^{-\zeta ^{-3}}}{ \sqrt{2}( 4 + \zeta ^{4})} + \tfrac{\sin \left (\hat{\mathfrak{u}}_{2}\right ) }{ 4 ( 2 + \zeta ^{2})} \\ & \quad + \int _{0}^{\zeta ^{2}} \tfrac{ s^{2} \left ( \zeta ^{2} - qs \right )^{ \left ( 3/2 \right ) }}{ \Gamma _{ q} \left ( 5/2 \right )} \, \left ( \tfrac{s^{2}}{2} + \tfrac{ s e^{-2\zeta} \sin \left ( \hat{\mathfrak{u}}_{3} \right )}{ 2 + \left | \zeta \right |} \right ) \, \mathrm{d}_{q}s \bigg] \bigg| \\ & \leq \left | \tfrac{ e^{ - \zeta ^{-3}}}{ \sqrt{2}( 4 + \zeta ^{4} ) } \right | \, \left | \mathfrak{u}_{1} - \hat{ \mathfrak{u}}_{1} \right | + \left | \tfrac{1}{ 4 ( 2 + \zeta ^{2})} \right | \, \left | \sin \left ( \mathfrak{u}_{2}\right ) - \sin \left (\hat{\mathfrak{u}}_{2}\right ) \right | \\ & \quad + \int _{0}^{\zeta ^{2}} \tfrac{ s^{2} \left ( \zeta ^{2} - qs \right )^{ \left (3/2 \right ) }}{\Gamma _{ q} \left ( 5/2 \right )} \, \left | \tfrac{s}{e^{2 \zeta} \left (2 + \left |\zeta \right |\right )} \right | \, \left | \sin \left ( \mathfrak{u}_{3} \right ) - \sin \left ( \hat{\mathfrak{u}}_{3} \right ) \right | \, \mathrm{d}_{q}s \\ & \leq k_{1}| \mathfrak{u}_{1} - \hat{\mathfrak{u}}_{1}| + k_{2} | \mathfrak{u}_{2} - \hat{\mathfrak{u}}_{2}| + k_{3} | \mathfrak{u}_{3} - \hat{\mathfrak{u}}_{3}|, \end{aligned}$$
(41)

where \(k_{1}= \tfrac{\sqrt{2}}{8} \), \(k_{2}= \tfrac{1}{8}\),

$$ k_{3} = \frac{1}{2\Gamma _{q} \left ( 5/2 \right ) } \, B_{q} \left ( \tfrac{5}{2},3 \right ) \simeq \left \{ \textstyle\begin{array}{r@{\quad}l} 0.3645, & q= \frac{1}{8}, \\ 0.3277, & q= \frac{1}{6}, \\ 0.2646, & q= \frac{1}{4}, \end{array}\displaystyle \right . $$
(42)

and

$$\begin{aligned} |\varrho (\zeta ,x) - \varrho (\zeta ,\hat{x})|& = \left | \tfrac{\sin x }{ 4 ( 2 + \zeta ^{2})} - \tfrac{\sin \hat{x} }{ 4 ( 2 + \zeta ^{2})} \right | \\ & \leq \left | \tfrac{1}{ 4 ( 2 + \zeta ^{2})} \right | \, \left | \sin (x) - \sin (\hat{x}) \right | \leq k_{4}|x-\hat{x} |, \end{aligned}$$
(43)

where \(k_{4}= \frac{1}{8}\). Figure 2a shows the curves of \(k_{3}\) for different values of q. It implies that \(k_{1} + k_{2} k_{4} \simeq 0.2951<1\). It follows that the assumption (S1) of Theorem 3.2 satisfies. Now, we check the assumption (S2). Assume that \(\|\chi (\zeta )\|\leq r_{0}\), then

$$\begin{aligned} |\chi (\zeta ) | & = \bigg| \tfrac{ \chi (\zeta ) \, e^{-\zeta ^{-3}}}{ \sqrt{2}( 4 + \zeta ^{4})}+ \tfrac{ \sin \left (\chi \left ( \zeta/7 \right )\right ) }{ 4 ( 2 + \zeta ^{2})} \\ & \quad + \int _{0}^{\zeta ^{2}} \tfrac{ s^{2} \left ( \zeta ^{2} - qs \right )^{ \left (3/ 2 \right ) }}{\Gamma _{ q} \left ( 5/2 \right )} \, \left ( \tfrac{s^{2}}{2} + \tfrac{ s e^{-2\zeta} \sin \left ( \chi \left (\zeta/3\right ) \right )}{ 2 + \left | \zeta \right |} \right ) \, \mathrm{d}_{q}s \bigg| \\ &< \tfrac{r_{0}}{4\sqrt{2}} + \tfrac{r_{0}}{8} + \tfrac{r_{0}+1}{2\Gamma _{q} \left ( 5/2 \right ) } B_{q} \left ( \tfrac{5}{2}, 3\right )\leq r_{0}. \end{aligned}$$
(44)

Hence, (S2) holds if \(r_{0}\geq 0.7291,\, 0.6554,\,0.5292\) for \(q =\frac{1}{8}, \, \frac{1}{6},\, \frac{1}{4}\), respectively. Table 2 shows the results. As can be seen in the curves drawn in Fig. 2b, as the value of q increases, the chosen number for \(r_{0}\) decreases. This implies that, from Theorem 3.2, the equation (39) has at least one solution in \(C(\Upsilon _{\circ})\).

Figure 2
figure 2

Graphical representation of \(k_{3}\) and suitable \(r_{0}>0\) of Nq-\(\mathbb{IE}\) (33) for three different values of \(q\in \{ \frac{1}{3},\, \frac{1}{2}, \, \frac{4}{5}\}\) in Example 3.2

In the next example, we consider an equation that is more complicated.

Example 3.3

Consider the following Nq-\(\mathbb{IE}\)

$$\begin{aligned} \chi (\zeta ) & = \tfrac{e^{ - 2 \zeta}}{3} + \tfrac{ \cos ^{2}( \chi ( \sqrt{\zeta}) ) }{ 4\ln (\sqrt{13} +\zeta ^{2}) } + \tfrac{| \chi ( \sqrt{\zeta})| }{25\left ( 1 +| \chi (\sqrt{\zeta})|\right )} \\ & \quad + \int _{0}^{\zeta ^{2}} \tfrac{ s^{2} \left ( \zeta ^{2} - q s \right )^{(3/2)} }{ \Gamma _{q} \left ( 5/2 \right )} \left [\tfrac{1 + \chi (\sqrt{\zeta})}{12 + s \zeta} \right ]^{ 1/2} \, \mathrm{d}_{q}s, \end{aligned}$$
(45)

for \(\zeta \in [0, \alpha ]\), \(\alpha =1\) and \(q\in \{ \frac{7}{11}, \, \frac{8}{11}, \, \frac{9}{11}\}\). Here \(\beta =2\), \(\varsigma =\frac{5}{2}\), \(a(z) = b(z) =c(z)=\sqrt{z}\), \(\eta (z)=z^{2}\) and

p(ζ,z,b(z))= [ 1 + χ ( b ( z ) ) 12 + z ζ ] 1 / 2 ,ϱ(ζ,χ(c(z)))= | χ ( c ( z ) ) | 25 ( 1 + | χ ( c ( z ) ) | ) .
(46)

Clearly, \(\varrho \in C(\Upsilon \times \mathbb{R})\), \(p\in C(\Upsilon \times [0,\Omega ]\times \mathbb{R})\), \(\Omega =1\), \(a, b, c \in C(\Upsilon , \Upsilon )\), and \(\eta \in C(\Upsilon , \mathbb{R}^{+})\) with \(\eta (\zeta )\leq \Omega \), for each \(\zeta \in \Upsilon \). Now, thanks to the Lemma 3.1 and Eq. (13), for \(\mathfrak{u}_{i}\), \(\hat{\mathfrak{u}}_{i}\), \(i=1,2,3\) and \(\zeta \in \Upsilon \), we obtain

$$\begin{aligned} |\nabla ( \zeta , \mathfrak{u}_{1}, \mathfrak{u}_{2}, \mathfrak{u}_{3}) & - \nabla ( \zeta , \hat{ \mathfrak{u} }_{1}, \hat{ \mathfrak{u}}_{2}, \hat{ \mathfrak{u}}_{3})| \\ & = \bigg| \tfrac{e^{-2\zeta}}{3} + \tfrac{ \cos ^{2}( \mathfrak{u}_{1}) }{ 4\ln (\sqrt{13} +\zeta ^{2}) } + \tfrac{ | \mathfrak{u}_{2} | }{ 25\left (1 +|\mathfrak{u}_{2}| \right )} \\ & \quad + \int _{0}^{\zeta ^{2}} \tfrac{ s^{2} \left ( \zeta ^{2} - qs \right )^{(3/2)} }{ \Gamma _{q} \left ( 5/2 \right ) } \left [ \tfrac{1+\mathfrak{u}_{3}}{12 + s \zeta} \right ]^{ 1/2} \, \mathrm{d}_{q}s \\ & \quad - \bigg[ \tfrac{e^{-2\zeta}}{3} + \tfrac{ \cos ^{2}( \hat{\mathfrak{u}}_{1}) }{ 4\ln (\sqrt{13} +\zeta ^{2}) } + \tfrac{| \hat{\mathfrak{u}}_{2} | }{25 \left (1 + |\hat{ \mathfrak{u}}_{2}| \right )} \\ & \quad + \int _{0}^{\zeta ^{2}} \tfrac{ s^{2}\left ( \zeta ^{2} - qs \right )^{(3/2)} }{ \Gamma _{q} \left ( 5/2 \right ) } \left [ \tfrac{1 + \hat{ \mathfrak{u}}_{3} }{12 + s \zeta} \right ]^{ 1/2 } \, \mathrm{d}_{q}s \bigg] \bigg| \\ & \leq \left | \tfrac{1}{ 4\ln (\sqrt{13} +\zeta ^{2}) } \right |\, \left | \cos ^{2}( \mathfrak{u}_{1}) - \cos ^{2}( \hat{\mathfrak{u}}_{1}) \right | + \tfrac{1}{25} \left | \tfrac{| \mathfrak{u}_{2} | }{ 1 +|\mathfrak{u}_{2}|} - \tfrac{| \hat{\mathfrak{u}}_{2} | }{ 1 + |\hat{\mathfrak{u}}_{2}|} \right | \\ & \quad + \int _{0}^{\zeta ^{2}} \tfrac{ s^{2} \left ( \zeta ^{2} - qs \right )^{ ( 3/2)} }{ \Gamma _{q} \left ( 5/2 \right ) } \left (\tfrac{1}{\sqrt{12 + s \zeta}} \right ) \left | \sqrt{1+ \mathfrak{u}_{3}} - \sqrt{1 + \hat{ \mathfrak{u}}_{3}} \right | \, \mathrm{d}_{q}s \\ & \leq \tfrac{1}{ 2\ln \sqrt{13} } \, \left | \cos ( \mathfrak{u}_{1}) - \cos ( \hat{\mathfrak{u}}_{1}) \right | + \tfrac{1}{25}\left | \mathfrak{u}_{2} - \hat{\mathfrak{u}}_{2} \right | \\ & \quad + \tfrac{1}{ \sqrt{12} \Gamma _{q} \left ( 5/2 \right ) } \int _{0}^{ \zeta ^{2}} s^{2}\left ( \zeta ^{2} - qs \right )^{ ( 3/2)} \left | \tfrac{\mathfrak{u}_{3} - \hat{ \mathfrak{u}}_{3}}{2} \right | \, \mathrm{d}_{q}s \\ & = \tfrac{1}{ 2\ln \sqrt{13} } \, \left | -2 \sin \left ( \tfrac{\mathfrak{u}_{1}+ \hat{\mathfrak{u}}_{1}}{2} \right ) \sin \left (\tfrac{\mathfrak{u}_{1} - \hat{\mathfrak{u}}_{1}}{2} \right ) \right | + \tfrac{1}{25} \left | \mathfrak{u}_{2} - \hat{\mathfrak{u}}_{2} \right | \\ & \quad + \tfrac{1}{4 \sqrt{3}\, \Gamma _{q} \left ( 5/2 \right ) } \int _{0}^{\zeta ^{2}} s^{2}\left ( \zeta ^{2} - qs \right )^{( 3/2)} \left | \mathfrak{u}_{3} - \hat{ \mathfrak{u}}_{3} \right | \, \mathrm{d}_{q}s \\ & \leq \tfrac{\left | \mathfrak{u}_{1} - \hat{\mathfrak{u}}_{1}\right | }{ \ln \sqrt{13} } +\tfrac{1}{25} \left | \mathfrak{u}_{2} - \hat{\mathfrak{u}}_{2} \right | \\ & \quad + \int _{0}^{\zeta ^{2}} \tfrac{s^{2}\left ( \zeta ^{2} - qs \right )^{(3/2)} }{4 \sqrt{3}\, \Gamma _{q} \left ( 5/2 \right ) } \left | \mathfrak{u}_{3} - \hat{ \mathfrak{u}}_{3} \right | \, \mathrm{d}_{q}s \\ &\leq k_{1}| \mathfrak{u}_{1} - \hat{\mathfrak{u}}_{1}| + k_{2} | \mathfrak{u}_{2} - \hat{\mathfrak{u}}_{2}| + k_{3} | \mathfrak{u}_{3} - \hat{\mathfrak{u}}_{3}|, \end{aligned}$$
(47)

where \(k_{1}= \frac{1}{\ln \sqrt{13} } \), \(k_{2}= \frac{1}{25}\),

$$ k_{3} = \tfrac{1}{4 \sqrt{3}\, \Gamma _{q} \left ( 5/2 \right ) } \, B_{q}\left ( \tfrac{5}{2},3 \right ) \simeq \left \{ \textstyle\begin{array}{r@{\quad}l} 0.4994, & q= \frac{7}{11}, \\ 0.5310, & q= \frac{8}{11}, \\ 0.6388, & q= \frac{9}{11}, \end{array}\displaystyle \right . $$
(48)

and

$$ |\varrho (\zeta ,x) - \varrho (\zeta ,\hat{x})| = \left | \tfrac{| x|}{ 25\left (1 + |x|\right )} - \tfrac{| \hat{x}|}{ 25\left (1 + |\hat{x}|\right )} \right |\leq k_{4}|x- \hat{x} |, $$
(49)

where \(k_{4}= \frac{1}{25}\). We plot the curve of \(k_{3}\) in Fig. 3a. It implies that \(k_{1} + k_{2} k_{4} \simeq 0.3914 <1\). It follows that the assumption (S1) of Theorem 3.2 satisfies. Now, we check the assumption (S2). Assume that \(\|\chi (\zeta )\|\leq r_{0}\), then

$$\begin{aligned} |\chi (\zeta ) | & = \bigg| \tfrac{e^{ - 2 \zeta}}{3} + \tfrac{ \cos ^{2}( \chi ( \sqrt{\zeta}) ) }{ 4\ln (\sqrt{13} +\zeta ^{2}) } + \tfrac{| \chi ( \sqrt{\zeta})| }{25\left ( 1 +| \chi (\sqrt{\zeta})|\right )} \\ & \quad + \int _{0}^{\zeta ^{2}} \tfrac{ s^{2} \left ( \zeta ^{2} - q s \right )^{(3/2)} }{ \Gamma _{q} \left ( 5/2 \right )} \left [\tfrac{ 1+ \chi (\sqrt{\zeta})}{12 + s \zeta} \right ]^{ 1/2} \, \mathrm{d}_{q}s \bigg| \\ & < \tfrac{1}{3} + \tfrac{1}{4\ln \sqrt{13}} + \tfrac{r_{0}}{25}+ \tfrac{ r_{0}}{4 \sqrt{3}\, \Gamma _{q} \left ( 5/2 \right ) } B_{q} \left ( \tfrac{5}{2}, 3\right )\leq r_{0}. \end{aligned}$$
(50)

Hence, (S2) holds if \(r_{0}\geq 0.1996,\, 0.1604,\,0.1295\) for \(q =\frac{7}{11}, \, \frac{8}{11},\, \frac{9}{11}\), respectively. Table 3 shows the results. As can be seen in the curves drawn in Fig. 3b, as the value of q increases, the chosen number for \(r_{0}\) decreases. This implies that, from Theorem 3.2, the equation (45) has at least one solution in \(C(\Upsilon _{\circ})\).

Figure 3
figure 3

Graphical representation of \(k_{3}\) and suitable \(r_{0}>0\) of Nq-\(\mathbb{IE}\) (45) for three different values of \(q\in \{ \frac{1}{3},\, \frac{1}{2}, \, \frac{4}{5} \}\) in Example 3.3

Table 3 Numerical results of \(\Gamma _{q} \left ( \varsigma \right )\), \(B_{q} \left ( \varsigma , \beta +1 \right )\), \(k_{3}\) and suitable \(r_{0}>0\) of Nq-\(\mathbb{IE}\) (45) for three different values of \(q\in \{ \frac{7}{11},\, \frac{8}{11}, \, \frac{9}{11}\}\) in Example 3.3

Remark 3.2

Since there are no constants \(c_{1}\) and \(c_{2}\) satisfying the inequalities (Sublinear condition),

$$ |p(\zeta ,s,x)|\leq c_{1}+c_{2}|x|, \qquad \forall \, \zeta ,s\in \Upsilon , x\in \mathbb{R}, $$
(51)

the results in [24] is inapplicable to the \(\mathbb{IE}\) (45).

4 Conclusion

Given the presence of insolvable issues in q-\(\mathbb{IE}\)s, it is imperative to ascertain the presence of a solution within these equations. Consequently, a multitude of researchers have published papers in this field, outlining their methodologies and the associated outcomes. In this specific paper, the authors present an innovative approach grounded in the use of M.N.C and \(F.P.T\) of Petryshyn. This approach presents several advantages over similar methodologies, such as streamlined conditions and the elimination of the requirement to verify the operator’s mapping of a closed convex subset onto itself.

Data availability

No datasets were generated or analysed during the current study.

References

  1. Banas, J., Lecko, M.: Fixed points of the product of operators in Banach algebra. Panam. Math. J. 12, 101–109 (2002)

    MathSciNet  Google Scholar 

  2. Caballero, J., Mingarelli, A.B., Sadarangani, K.: Existence of solutions of an integral equation of Chandrasekhar type in the theory of radiative transfer. Electron. J. Differ. Equ. 2006, 57 (2006)

    MathSciNet  Google Scholar 

  3. Das, A., Hazarika, B., Parvaneh, V., Mursaleen, M.: Solvability of generalized fractional order integral equations via measures of noncompactness. Math. Sci. 15, 241–251 (2021). https://doi.org/10.1007/s40096-020-00359-0

    Article  MathSciNet  Google Scholar 

  4. Deep, A., Abbas, S., Sing, B., Alharthi, M.R., Nisar, K.S.: Solvability of functional stochastic integral equations via Darbo’s fixed point theorem. Alex. Eng. J. 60(6), 5631–5636 (2021). https://doi.org/10.1016/j.aej.2021.04.024

    Article  Google Scholar 

  5. Metwali, M., Cicho’n, K.: On solutions of some delay Volterra integral problems on a half line. Nonlinear Anal., Model. Control 26(4), 661–677 (2021). https://doi.org/10.15388/namc.2021.26.24149

    Article  MathSciNet  Google Scholar 

  6. Mishra, L.N., Agarwal, R.P., Sen, M.: Solvability and asymptotic behaviour for some nonlinear quadratic integral equation involving Erdelyi-Kober fractional integrals on the unbounded interval. Prog. Fract. Differ. Appl. 2(3), 153–168 (2016). https://doi.org/10.18576/pfda/020301

    Article  Google Scholar 

  7. Nashine, H., Arab, R., Agarwal, R.: Existence of solutions of system of functional integral equations using measure of noncompactness. Int. J. Nonlinear Anal. Appl. 12(1), 583–595 (2021). https://doi.org/10.22075/ijnaa.2021.4847

    Article  Google Scholar 

  8. Sen, M., Saha, D., Agarwal, R.P.: A Darbo fixed point theory approach towards the existence of a functional integral equation in a Banach algebra. Appl. Math. Comput. 358, 111–118 (2019). https://doi.org/10.1016/j.amc.2019.04.021

    Article  MathSciNet  Google Scholar 

  9. Srivastava, H.M., Das, A., Hazarika, B., Mohiuddine, S.A.: Existence of solutions for nonlinear functional integral equation of two variables in Banach algebra. Symmetry 11(5), 674 (2019). https://doi.org/10.3390/sym11050674

    Article  Google Scholar 

  10. Jackson, F.H.: q-Difference equations. Am. J. Math. 32, 305–314 (1910). https://doi.org/10.2307/2370183

    Article  Google Scholar 

  11. Finkelstein, R.J.: Symmetry group of the hydrogen atom. J. Math. Phys. 8(3), 443–449 (1967). https://doi.org/10.1063/1.1705211

    Article  Google Scholar 

  12. Finkelstein, R.J.: q gauge theory. Int. J. Mod. Phys. A 11(04), 733–746 (1996). https://doi.org/10.1142/S0217751X9600033X

    Article  Google Scholar 

  13. Ilinski, K.N., Kalinin, G.V., Stepanenko, A.S.: q-Functional field theory for particles with exotic statistics. Phys. Lett. A 232(6), 399–408 (1997). https://doi.org/10.1016/S0375-9601(97)00402-7

    Article  MathSciNet  Google Scholar 

  14. Kac, V., Cheung, P.: Quantum Calculus. Universitext. Springer, New York (2002). https://doi.org/10.1007/978-1-4613-0071-7-1

    Book  Google Scholar 

  15. Ahmad, B., Ntouyas, S.K., Purnaras, I.K.: Existence results for nonlocal boundary value problems of nonlinear fractional q-difference equations. Adv. Differ. Equ. 2012, 140 (2012). https://doi.org/10.1186/1687-1847-2012-140

    Article  MathSciNet  Google Scholar 

  16. Fatehi, M., Rezapour, S., Samei, M.E.: Investigation of the solution for the k-dimensional device of differential inclusion of Laplacein fraction with sequential derivatives and boundary conditions of integral and derivative. J. Math. Ext. 17(11), 6–133 (2023). https://doi.org/10.30495/JME.2023.2873

    Article  Google Scholar 

  17. Ahmad, B., Nieto, J.J., Alsaedi, A., Al-Hutami, H.: Existence of solutions for nonlinear fractional q-difference integral equations with two fractional orders and nonlocal four point boundary conditions. J. Franklin Inst. 351(5), 2890–2909 (2014). https://doi.org/10.1016/j.jfranklin.2014.01.020

    Article  MathSciNet  Google Scholar 

  18. Amiri, P., Samei, M.E.: Existence of Urysohn and Atangana-Baleanu fractional integral inclusion systems solutions via common fixed point of multi-valued operators. Chaos Solitons Fractals 165(2), 112822 (2022). https://doi.org/10.1016/j.chaos.2022.112822

    Article  MathSciNet  Google Scholar 

  19. Alsaedi, A., Ahmad, B., Al-Hutami, H.: A study of nonlinear fractional q-difference equations with nonlocal integral boundary conditions. Abstr. Appl. Anal. 2013, 8 (2013). https://doi.org/10.1155/2013/410505

    Article  MathSciNet  Google Scholar 

  20. Houas, M., Samei, M.E., Santra, S.S., Alzabut, J.: Duffing-type oscillator differential equation on the transition to chaos with fractional q-derivatives. J. Inequal. Appl. 2024, 12 (2024). https://doi.org/10.1186/s13660-024-03093-6

    Article  MathSciNet  Google Scholar 

  21. Li, X., Han, Z., Sun, S.: Existence of positive solutions of nonlinear fractional q-difference equation with parameter. Adv. Differ. Equ. 2013, 260 (2013). https://doi.org/10.1186/1687-1847-2013-260

    Article  MathSciNet  Google Scholar 

  22. Lachouri, A., Samei, M.E., Ardjouni, A.: Existence and stability analysis for a class of fractional pantograph q-difference equations with nonlocal boundary conditions. Bound. Value Probl. 2023, 2 (2023). https://doi.org/10.1186/s13661-022-01691-1

    Article  MathSciNet  Google Scholar 

  23. Samei, M.E., Fathipour, A.: A distinct numerical approach for the solution of some kind of initial value problem involving nonlinear q-fractional differential equations. Math. Res. 8(3), 91–116 (2022). http://mmr.khu.ac.ir/article-1-3103-fa.html

    Google Scholar 

  24. Jleli, M., Mursaleen, M., Samet, B.: q-Integral equations of fractional orders. Electron. J. Differ. Equ. 2016, 17 (2016)

    MathSciNet  Google Scholar 

  25. Al-Yami, M.: On existence of solutions of q-perturbed quadratic integral equations. Am. J. Comput. Math. 6, 166–176 (2016). https://doi.org/10.4236/ajcm.2016.62018

    Article  Google Scholar 

  26. Kazemi, M., Ezzati, R., Deep, A.: On the solvability of non-linear fractional integral equations of product type. J. Pseudo-Differ. Oper. Appl. 14, 39 (2023). https://doi.org/10.1007/s11868-023-00532-8

    Article  MathSciNet  Google Scholar 

  27. Deep, A., Kazemi, M.: Solvability for 2D non-linear fractional integral equations by Petryshyn’s fixed point theorem. J. Comput. Appl. Math. 444, 165–171 (2024). https://doi.org/10.1016/j.cam.2024.115797

    Article  MathSciNet  Google Scholar 

  28. Kazemi, M., Ezzati, R.: Existence of solution for some nonlinear two-dimensional Volterra integral equations via measures of noncompactness. Appl. Math. Comput. 275, 165–171 (2016). https://doi.org/10.1016/j.amc.2015.11.066

    Article  MathSciNet  Google Scholar 

  29. Patle, P.R., Gabeleh, M., Rakočević, V., Samei, M.E.: New best proximity point (pair) theorems via MNC and application to the existence of optimum solutions for a system of ψ-Hilfer fractional differential equations. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 117, 124 (2023). https://doi.org/10.1007/s13398-023-01451-5

    Article  MathSciNet  Google Scholar 

  30. Adjimi, N., Boutiara, A., Samei, M.E., Etemad, S., Rezapour, S.: On solutions of a hybrid generalized Caputo-type problem via the measure of non-compactness in the generalized version of Darbo’s theorem. J. Inequal. Appl. 2023, 34 (2023). https://doi.org/10.1186/s13660-023-02919-z

    Article  Google Scholar 

  31. Samei, M.E.: Employing Kuratowski measure of non-compactness for positive solutions of system of singular fractional q-differential equations with numerical effects. Filomat 34(9), 1–19 (2020). https://doi.org/10.1186/10.2298/FIL2009971S

    Article  MathSciNet  Google Scholar 

  32. Haddouchi, F., Samei, M.E.: Solvability of a φ-Riemann-Liouville fractional boundary value problem with nonlocal boundary conditions. Math. Comput. Simul. 219, 355–377 (2024). https://doi.org/10.1016/j.matcom.2023.12.029

    Article  Google Scholar 

  33. Atici, F., Eloe, P.W.: Fractional q-calculus on a time scale. J. Nonlinear Math. Phys. 14(3), 341–352 (2007). https://doi.org/10.2991/jnmp.2007.14.3.4

    Article  MathSciNet  Google Scholar 

  34. Pongarm, N., Asawasamrit, S., Tariboon, J., Ntouyas, S.K.: Multi strip fractional q-integral boundary value problems for nonlinear fractional q-difference equations. Adv. Differ. Equ. 2014, 193 (2014). https://doi.org/10.1186/1687-1847-2014-193

    Article  MathSciNet  Google Scholar 

  35. Kuratowski, K.: Sur les espaces completes. Fundam. Math. 15(1), 301–309 (1930)

    Article  Google Scholar 

  36. Goldenstein, L.S., Markus, A.S.: On the measure of non-compactness of bounded sets and of linear operators. Studies in Algebra and Math. Anal. (Russian) Izdat. “Moldovenjaske” Kishinev, 45–54 (1965)

  37. Kumar, S., Kumar Singh, H., Singh, B., Arora, V.: Application of Petryshyn’s fixed point theorem of existence result for nonlinear 2D Volterra functional integral equations. Differ. Equ. Appl. 14(3), 487–497 (2022). https://doi.org/10.7153/dea-2022-14-33

    Article  MathSciNet  Google Scholar 

  38. Petryshyn, W.V.: Structure of the fixed points sets of k-set contractions. Arch. Ration. Mech. Anal. 40, 312–328 (1971). https://doi.org/10.1007/BF00252680

    Article  MathSciNet  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors reviewed the manuscript.

Corresponding author

Correspondence to Hamid Reza Sahebi.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahebi, H.R., Kazemi, M. & Samei, M.E. Some existence results for a nonlinear q-integral equations via M.N.C and fixed point theorem Petryshyn. Bound Value Probl 2024, 110 (2024). https://doi.org/10.1186/s13661-024-01920-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13661-024-01920-9

Mathematics Subject Classification

Keywords