Skip to main content

Existence and uniqueness of positive solution to a new class of nonlocal elliptic problem with parameter dependency

Abstract

In this paper, we prove that under weak assumptions on the reaction terms and diffusion coefficients, a positive solution exists for a one-dimensional case and a positive radial solution to a multidimensional case of a nonlocal elliptic problem. Additionally, we establish the uniqueness of the solution, with the fixed point theorem being the primary tool employed. Our results are new and generalize several existing results.

1 Introduction

We will establish the existence of both a positive solution and a positive radial solution to the following problems:

$$ \textstyle\begin{cases} \begin{aligned} - & \mathcal{A} \Big(t, \displaystyle{\int _{0}^{1}} g(u)dy \Big) \Delta u = \lambda f(t, u) \quad t \in (0,1), \\ &u'(0)= u(1) =0 , \end{aligned} \end{cases} $$
(1.1)

and

$$ \textstyle\begin{cases} \begin{aligned} - & \mathcal{A} \Big( |t|, \displaystyle{\int _{\varOmega}} g(u)dy \Big) \Delta u = \lambda f(|t|, u) \quad \text{in } \, \Omega , \\ u &=0 \quad \text{on}\, \partial \Omega , \end{aligned} \end{cases} $$
(1.2)

where \(\Omega = \{t \in \mathbb{R}^{n} : a < |t| < b \}\) with \(a < b\) and \(n \geq 2\) and \(\mathcal{A}: [a, b] \times [0, \infty ) \rightarrow (0, \infty )\) is a continuous function. Several researchers have studied the nonlocal elliptic problem and its applications in modeling various physical and biological systems. These include collections of particles in thermodynamic balance interacting through gravitational (Coulombic) potential (see [4, 5, 23, 24, 29, 36], thermal runaway in ohmic heating (see [8, 40]), one-dimensional fluid flow where the strain rate is directly related to the power of stress and influenced by a temperature-dependent function, and the population density of organisms (e.g., bacteria) inside a container (see [25]).

Many researchers are interested in studying and developing the following type of nonlocal elliptic problem with boundary conditions:

$$ - \mathcal{A} \left ( t, \int _{\Omega }g(u) \, dy \right ) \Delta u = \lambda f(t, u), \quad t \in \Omega . $$

In [1], the authors used dynamical methods to obtain a nontrivial solution, with the second term being \(f(u) + f_{0}(t) \) on a smooth domain \(\Omega \subset \mathbb{R}^{n}\), \(n \geq 2\). In [35], where \(g(u) = u^{p} \), bifurcation arguments were employed to prove the existence of positive solutions. The structure of the set of positive solutions heavily depends on the balance between the nonlocal and reaction terms. Furthermore, in the autonomous case of \(\mathcal{A}\), as shown in [22], since g is a concave function, at least one positive solution was obtained by applying fixed point theory. Additionally, in [30], the existence and uniqueness of solutions were established for different values of λ with \(g(u) = f(t,u) = e^{-u} \). The case \(g(u) = u^{p} \) has received considerable attention, with the existence of a positive solution being proven using the Krasnoselskii fixed point theorem in [13]. In [16], fixed point theory was applied, and both papers introduced a sub-supersolution method, imposing various conditions on \(\mathcal{A}\) and f. An analogous method with the fixed point index proved the uniqueness of a positive solution (see [37, 38]). In [10, 11], the authors applied the Schauder fixed point theorem to cases where f changes sign, and similar arguments in [7] proved the existence and multiplicity of positive solutions. In these papers [2, 14, 15, 18], researchers used the Bolzano theorem, bifurcation arguments, the Galerkin method, subcritical growth conditions, and variational techniques, respectively. Many authors have studied the following problem:

$$ \textstyle\begin{cases} - \Delta u = \lambda f(u) \quad \text{in}\, \Omega , \\ u=0\quad \text{on}\, \partial \Omega . \end{cases} $$
(1.3)

As detailed by Shivaji in [34], specific conditions were formulated to determine the uniqueness of positive solutions to (1.3). Dancer et al. also derived essential conditions for positive solutions of (1.3) in [17]. Additionally, Maya et al. utilized the sub-supersolution method to examine the existence of positive solutions [32]. Perera studied the quasilinear elliptic problem and employed variational arguments in [33]. In [9], the author focused on a broad bounded domain within \(\mathbb{R}^{n}, n \geq 2\). Lin investigated the existence and multiplicity of positive radial solutions to (1.3) within the context of an annular domain in \(\mathbb{R}^{N}\), where \(N \geq 2\). They proved that there are at least two positive radial solutions for each λ in \((0, \lambda ^{*})\) and at least one solution when λ equals \(\lambda ^{*}\) with a positive function f such that \(\lim _{u \rightarrow \infty} \frac{f(u)}{u} = \infty \) and a specific value \(\lambda ^{*} > 0\). Moreover, for \(\lambda > \lambda ^{*}\), no solutions exist. Furthermore, if certain conditions are met, such as \(f(0) = 0\), \(\lim _{u \rightarrow 0} \frac{f(u)}{u} = 1\), and \(uf'(u) > (1 + \varepsilon )f(u)\) for strictly positive u and ε, there is a variational solution to (1.3) in \((0, \lambda _{1})\), where \(\lambda _{1}\) is the smallest eigenvalue of −Δ. Additionally, in the case of \(f(0) = 0\), \(\underset{u \rightarrow 0}{\lim} \frac{f(u)}{u} = 0\), and \(\underset{u \rightarrow \infty}{\lim} \frac{f(u)}{u} = \infty \), there is at least one positive radial solution to (1.3) for \(\lambda > 0\) (see [31]). Our results complete recent research on the existence of positive solutions with Dirichlet- or Neumann-type boundary conditions for local or nonlocal elliptic equations (see [3, 6, 12, 19, 20, 28, 39] and the references therein).

More precisely, we expand on the existence and uniqueness of solutions to the nonstationary problem previously established in [3, 13, 16]. To demonstrate the existence of a positive solution to the problem outlined in equation (1.1), a number of assumptions must be made. Let \(g: [0, \infty ) \rightarrow [0, \infty )\) be a continuous function such that

$$ \alpha (u) \leq g(u) \leq \beta (u), $$
(1.4)

since \(\alpha ,\beta : [0, \infty ) \to [0, \infty )\) are two nondecreasing continuous functions. The reaction term \(f: [0,1] \times [0, \infty ) \rightarrow [0, \infty )\) is a continuous function,

$$ \mu (t) k(s) \leq f(t, s) \leq \eta (t) \varphi (s), $$
(1.5)

for some measurable functions \(\mu , \eta : [0,1] \rightarrow [0, \infty )\), and increasing continuous functions \(k,\varphi :[0, \infty )\rightarrow [0, \infty )\), \(f(t, 0)=0\), and the diffusion coefficient \(\mathcal{A}: [0,1] \times [0, \infty ) \rightarrow (0, \infty )\) is a continuous function,

$$ \xi (t) v(s) \leq \mathcal{A}(t, s) \leq \theta (t) w(s), $$
(1.6)

where \(v,w: [0, \infty ) \to (0, \infty )\) are nondecreasing functions, \(\xi ,\theta : [0,1] \to (0, \infty )\) are measurable functions, and \(\lambda >0\) is a real number. For every \(d \in (0,1)\), \(s \in [0, \infty )\), we have

$$ \int _{0}^{1} \mu (s) \theta (s)^{-1} ds < \infty ,\, 0 < \int _{0}^{d}G(0,s) \mu (s)\theta (s)^{-1} ds< \infty , $$
(1.7)

denoting G as Green’s function,

$$ G(t,s)= \textstyle\begin{cases} \begin{aligned} & 1-t, \quad 0 \leq s \leq t \leq 1; \\ & 1-s, \quad 0 \leq t \leq s \leq 1. \end{aligned} \end{cases} $$

Assume that there exist two constants \(C_{1}\), \(C_{2}\) that verify

$$ \inf _{0 < s \leq C_{1}} \frac{\lambda k((1-d)s)}{sw(g(s))} \geq \left ( \int _{0}^{d} G(0, s) \frac{\mu (s)}{\theta (s)} ds \right )^{-1}, $$
(1.8)

and

$$ \sup _{s \geq C_{2}} \frac{\lambda \varphi (s)}{sv(dg((1-b)s))} < \left ( \int _{0}^{1} \frac{\eta (s)}{\xi (s)} ds \right )^{-1}. $$
(1.9)

The assumptions we will make to obtain the existence of radial positive solution to problem (1.2) are then stated. \(\lambda > 0\), \(g: [0, \infty ) \rightarrow [0, \infty )\) is a continuous function, the reaction term \(f: [a, b] \times [0, \infty ) \rightarrow [0, \infty )\) is continuous with \(f(\cdot , 0) = 0\), and the diffusion coefficient \(\mathcal{A}: [a, b] \times [0, \infty ) \rightarrow (0, \infty )\) is continuous and satisfies

$$ \mu (x) v(s) \leq \mathcal{A}(x, s) \leq \theta (x) \eta (s), $$
(1.10)

where \(v, \eta : [0, \infty ) \rightarrow (0, \infty )\) are nondecreasing measurable functions, and \(\mu , \theta : [a, b] \rightarrow (0, \infty )\) are measurable functions. We set

$$ C = \frac{(ab)^{N-2}}{b^{N-2} - a^{N-2}}, \quad B = \frac{b^{N-2}}{b^{N-2} - a^{N-2}}. $$
(1.11)

Now, we are ready to state our main results

Theorem 1.1

Under assumptions (1.5)–(1.9), problem (1.1) has a positive solution.

Theorem 1.2

We get the uniqueness of a positive solution to the problem

$$ \textstyle\begin{cases} - \mathcal{A} \Big( \displaystyle{\int _{0}^{1}} g(u) d y \Big) u''= \lambda f(t,u) \quad t \in (0,1), \\ u'(0)=u(1)=0. \end{cases} $$
(1.12)

Under this assumption

$$\begin{aligned}& \exists \, M > 0, \forall s \in [0, \infty ):\quad \mathcal{A}(s) \geq M. \end{aligned}$$
(1.13)
$$\begin{aligned}& \Big( f(t, s_{1})- f(t, s_{2}) \Big)( s_{1} - s_{2}) \leq C | s_{1} - s_{2}|^{2}, \end{aligned}$$
(1.14)

and

$$ c_{1} c_{2}\| f(\cdot ,0) \|_{2} < ( M - \lambda C)^{2}, \quad \lambda C< M, $$
(1.15)

where \(c_{1}\), \(c_{2}\) are constants Lipschitz of \(\mathcal{A}\), f respectively, and \(\| f(\cdot ,0) \|_{2}= \Big( \int _{0}^{1} |f(t,0)|^{2}\Big)^{ \frac{1}{2}}\).

The paper is organized as follows. In Sect. 2, we prove Theorems 1.1 and 1.2. In Sect. 3, we introduce Theorems 3.1 and 3.2 that are dedicated to the radial case of problem (1.2), together with their proofs.

2 Proof of Theorems 1.1 and 1.2

Before proving the earlier theorems, we first need to establish the following theorem.

Theorem 2.1

(Guo-Krasnosel’skii)

[25] Let E be a Banach space, define a cone P on E, \(\Omega _{1}\) and \(\Omega _{2}\) two open bounded sets on E such that \(0\in \Omega _{1}\), \(\overline{\Omega _{1}} \subset \Omega _{2}\). Let \(S:P \cap (\overline{\Omega _{2}} \setminus \Omega _{1} ) \longrightarrow P\) be a completely continuous operator, such that one of the following conditions is satisfied:

  1. 1.

    \(\| Sx \| \leq \| x \| \) for all \(x \in P \cap \partial \Omega _{1} \) and \(\| Sx \| \geq \| x \| \) for all \(x \in P \cap \partial \Omega _{2} \).

  2. 2.

    \(\| Sx \| \geq \| x \| \) for all \(x \in P \cap \partial \Omega _{1} \) and \(\| Sx \| \leq \| x \| \) for all \(x \in P \cap \partial \Omega _{2} \).

Then, S admits at least one fixed point in \(P \cap ( \overline{\Omega _{2}} \setminus \Omega _{1} )\).

2.1 Proof of Theorem 1.1

Consider the following problem

$$ \textstyle\begin{cases} -u''(t)= \psi (t) \qquad t \in (0, 1), \\ u'(0)= u(1)=0, \end{cases} $$
(2.1)

which has a unique solution, given by

$$ \forall t \in [0, 1]:\quad u(t) = \int _{0}^{1} G(t, s) \psi (s) ds, $$

where \(\psi : [0, 1] \to \mathbb{R}\) is a continuous function. Indeed, \(u \in C([0, 1], \mathbb{R}) \) is a solution to (2.1), which implies that u is a solution to (1.1):

$$ \forall t \in [0, 1]:\quad u(t) = \int _{0}^{1} G(t, s) \dfrac{\lambda f(s,u(s))}{ \mathcal{A} \Big(s, \displaystyle{\int _{0}^{1}} g(u) d y \Big)}ds. $$
(2.2)

By replacing ψ with the function

$$ s \mapsto \frac{\lambda f(s,u(s))}{ \mathcal{A}\Big(s, \int _{0}^{1} g(u) \, dy \Big)}, $$

if u satisfies (2.2), then \(u \in C^{2}([0, 1],\mathbb{R}) \) and

$$ \forall t \in [0, 1]:\quad u'(t)= - \lambda \int _{0}^{t} \frac{ f(s,u(s))}{ \mathcal{A}\Big(s, \int _{0}^{1} g(u) \, dy \Big)} \, ds, \quad u''(t)= -\lambda \frac{ f(s,u(s))}{ \mathcal{A}\Big(s, \int _{0}^{1} g(u) \, dy \Big)}. $$

Since \(u'(0) = u(1) = 0 \), it follows that u is a solution to (2.1).

Define the following map

$$ \begin{aligned} S : C([0, 1], \mathbb{R}) & \rightarrow C([0, 1], \mathbb{R}) \\ u & \mapsto S u, \end{aligned} $$

where

$$ \forall t \in [0,1]: \quad Su(t) = \int _{0}^{1} G(t, s) \frac{\lambda f(s,u(s))}{ \mathcal{A} \Big(s, \int _{0}^{1} g(u) \, dy \Big)} \, ds. $$

We seek a positive fixed point of the map S by applying Theorem 2.1. Let \(E = C([0, 1], \mathbb{R}) \) and \(F = \{ u \in E \mid u(t) \geq 0 \} \). The map \(S : (F, \| \cdot \|_{\infty}) \to (F, \| \cdot \|_{\infty}) \) is completely continuous. We prove that S is continuous.

Let \((u_{j})_{j \in \mathbb{N}} \subset F \) be a sequence such that

$$ \lim _{j \rightarrow \infty} \|u_{j}-u\|_{\infty}=0. $$
(2.3)

By (2.3), there exists \(c > 0 \) such that

$$ \forall j \in \mathbb{N}: \quad u_{j}, u \in [0, c]. $$
(2.4)

Since \(0 \leq G \leq 1 \), we have

$$ 0 \leq \| Su_{j} - Su \|_{\infty }\leq \int _{0}^{1} \left | \frac{\lambda f(s,u_{j}(s))}{\mathcal{A} \Big(s, \int _{0}^{1} g(u_{j}) \, dy \Big)} - \frac{\lambda f(s,u(s))}{\mathcal{A} \Big(s, \int _{0}^{1} g(u) \, dy \Big)} \right | ds. $$
(2.5)

From the uniform continuity of g on \([0, c] \), (2.3), and (2.4), we obtain

$$ \lim _{j \rightarrow \infty} \int _{0}^{1} g(u_{j}) \, dy = \int _{0}^{1} g(u) \, dy. $$
(2.6)

According to (2.3)–(2.4), (2.6), and the continuity of f, \(\mathcal{A} \), and g, we obtain

$$ \forall s \in [0,1]:\quad \lim _{j\rightarrow +\infty} \frac{\lambda f ( s,u_{j})}{ \mathcal{A} \left (s, \int _{0}^{1}g(u_{j}) dy \right ) } = \frac{\lambda f (s,u(s))}{ \mathcal{A}\left (s,\int _{0}^{1}g(u) dy \right ) }, $$
(2.7)

and

$$ \exists \, m > 0, \forall j \in \mathbb{N}, \forall s \in [0,1]: \quad \frac{\lambda f (s,u_{j}(s))}{ \mathcal{A}\left (s,\int _{0}^{1}g(u_{j}) dy \right ) } \leq m. $$
(2.8)

Using the Lebesgue dominated convergence theorem and (2.5)–(2.8), we deduce

$$ \lim _{j \rightarrow +\infty}\left \|Su_{j}\right \|_{\infty}= \|S u \|_{\infty}. $$

So, S is continuous. Next, we claim the compactness of S. Let \(M \subset F \) be a bounded set, denote

$$ W=\{S u ; u \in M\},\qquad W(t)=\{S u(t) ; u \in M\}. $$

For all \(t_{1}, t_{2} \in [0, 1] \) and \(u \in M \), we have

$$ \left | S u\left (t_{1}\right )-S u \left (t_{2}\right )\right | \leq \int _{0}^{1} \left | G(t_{1}, s)-G\left (t_{2}, s\right ) \right | \frac{\lambda f ( s,u(s))}{\mathcal{A} \left (s,\int _{0}^{1}g(u)dy \right )} d s. $$

From the continuity of f, \(\mathcal{A} \), and g, we get that

$$ s \mapsto \frac{\lambda f ( s,u(s))}{\mathcal{A} \left (s,\int _{0}^{1}g(u)dy \right )} $$

is bounded independently of u. The Green function G is uniformly continuous and bounded on \([0, 1] \times [0, 1] \), which implies that the set W is relatively compact according the Arzelà-Ascoli theorem. Therefore, S is compact.

Setting the cone

$$ P= \{ u \in E, \, \min _{t \in [0, d]} u(t) \geq (1-d)\|u \|_{\infty} \}, $$

see [25], then \(S (P) \subset P \). We have,

$$ S u(0) = \lambda \int _{0}^{1} G(0, s) \frac{ f ( s,u(s))}{\mathcal{A} \left (s, \int _{0}^{1}g(u)dy\right )} d s . $$

Since,

$$ s \mapsto G(0, s) \frac{ f ( s,u(s))}{\mathcal{A} \left (s, \int _{0}^{1}g(u)dy\right )} $$

is nonnegative on \([0, 1] \) and \([0, d] \subset [0, 1] \), using (1.5) and (1.6) implies

$$ S u(0) \geq \frac{ \lambda }{ w \left ( \int _{0}^{1} g(u) dy\right )} \int _{0}^{d} G(0, s) \frac{ \mu (s) k(u(s))}{ \theta (s)} d s. $$

For \(u \in P \), we get

$$ (1-d)\|u \|_{\infty} \leq u \, \, \text{in} \, [0, d],\quad \text{and} \quad u \leq \|u \|_{\infty} \quad \text{in} \, [0, 1]. $$
(2.9)

Since β, k and w are nondecreasing functions, it follows that

$$ Su(0) \geq \dfrac{\lambda k \left ((1-d)\|u\|_{\infty}\right )}{w( \beta ( \|u\|_{\infty} ))} \int _{0}^{d} G(0, s) \frac{\mu (s)}{ \theta (s)}ds. $$

If \(\|u\|_{\infty} \leq C_{1} \), in view of the condition (1.8), we obtain

$$ \|S u\|_{\infty} \geq Su(0) \geq \|u\|_{\infty}. $$

Let us set

$$ \Omega _{1}= \{ u \in E; \quad \|u\|_{\infty} \leq C_{1} \}. $$

We get

$$ \forall u \in P\cap \partial \varOmega _{1}: \quad \|S u\|_{\infty} \geq \|u\|_{\infty}. $$
(2.10)

On the other hand, for \(u \in P\) and \(s \in [0,d]\), \(g\geq 0\) is nondecreasing function. Then,

$$ \int _{0}^{d} g(u(s))ds \geq dg ((1-d)\|u\|_{\infty} ). $$

According to (1.5)-(1.7), and (2.9), φ, v and α are also increasing functions, and it follows that

$$ \begin{aligned} \forall t \in [0,1]: \quad S u(t) & \leq \dfrac{\lambda \varphi ( \|u\|_{\infty})}{ v(\int _{0}^{d} g(u) dy)} \int _{0}^{1} G(t, s) \frac{ \eta (s)}{ \xi (s)} d s \\ & \leq \dfrac{ \lambda \varphi ( \|u\|_{\infty})}{ v(d \alpha ((1-d)\|u\|_{\infty} )} \int _{0}^{1} \frac{ \eta (s)}{ \xi (s)} d s. \end{aligned} $$

If \(\|u\|_{\infty} \geq C_{2}\) and (1.9), we obtain

$$ \forall t \in [0,1]: \quad Su(t)\leq \|u\|_{\infty}. $$

From this set

$$ \Omega _{2}= \{ u \in E; \, \|u\|_{\infty} \leq C_{2} \}, $$

we have,

$$ \forall u \in P\cap \partial \varOmega _{2}: \quad \|S u\|_{\infty} \leq \|u\|_{\infty}. $$
(2.11)

Using Theorem 2.1, we deduce that S possesses a fixed point u in \(P \cap ( \overline{\Omega _{2}} \setminus \Omega _{1} )\). From choosing the suitable cone, we get that u is a positive solution to problem (1.1). Here,

$$ \forall t \in [0, 1]:\quad u(t) = \lambda \int _{0}^{1} G(t, s) \dfrac{ f ( s,u(s))}{ \mathcal{A} \Big(s, \displaystyle{\int _{0}^{1}} g(u) d y \Big)}ds. $$

This completes the proof.  □

2.2 Proof of Theorem 1.2

Consider u is a positive solution to

$$ - \mathcal{A} \Big( \int _{0}^{1} g(u) d y \Big) u''= \lambda f(t,u) \quad t \in (0,1). $$

Multiplying the above equation by u, and then integrating by parts over \([0,1]\) with \(u'(0) = u(1) = 0 \), we get

$$ \mathcal{A} \Big( \displaystyle{\int _{0}^{1}} g(u) d y \Big) \int _{0}^{1} u^{\prime \,2} dt = \lambda \int _{0}^{1} f(t,u)u dt. $$
(2.12)

Combining (1.13) and (1.14) and using the Cauchy-Schwarz inequality, \(\|u\|_{2} \leq \|u'\|_{2}\) and (2.12), we obtain

$$ \begin{aligned} M \int _{0}^{1} u^{\prime \,2} dt &\leq \lambda C \int _{0}^{1} | u |^{2} dt + \lambda \int _{0}^{1}f(t,u)u dt \\ & \leq \lambda C \|u'\|_{2}^{2} + \lambda \|f(\cdot ,u)\|_{2} \|u'\|_{2}. \end{aligned} $$

This leads to

$$ \|u'\|_{2} \leq \frac{\| \lambda f(\cdot ,u)\|_{2}}{ M - \lambda C}. $$
(2.13)

Given that \(M > \lambda C\), let us assume that there are two positive solutions \(u_{1}\) and \(u_{2}\) to (1.12), and then we have

$$\begin{aligned}& -\mathcal{A} \Big( \int _{0}^{1} g(u_{1}) d y \Big) u^{\prime \prime }_{1} = \lambda f(t,u_{1}), \end{aligned}$$
(2.14)
$$\begin{aligned}& - \mathcal{A} \Big( \int _{0}^{1} g(u_{2}) d y\Big) u^{\prime \prime }_{2} = \lambda f(t,u_{2}). \end{aligned}$$
(2.15)

From (2.14) and (2.15), note \(u_{3} = u_{1} - u_{2}\), we derive that

$$ \begin{aligned} -\mathcal{A} \Big( \int _{0}^{1} g(u_{1}) d y \Big) u^{\prime \prime }_{3} & = \Bigl\{ \mathcal{A} \Big( \int _{0}^{1} g(u_{1}) d y \Big)- \mathcal{A} \Big( \int _{0}^{1} g(u_{2}) d y \Big) \Bigr\} u^{\prime \prime }_{2} \\ &+\lambda \int _{0}^{1} \Big( f(t,u_{1}) - f(t,u_{2})\Big)dt. \end{aligned} $$
(2.16)

Multiplying (2.16) by \(u_{3}\) and then integrating by parts from 0 to 1 with \(u'_{3}(0) = u_{3}(1) = 0\) gets

$$ \begin{aligned} \mathcal{A}\Big( \int _{0}^{1} g(u_{1}) d y \Big) \| u^{\prime }_{3}\|_{2}^{2} &= - \Biggl\{ \mathcal{A}\Big( \int _{0}^{1} g(u_{1}) d y \Big)- \mathcal{A} \Big( \int _{0}^{1} g(u_{2}) d y \Big)\Biggr\} \int _{0}^{1} u^{\prime }_{2} u^{\prime }_{3}dt \\ & + \lambda \int _{0}^{1} \Big( f(t,u_{1}) - f(t,u_{2}) \Big)u_{3} dt \\ &:= I+ J. \end{aligned} $$
(2.17)

Using (2.13) and (1.14), we obtain

$$ \begin{aligned} |I| & \leq c_{1} \Big| \int _{0}^{1} g(u_{1}) dy - \int _{0}^{1} g(u_{2}) dy \Big| \| u^{\prime }_{2}\|_{2}\| u^{\prime }_{3}\|_{2} \\ &\leq \frac{c_{1} c_{2}}{M - \lambda C} \| f( \cdot ,0)\|_{2} \| u_{3} \|_{2}^{2}, \end{aligned} $$
(2.18)

and

$$ J\leq \lambda C \int _{0}^{1} | u_{3}| dt =\lambda C \| u_{3}\|_{2}^{2} \leq \lambda C \| u^{\prime }_{3}\|_{2}^{2}. $$
(2.19)

According to (2.17), (2.19), and (1.13), we get

$$ M \| u^{\prime }_{3}\|_{2}^{2} \leq \Big( \frac{c_{1} c_{2}}{M - \lambda C} \| f(\cdot ,0) \|_{2} + \lambda C\Big) \| u^{\prime }_{3}\|_{2}^{2} . $$

This leads to

$$ \Big( M - \lambda C- \frac{c_{1} c_{2}}{M - \lambda C}\| f( \cdot ,0) \|_{2} \Big) \| u^{\prime }_{3}\|_{2}^{2} \leq 0. $$

Using (1.15), we can conclude that \(\| u_{3}\|_{2} = 0\). Then, \(u_{1} = u_{2}\). Now, we complete the proof. □

3 Existence of the radial positive solution to problem (1.2)

We obtained the existence of a positive radial solution to problem (1.2) under the following hypotheses. For \(\lambda >0\) and \(g: [0, \infty ) \rightarrow [0, \infty )\) is a continuous function, the reaction term \(f: [a, b] \times [0, \infty ) \rightarrow [0, \infty )\) is a continuous function with \(f(\cdot , 0)=0\), and the diffusion coefficient \(\mathcal{A}: [a, b] \times [0, \infty ) \rightarrow (0, \infty )\) is a continuous function, which satisfies

$$ \mu (x) v(s)\leq \mathcal{A}(x, s) \leq \theta (x) \eta (s), $$
(3.1)

where \(v,\eta : [0, \infty ) \rightarrow (0, \infty )\) are nondecreasing measurable functions, and \(\mu ,\theta : [a, b] \rightarrow (0, \infty )\) are measurable functions.

Theorem 3.1

Assume that

$$ \textstyle\begin{cases} \begin{aligned} & \lim \limits _{u \rightarrow 0^{+}} \frac{f(b^{1-t}a^{t}, u)}{u} = 0 \quad \textit{uniformly for } 0 < t < 1, \quad \textit{if}\, N = 2, \\ & \lim \limits _{u \rightarrow 0^{+}} \frac{ f((\frac{C}{B-t})^{\frac{1}{N-2}},u)}{u}= 0 \quad \textit{uniformly for } 0 < t < 1, \quad \textit{if} \, N \geq 3, \end{aligned} \end{cases} $$
(3.2)

and

$$ \textstyle\begin{cases} \begin{aligned} & \lim \limits _{u \rightarrow 0^{+}} \frac{f(b^{1-t}a^{t}, u)}{u} = \infty \quad \textit{uniformly for } 0 < t < 1, \quad \textit{if}\, N = 2, \\ & \lim \limits _{u \rightarrow 0^{+}} \frac{ f((\frac{C}{B-t})^{\frac{1}{N-2}},u)}{u} =\infty \quad \textit{uniformly for } 0 < t < 1, \quad \textit{if} \, N \geq 3, \end{aligned} \end{cases} $$
(3.3)

where C, B are defined on (1.11). For \(L> 0\), there exists a sufficiently large constant \(\lambda _{L} > 0\) such that for \(\lambda > \lambda _{L}\) and (3.2) is true, or \(\lambda < \lambda _{L}\) and (3.3) is true, then the problem (1.2) admits a positive solution u such that \(\underset{t \in [0,1]}{\sup } u(t) \leq L\).

Theorem 3.2

Assume that

$$ \textstyle\begin{cases} \begin{aligned} & \lim \limits _{u \rightarrow \infty} \frac{f(b^{1-t}a^{t}, u)}{u} = 0 \quad \textit{uniformly for } 0 < t < 1, \quad \textit{if}\, N = 2, \\ & \lim \limits _{u \rightarrow \infty} \frac{ f((\frac{C}{B-t})^{\frac{1}{N-2}},u)}{u}=0\quad \textit{uniformly for } 0 < t < 1, \quad \textit{if} \, N \geq 3, \end{aligned} \end{cases} $$
(3.4)

and

$$ \textstyle\begin{cases} \begin{aligned} & \lim \limits _{u \rightarrow \infty} \frac{f(b^{1-t}a^{t}, u)}{u} = \infty \quad \textit{uniformly for } 0 < t < 1, \quad \textit{if}\, N = 2, \\ & \lim \limits _{u \rightarrow \infty} \frac{ f((\frac{C}{B-t})^{\frac{1}{N-2}},u)}{u}=\infty \quad \textit{uniformly for } 0 < t < 1, \quad \textit{if} \, N \geq 3, \end{aligned} \end{cases} $$
(3.5)

where C, B are defined on (1.11). For any strictly positive number l, there exists a sufficiently large constant \(\lambda _{l} > 0\). Since \(\lambda > \lambda _{l}\) and (3.4) is true or \(\lambda < \lambda _{l}\) and (3.5) is true, then the problem (1.2) admits a positive solution u such that \(\underset{t \in [0,1]}{\min} u(t) \geq l\).

We give some basic results that will be used in the proof, and we will utilize updated versions of the Gustafson and Schmitt theorems, as outlined in references [21, 26].

Theorem 3.3

Let X be a Banach space, P is cone in X. Suppose there are two real numbers l, L where \(0 < l < L\). Consider \(T: D \rightarrow P\), where \(D= \{ u \in P: \, l \leq \| u \| \leq L \}\) is a compact continuous operator:

  1. 1.

    \(u \in D\), \(\xi <1\) and \(u= \xi T u \), then \(\| u \| \neq L\).

  2. 2.

    \(u \in D\), \(\xi > 1\) and \(u= \xi T u \), then \(\| u \| \neq l \).

  3. 3.

    \(\underset{\| u \| =l}{\inf} \| Tu \| > 0\).

Hence, there exists a fixed point for T in D.

Theorem 3.4

Let X be a Banach space, define a cone P on X. Suppose there are two real numbers l and L, where \(0 < l < L\). Assume that \(T: D \rightarrow P\), where \(D= \{u \in P: \, l \leq \|u\| \leq L \}\) is a compact continuous operator:

  1. 1.

    \(u \in D\), \(\xi >1\) and \(u= \xi T u \) then \(\| u \| \neq L\).

  2. 2.

    \(u \in D\), \(\xi < 1\) and \(u= \xi T u \) then \(\| u \| \neq l \).

  3. 3.

    \(\underset{\| u \| =L }{\inf} \| Tu \| > 0\).

Hence, there exists a fixed point for T in D.

Lemma 3.1

[21] Suppose that \(\eta : [0,1] \rightarrow [ 0, + \infty )\) is a continuous function whose graph is concave down such that \(\|\eta \| := \max \{ \eta (t): t \in [0,1] \}\). For every \(t \in [\alpha , 1-\alpha ] \) with \(0 < \alpha < \frac{1}{2} \), we get \(\alpha \| \eta \| \leq \eta (t)\).

Lemma 3.2

[21] Assume that \(\dfrac{h(t,u)}{\mathcal{A} \Big(t, \displaystyle{\int _{0}^{1}} j(u) dy \Big)} > 0\) for any \(t \in (0,1)\) and \(u > 0\). If \(L> 0\), we have \(0< \inf \{ \|T u \|: \, u \in P, \| u \| = L \} \).

3.1 Proof of Theorem 3.1

See [28], problem (1.2) can be transformed, and when \(N = 2\), we suppose \(r=b^{1-t}a^{t}\), \(\quad U(y)=u(r)\), \(\quad h(t, U)=f(b^{1-t}a^{t}, U)\), \(\quad q_{2}(t)= \Big(b^{1-t}a^{t} \log (\frac{b}{a}) \Big)^{2} \) and

$$ \begin{aligned} \mathcal{A} \Big( t, \int _{0}^{1} j(U(y)) dy \Big)=& \mathcal{A} \Big(b^{1-t}a^{t}, \omega \int _{a}^{b}r g(u(r))dr \Big) \\ =& \mathcal{A} \Big( b^{1-t}a^{t}, \omega b^{2} \log (\frac{a}{b}) \int _{0}^{1} (\frac{a}{b})^{2s} g(U(s))ds \Big). \end{aligned} $$

For \(N \geq 3\), we set

$$\begin{aligned}& t=B- Cr^{-N+2},\quad U(y)=u(r),\quad h(t, U)= f \Big( (\frac{C}{B-t})^{ \frac{1}{N-2}},U\Big),\\& q_{N}(t)= (N-2)^{-2} \frac{C^{\frac{2}{N-2}}}{(B-t)^{2 \frac{N-1}{N-2}}}, \end{aligned}$$

and

$$ \begin{aligned} \mathcal{A} \Big( t, \int _{0}^{1} j(U(y)) dy \Big)=& \mathcal{A} \Big( (\frac{C}{B-t})^{\frac{1}{N-2}},\, \omega \int _{a}^{b}r^{N-1}g(u(r))dr \Big) \\ =& \mathcal{A} \Big( (\frac{C}{B-t})^{\frac{1}{N-2}},\, \frac{\omega}{C(N-2)} \int _{0}^{1} (\frac{C}{B-s})^{2\frac{N-1}{N-2}} g(U(s))ds \Big). \end{aligned} $$

By above, this one-dimensional nonlocal elliptic problem is the transformation of problem (1.2)

$$ \textstyle\begin{cases} - \mathcal{A} \Big( t, \displaystyle{\int _{0}^{1}} j(U(\tau )) d \tau \Big) U''= \lambda q_{N}(t)h(t, U) \quad t \in (0,1), \\ U(0)=U(1)=0. \end{cases} $$
(3.6)

Remark 3.1

We can obtain the existence of positive radial solution to problem (3.6) by applying the Guo-Krasnosel’ski theorem. In addition, we can get the uniqueness by replacing \([ 0 ,1] \) to \([ a, b]\) in (1.15) with more modifications in (1.14).

Let us define the operator \(T :P \rightarrow E\), \(U \mapsto TU\), such that

$$ TU(t)= \lambda \int _{0}^{1}G(t,s)q_{N}(s) \frac{h(s, U(s)) }{\mathcal{A} \Big(s,\displaystyle{ \int _{0}^{1}} j(U) dy \Big)}ds, $$
(3.7)

where G is the Green function,

$$ G(t,s)= \textstyle\begin{cases} \begin{aligned} & s(1-t), \quad 0 \leq s \leq t \leq 1; \\ & t(1-s), \quad 0 \leq t \leq s \leq 1, \end{aligned} \end{cases} $$

which is proved in [27], satisfied

$$ \begin{aligned} G(t,s)& > 0 \quad \text{on} \quad (0,1)\times (0,1), \\ G(t,s)& \leq G(s,s)= s(1-s), \quad 0\leq s,\quad t \leq 1, \end{aligned} $$

and

$$ G(t,s) \geq \frac{1}{4} G(s,s)= \frac{1}{4} s(1-s), \quad \frac{1}{4} \leq t \leq \frac{3}{4},\quad 0 \leq s \leq 1. $$

Define a cone P and a set D on E,

$$ P= \{U\in E: U(t) \geq 0, U(0)=0 = U(1)\},\, \, D= \{ U \in P: U(t) \in [ 0, L] \},\, L> 0. $$

Using the Arzelà-Ascoli theorem, we get the compactness and continuity of mapping \(T: D \rightarrow P\). To finalize the proof of theorem, we will use Theorem 3.4. For any \(U \in D\) such that \(U = \xi T U\), we have

$$ U(t)= \xi \lambda \int _{0}^{1}G(t,s)q_{N}(s) \frac{h(s, U(s)) }{\mathcal{A}\Big(s, \displaystyle{\int _{0}^{1}} j(U) dy \Big)}ds, \quad \xi > 1 . $$
(3.8)

Noting that \(\tilde{U}(t)\) is solution to (3.6), the graph of Ũ is concave downward, and we can apply Lemma 3.1 with \(\alpha = \frac{1}{4}\), which yields

$$ \frac{1}{4} \| \tilde{U} \| \leq \tilde{U}(t), \quad \forall t \in \Big[ \frac{1}{4}, \frac{3}{4} \Big]. $$
(3.9)

We define

$$ \min _{t \in \Big[ \frac{1}{4}, \frac{3}{4} \Big], \frac{L}{4} \leq U \leq L} \frac{h(t, U)}{U} = m_{L} . $$

We choose \(\lambda \geq \lambda _{L}\) and ϵ such that

$$ \textstyle\begin{cases} \begin{aligned} & \lambda _{L} > \dfrac{16 \eta \Big( \omega b^{2} \log (\frac{a}{b}) \int _{0}^{1} (\frac{a}{b})^{2y} g(\tilde{U})dy \Big)}{m_{L} \int _{\frac{1}{4}}^{\frac{3}{4}} G(s,s) \Big(b^{1-s}a^{s} \log (\frac{b}{a}) \Big)^{2} \Big( \theta (b^{1-s}a^{s})\Big)^{-1} ds}, \quad \text{if N $=$ 2,} \\ & \lambda _{L} > \dfrac{16 \eta \Big( \frac{\omega}{C(N-2)} \int _{0}^{1} (\frac{C}{B-y})^{2\frac{N-1}{N-2}} g(\tilde{U})dy \Big)}{m_{L} \int _{\frac{1}{4}}^{\frac{3}{4}} G(s,s) C^{\frac{2}{N-2}}\Big( (N-2)^{2}(B-s)^{2 \frac{N-1}{N-2}} \theta \Big((\frac{C}{B-s})^{\frac{1}{N-2}} \Big) \Big)^{-1} ds}, \quad \text{if N} \geq 3, \end{aligned} \end{cases} $$

and

$$ \textstyle\begin{cases} \begin{aligned} & 0< \epsilon < \dfrac{\eta \Big( \omega b^{2} \log (\frac{a}{b}) \int _{0}^{1} (\frac{a}{b})^{2y} g(U)dy \Big) }{\lambda \int _{0}^{1} G(s,s) \frac{C^{\frac{2}{N-2}}}{(N-2)^{2}(B-s)^{2 \frac{N-1}{N-2}}} \Big( \theta ( b^{1-s}a^{s})\Big)^{-1} ds }, \quad \text{if N}=2, \\ &0< \epsilon < \dfrac{\eta \Big( \frac{\omega}{C(N-2)} \int _{0}^{1} (\frac{C}{B-y})^{2\frac{N-1}{N-2}} g(U)dy \Big)}{ \lambda \int _{0}^{1} G(s,s) \Big(b^{1-s}a^{s} \log (\frac{b}{a}) \Big)^{2} \Big( \theta \Big( (\frac{C}{B-s})^{\frac{1}{N-2}} \Big) \Big)^{-1} ds}, \quad \text{if N} \geq 3. \end{aligned} \end{cases} $$

Then, there exists \(l>0\) such that \(0 \leq U \leq l\). Using (3.2), the function \(h(t, U)\) is bounded by ϵU. Define

$$ D_{1}= \{ U \in P: \quad U(t) \in [l, L], \, t \in (0,1) \}. $$

We show that there is no solution \(U \in D_{1}\) satisfying (3.8) with \(\|U\| = L\). By the absurd, if \(N=2\), we have

$$ \begin{aligned} \| \tilde{U} \| & \geq \min _{t \in [\frac{1}{4} ,\frac{3}{4}] } \tilde{U}(t) \geq \xi \lambda \int _{0}^{1} \Big( \min _{t \in [ \frac{1}{4} ,\frac{3}{4}] } G(t,s)\Big) q_{N}(s) \frac{h(s, \tilde{U}(s)) }{\mathcal{A} \Big(s,\displaystyle{ \int _{0}^{1}} j(\tilde{U}) dy \Big)} ds \\ & \geq \frac{\xi \lambda m_{L}}{4 \eta \Big( \omega b^{2} \log (\frac{a}{b}) \int _{0}^{1} (\frac{a}{b})^{2y} g(\tilde{U}(y))dy \Big) } \int _{\frac{1}{4}}^{\frac{3}{4}} G(s,s) \Big(b^{1-s}a^{s} \log ( \frac{b}{a}) \Big)^{2} \frac{ \tilde{U}(s)}{\theta (b^{1-s}a^{s})} ds. \end{aligned} $$
(3.10)

From (3.9) and (3.10), we get

$$ \begin{aligned} L= \| \tilde{U}\| & \geq \frac{\lambda _{L} \xi m_{L}}{16 \eta \Big( \omega b^{2} \log (\frac{a}{b}) \int _{0}^{1} (\frac{a}{b})^{2y} g(\tilde{U})dy \Big)} \| \tilde{U} \| \int _{\frac{1}{4}}^{\frac{3}{4}} G(s,s) \frac{\Big(b^{1-s}a^{s} \log (\frac{b}{a}) \Big)^{2}}{\theta (b^{1-s}a^{s}) } ds \\ &> \xi \| \tilde{U} \| = \xi L> L. \end{aligned} $$

Since \(N\geq 3\),

$$ \begin{aligned} \| \tilde{U} \| &\geq \min _{t \in [\frac{1}{4} ,\frac{3}{4}] } \tilde{U}(t) \geq \xi \lambda \int _{0}^{1} \Big( \min _{t \in [ \frac{1}{4} ,\frac{3}{4}] } G(t,s)\Big) q(s) \frac{h(s, \tilde{U}(s)) }{\mathcal{A} \Big(s, \displaystyle{\int _{0}^{1}} j(\tilde{U}) dy \Big)} ds \\ & \geq \frac{\xi \lambda m_{L}}{4 \eta \Big( \frac{\omega}{C(N-2)} \int _{0}^{1} (\frac{C}{B-y})^{2\frac{N-1}{N-2}} g(\tilde{u})dy \Big) } \int _{\frac{1}{4}}^{\frac{3}{4}} G(s,s) \frac{C^{\frac{2}{N-2}}}{(N-2)^{2}(B-s)^{2 \frac{N-1}{N-2}}} \frac{\tilde{U}(s)}{\theta \Big( (\frac{C}{B-s})^{\frac{1}{N-2}} \Big)} ds. \end{aligned} $$
(3.11)

Combining (3.9) and (3.11), we obtain

$$ \begin{aligned} L= \| \tilde{U}\|\geq{}& \frac{\lambda _{L} \xi m_{L}}{16 \eta \Big( \frac{\omega}{C(N-2)} \int _{0}^{1} (\frac{C}{B-y})^{2\frac{N-1}{N-2}} g(\tilde{U})dy \Big) } \| \tilde{U} \| \\ &{}\times \int _{\frac{1}{4}}^{\frac{3}{4}} G(s,s) \frac{C^{\frac{2}{N-2}}}{(N-2)^{2}(B-s)^{2 \frac{N-1}{N-2}} \theta \Big((\frac{C}{B-s})^{\frac{1}{N-2}} \Big)} ds \\ >{}& \xi \| \tilde{U} \| = \xi L> L. \end{aligned} $$

This leads to a contradiction. Then, \(\| U \| \neq L\).

We will prove that \(\| U\|\neq l\). By the absurd, we get

$$ \begin{aligned} l= \| \tilde{U} \| &\leq \xi \lambda \epsilon \| U \| \int _{0}^{1} G(s,s) \frac{q_{N}(s) }{\mathcal{A} \Big(s,\displaystyle{\int _{0}^{1}} j(U) dy \Big)} ds \\ &\leq \xi \lambda \epsilon l \int _{0}^{1} G(s,s) \frac{q_{N}(s) }{\mathcal{A} \Big(s,\displaystyle{\int _{0}^{1}} j(U) dy \Big)}ds \\ & < \xi l < l, \end{aligned} $$

which leads to a contradiction. Therefore, \(\| U \| \neq l \).

Let us define

$$ \max _{t \in [\frac{1}{4}, \frac{3}{4}] \frac{L}{4} \leq U \leq L} \frac{h(t, U)}{U} = M_{L}. $$

By (3.3) and \(\lambda <\lambda _{L}, \sigma \) such that

$$ \textstyle\begin{cases} \begin{aligned} & \lambda _{L} \leq \dfrac{ \eta \Big( \omega b^{2} \log (\frac{a}{b}) \int _{0}^{1} (\frac{a}{b})^{2y} g(U)dy \Big) }{M_{L} \int _{0}^{1} G(s,s) \Big(b^{1-s}a^{s} \log (\frac{b}{a}) \Big)^{2} \Big( \theta (b^{1-s}a^{s}) \Big)^{-1} ds }, \quad \text{if N $=$ 2} \\ & \lambda _{L} \leq \dfrac{ \eta \Big( \frac{\omega}{C(N-2)} \int _{0}^{1} (\frac{C}{B-y})^{2\frac{N-1}{N-2}} g(U)dy \Big)}{M_{L} \int _{0}^{1} G(s,s) C^{\frac{2}{N-2}}\Big( (N-2)^{2}(B-s)^{2 \frac{N-1}{N-2}} \theta \Big((\frac{C}{B-s})^{\frac{1}{N-2}} \Big) \Big)^{-1} ds} , \quad \text{if N} \geq 3, \end{aligned} \end{cases} $$

and

$$ \textstyle\begin{cases} \sigma > \dfrac{16 \eta \Big( \omega b^{2} \log (\frac{a}{b}) \int _{0}^{1} (\frac{a}{b})^{2y} g(U)dy \Big)}{\lambda} \Big( \int _{ \frac{1}{4} }^{\frac{3}{4}} G(s,s) \frac{\Big(b^{1-s}a^{s} \log (\frac{b}{a}) \Big)^{2} }{\theta (b^{1-s}a^{s})} ds\Big)^{-1},\quad \text{if}\, N=2 \\ \sigma > \dfrac{16 \Big( \frac{\omega}{C(N-2)} \int _{0}^{1} (\frac{C}{B-y})^{2\frac{N-1}{N-2}} g(U)dy \Big) }{\lambda}\Big( \int _{ \frac{1}{4} }^{\frac{3}{4}} G(s,s) \frac{ C^{\frac{2}{N-2}}}{(N-2)^{2}(B-s)^{2 \frac{N-1}{N-2}}\theta \Big( (\frac{C}{B-s})^{\frac{1}{N-2}} \Big)} \Big)^{-1}, \\ \quad \text{if}\, N\geq 3. \end{cases} $$

We find

$$ h(t,U) > \sigma U,\quad \forall U \in (0, l ], \quad t \in (0,1), l \in (0, L). $$

Assume that \(U \in D\), where \(U = \xi T U\), \(\xi \in (0, 1)\). We claim \(\|U\| \neq L\). So, by the absurd, for \(N =2\)

$$ \begin{aligned} U(t)& = \xi \lambda \int _{0}^{1} G(t,s) q(s) \frac{h(s, U(s)) }{\mathcal{A} \Big(s, \displaystyle{\int _{0}^{1}} j(U) dy \Big)} ds \\ & < \frac{\xi \lambda _{L} M_{L}}{\eta \Big( \omega b^{2} \log (\frac{a}{b}) \int _{0}^{1} (\frac{a}{b})^{2y} g(U)dy \Big) } \int _{0}^{1} G(s,s)U(s) \frac{\Big(b^{1-s}a^{s} \log (\frac{b}{a}) \Big)^{2} }{\theta (b^{1-s}a^{s}) } ds. \end{aligned} $$

Then,

$$ \begin{aligned} L= \| U\| &< \frac{\xi \lambda _{L} M_{L} \| U \|}{\eta \Big( \omega b^{2} \log (\frac{a}{b}) \int _{0}^{1} (\frac{a}{b})^{2y} g(U)dy \Big) } \int _{0}^{1} G(s,s) \frac{\Big(b^{1-s}a^{s} \log (\frac{b}{a}) \Big)^{2} }{\theta (b^{1-s}a^{s}) } ds \\ & < \xi L < L. \end{aligned} $$

If \(N\geq 3\),

$$ \begin{aligned} U(t)={}& \xi \lambda \int _{0}^{1} G(t,s) q(s) \frac{h(s, U(s)) }{\mathcal{A}\Big(s, \displaystyle{\int _{0}^{1}} j(U) dy \Big)} ds \\ < {}& \frac{\xi \lambda _{L} M_{L}}{\eta \Big( \frac{\omega}{C(N-2)} \int _{0}^{1} (\frac{C}{B-y})^{2\frac{N-1}{N-2}} g(U)dy \Big)} \\ &{}\times \int _{0}^{1} G(s,s) U(s) \frac{ C^{\frac{2}{N-2}}}{(N-2)^{2}(B-s)^{2 \frac{N-1}{N-2}}\theta \Big( (\frac{C}{B-s})^{\frac{1}{N-2}} \Big)} ds, \end{aligned} $$

which implies

$$ \begin{aligned} L= \| U\| < {}& \frac{\xi \lambda _{L} M_{L} \| U \|}{\eta \Big( \frac{\omega}{C(N-2)} \int _{0}^{1} (\frac{C}{B-y})^{2\frac{N-1}{N-2}} g(U)dy \Big)} \\ &{}\times \int _{0}^{1} G(s,s) \frac{ C^{\frac{2}{N-2}}}{(N-2)^{2}(B-s)^{2 \frac{N-1}{N-2}} \theta \Big( (\frac{C}{B-s})^{\frac{1}{N-2}} \Big)} ds \\ < {}& \xi L < L. \end{aligned} $$

This result leads to a contradiction. Then, \(\|U \| \neq L\).

On the other hand, will prove \(\| U \|\neq l\). By the absurd, if \(N = 2\),

$$ U(t) \geq \xi \lambda \frac{\sigma }{\eta \Big( \omega b^{2} \log (\frac{a}{b}) \int _{0}^{1} (\frac{a}{b})^{2y} g(U)dy \Big) } \int _{\frac{1}{4}}^{\frac{3}{4}} G(t,s)U(s) \frac{\Big(b^{1-s}a^{s} \log (\frac{b}{a}) \Big)^{2} }{\theta (b^{1-s}a^{s}) } ds, $$

which leads to

$$ \begin{aligned} \| U \| &\geq \min _{t \in [\frac{1}{4} ,\frac{3}{4}] } U(t) \\ & \geq \xi \lambda \frac{ \sigma}{4 \eta \Big( \omega b^{2} \log (\frac{a}{b}) \int _{0}^{1} (\frac{a}{b})^{2y} g(U)dy \Big)} \int _{ \frac{1}{4} }^{\frac{3}{4}} G(s,s) U(s) \frac{\Big(b^{1-s}a^{s} \log (\frac{b}{a}) \Big)^{2} }{\theta (b^{1-s}a^{s}) } ds. \end{aligned} $$

In view of (3.9), we get

$$ \begin{aligned} l= \| U \| & \geq \xi \lambda l \frac{ \sigma}{16 \eta \Big( \omega b^{2} \log (\frac{a}{b}) \int _{0}^{1} (\frac{a}{b})^{2y} g(U)dy \Big)} \int _{ \frac{1}{4} }^{\frac{3}{4}} G(s,s) \frac{\Big(b^{1-s}a^{s} \log (\frac{b}{a}) \Big)^{2} }{\theta (b^{1-s}a^{s}) } ds \\ &> \xi l > l. \end{aligned} $$

For \(N\geq 3\),

$$\begin{aligned} U(t) \geq{}& \xi \lambda \frac{\sigma }{\eta \Big( \frac{\omega}{C(N-2)} \int _{0}^{1} (\frac{C}{B-y})^{2\frac{N-1}{N-2}} g(U)dy \Big)} \\ &{}\times \int _{\frac{1}{4}}^{\frac{3}{4}} G(t,s) U(s) \frac{ C^{\frac{2}{N-2}}}{(N-2)^{2}(B-s)^{2 \frac{N-1}{N-2}}\theta \Big( (\frac{C}{B-s})^{\frac{1}{N-2}} \Big)} ds. \end{aligned}$$

Then,

$$ \begin{aligned} \| U \| \geq{}& \min _{t \in [\frac{1}{4} ,\frac{3}{4}] } U(t) \\ \geq{}& \xi \lambda \frac{ \sigma}{4 \eta \Big( \frac{\omega}{C(N-2)} \int _{0}^{1} (\frac{C}{B-y})^{2\frac{N-1}{N-2}} g(U)dy \Big)} \\ &{}\times \int _{ \frac{1}{4} }^{\frac{3}{4}} G(s,s) U(s) \frac{ C^{\frac{2}{N-2}}}{(N-2)^{2}(B-s)^{2 \frac{N-1}{N-2}}\theta \Big( (\frac{C}{B-s})^{\frac{1}{N-2}} \Big)} ds. \end{aligned} $$

Using (3.9), we have

$$ \begin{aligned} l= \| U \| \geq{}& \xi \lambda l \frac{ \sigma}{16 \Big( \frac{\omega}{C(N-2)} \int _{0}^{1} (\frac{C}{B-y})^{2\frac{N-1}{N-2}} g(U)dy \Big)} \\ &{}\times \int _{ \frac{1}{4} }^{\frac{3}{4}} G(s,s) \frac{ C^{\frac{2}{N-2}}}{(N-2)^{2}(B-s)^{2 \frac{N-1}{N-2}}\theta \Big( (\frac{C}{B-s})^{\frac{1}{N-2}} \Big)} ds. \\ >{}& \xi l > l, \end{aligned} $$

which is a contradiction, confirming that \(\|U\| \neq l\).

All in all, by Lemma 3.2 and Theorem 3.3, the problem (1.2) has a positive solution U, such that \(l \leq U(t) \leq L\) for \(t \in (0, 1)\). The proof is finished. □

3.2 Proof of Theorem 3.2

For \(l>0\), we define

$$ \min _{t \in [\frac{1}{4}, \frac{3}{4}], \frac{l}{4} \leq U \leq l} \frac{ h(t, U)}{U}= m_{l} . $$

Using (3.4), \(\lambda \geq \lambda _{l}, \epsilon \) such that

$$ \textstyle\begin{cases} \lambda _{l} > 4 \eta \Big( \omega b^{2} \log (\frac{a}{b}) \int _{0}^{1} (\frac{a}{b})^{2y} g(\tilde{U})dy \Big) \Big( m_{l} \int _{ \frac{1}{4}}^{\frac{3}{4}} G(s,s) \frac{\Big(b^{1-s}a^{s} \log (\frac{b}{a}) \Big)^{2} }{\theta (b^{1-s}a^{s}) } ds \Big)^{-1}, \quad \text{if}\, N=2 \\ \lambda _{l} >4 \eta \Big( \frac{\omega}{C(N-2)} \int _{0}^{1} ( \frac{C}{B-y})^{2\frac{N-1}{N-2}} g(\tilde{U})dy \Big) \Big( m_{l} \int _{ \frac{1}{4}}^{\frac{3}{4}} G(s,s) \frac{ C^{\frac{2}{N-2}}}{(N-2)^{2}(B-s)^{2} \frac{N-1}{N-2}\theta \Big( (\frac{C}{B-s})^{\frac{1}{N-2}} \Big)} ds \Big)^{-1}, \\ \quad \text{if}\, \, N\geq 3. \end{cases} $$

and

$$ \textstyle\begin{cases} \epsilon < \frac{\eta \Big( \omega b^{2} \log (\frac{a}{b}) \int _{0}^{1} (\frac{a}{b})^{2y} g(U)dy \Big) }{\lambda} \Big( \int _{0}^{1} G(s,s) \frac{\Big(b^{1-s}a^{s} \log (\frac{b}{a}) \Big)^{2} }{\theta (b^{1-s}a^{s}) } ds \Big)^{-1}, \quad \text{if}\, N=2 \\ \epsilon < \frac{\eta \Big( \frac{\omega}{C(N-2)} \int _{0}^{1} (\frac{C}{B-y})^{2\frac{N-1}{N-2}} g(U)dy \Big) }{\lambda} \Big( \int _{0}^{1} G(s,s) \frac{ C^{\frac{2}{N-2}}}{(N-2)^{2}(B-s)^{2} \frac{N-1}{N-2}\theta \Big( (\frac{C}{B-s})^{\frac{1}{N-2}} \Big)} ds \Big)^{-1},\quad \text{if}\, \, N\geq 3, \end{cases} $$

we get

$$ \exists \, L_{0}>l, U \geq L_{0}:\, \, h(t, U) < \epsilon U. $$

Our goal is to use Theorem 3.3. To achieve this, we aim to show that \(U = \xi T U\), \(\xi \in (0,1)\) has no solution to \(\|L\| \geq L_{0}\). By the absurd, there exists a sequence \((L_{n})_{n\geq 1}\) approaching to infinity, where \(L_{n} \geq L_{0}\), a sequence \((\xi _{n} )_{n\geq 1}\) of real numbers, \(\xi _{n} \in (0,1)\), and a sequence of functions \((U_{n} )_{n\geq 1}\) such that \(\| U_{n}\|= L_{n}\), we have

$$ U_{n} = \xi _{n} TU_{n}, \quad n \in \mathbb{N}^{\ast}. $$
(3.12)

Denoting \(t_{n}\) is the unique point in \([0, 1]\) such that \(U_{n}(t_{n}) = \|U_{n}\|\). Then, if \(N=2\) and (3.12), we obtain

$$ \begin{aligned} L_{n} &= U(t_{n})= \xi _{n} \lambda \int _{0}^{1} G(t_{n},s) q(s) \frac{h(s, U_{n}(s)) }{\mathcal{A} \Big( s, \displaystyle{\int _{0}^{1}} j(U) dy \Big)} ds \\ & \leq \xi _{n} \lambda \frac{\epsilon \| U_{n}\| }{\eta \Big( \omega b^{2} \log (\frac{a}{b}) \int _{0}^{1} (\frac{a}{b})^{2y} g(U_{n})dy \Big) } \int _{0}^{1} G(s,s) \frac{\Big(b^{1-s}a^{s} \log (\frac{b}{a}) \Big)^{2} }{\theta (b^{1-s}a^{s}) } ds \\ & < \xi _{n} L_{n} < L_{n}. \end{aligned} $$

Since \(N\geq 3\), we have

$$ \begin{aligned} L_{n} &= U(t_{n})=\xi _{n} \lambda \int _{0}^{1} G(t_{n},s) q(s) \frac{h(s, U_{n}(s)) }{\mathcal{A} \Big( s, \displaystyle{\int _{0}^{1}} j(U) dy \Big)} ds \\ & \leq \xi _{n} \lambda \frac{\epsilon \| U_{n}\| }{\eta \Big( \frac{\omega}{C(N-2)} \int _{0}^{1} (\frac{C}{B-y})^{2\frac{N-1}{N-2}} g(U_{n})dy \Big)} \int _{0}^{1} G(s,s) \frac{ C^{\frac{2}{N-2}}}{(N-2)^{2}(B-s)^{2 \frac{N-1}{N-2}}\theta \Big( (\frac{C}{B-s})^{\frac{1}{N-2}} \Big)} ds \\ & < \xi _{n} L_{n} < L_{n}, \end{aligned} $$

which implies a contradiction.

For \(L > L_{0}\). Based on the preceding argument, \(U = \xi TU\), \(\xi \in (0,1)\) does not possess a solution if \(\|U\| = L\). Assume that

$$ D = \{ U(t) \in P, t \in [0,1]: l \leq \|U\|\leq L\}. $$

In this selected value of L, we obtain that the first condition of Theorem 3.3 is satisfied. Let \(U\in D\) such that \(U = \xi T U\) for \(\xi > 1\). We claim that \(\|U\| \neq l\). By the absurd, as \(\tilde{U} \in [0,l] \) and \(\|\tilde{U}\| =l\), if \(N=2\), it follows that

$$ \min _{t \in [\frac{1}{4} ,\frac{3}{4}] } \tilde{U}(t) > \frac{ \xi \lambda _{l}}{4 \eta \Big( \omega b^{2} \log (\frac{a}{b}) \int _{0}^{1} (\frac{a}{b})^{2y} g(\tilde{U})dy \Big)} m_{l} \int _{ \frac{1}{4}}^{\frac{3}{4}} G(s,s) \tilde{U}(s) \frac{\Big(b^{1-s}a^{s} \log (\frac{b}{a}) \Big)^{2} }{\theta (b^{1-s}a^{s}) } ds. $$

If \(N \geq 3\),

$$\begin{aligned} \min _{t \in [\frac{1}{4} ,\frac{3}{4}] } \tilde{U}(t) >{}& \frac{ \xi \lambda _{l}}{4 \eta \Big( \frac{\omega}{C(N-2)} \int _{0}^{1} (\frac{C}{B-y})^{2\frac{N-1}{N-2}} g(U)dy \Big)} m_{l}\\ &{}\times \int _{ \frac{1}{4}}^{\frac{3}{4}} G(s,s)\tilde{U}(s) \frac{ C^{\frac{2}{N-2}}}{(N-2)^{2}(B-s)^{2 \frac{N-1}{N-2}}\theta \Big( (\frac{C}{B-s})^{\frac{1}{N-2}} \Big)} ds. \end{aligned}$$

For \(\tilde{t} \in [ \frac{1}{4}, \frac{3}{4}] \), such that

$$ \tilde{U}( \tilde{t}) = \min _{t \in [\frac{1}{4}, \frac{3}{4}] } \tilde{U}(t). $$

So,

$$ \begin{aligned} \tilde{U}( \tilde{t}) & > \frac{\xi}{4 }\lambda _{l} \tilde{U}( \tilde{t} ) \int _{ \frac{1}{4}}^{\frac{3}{4}} G(s,s) \frac{q(s)}{\mathcal{A}\Big( s, \displaystyle{\int _{0}^{1}} j(\tilde{U}) dy \Big)} ds \\ & > \xi \tilde{U}( \tilde{t})> \tilde{U}( \tilde{t}). \end{aligned} $$

This also leads to a contradiction.

From Theorem 3.3 and Lemma 3.2, the problem (1.2) has a positive solution \(U\in D\), such that \(l < \| U \| < L\).

On the other hand, for \(l>0\), we define

$$ \max _{t \in [\frac{1}{4}, \frac{3}{4}], \frac{l}{4} \leq u \leq l} \frac{h(t, U)}{U}= M_{l} . $$

By (3.5), \(\lambda < \lambda _{l}, \sigma \) such that

$$ \begin{aligned} \textstyle\begin{cases} &0< \lambda _{l} < \dfrac{ \eta \Big( \omega b^{2} \log (\frac{a}{b}) \int _{0}^{1} (\frac{a}{b})^{2y} g(U)dy \Big)}{M_{l} \int _{0}^{1}G(s,s) \Big(b^{1-s}a^{s} \log (\frac{b}{a}) \Big)^{2} \Big( \theta (b^{1-s}a^{s})\Big)^{-1} ds }, \quad \text{if}\, N=2 \\ &0< \lambda _{l} < \dfrac{\eta \Big( \frac{\omega}{C(N-2)} \int _{0}^{1} (\frac{C}{B-y})^{2\frac{N-1}{N-2}} g(U_{n})dy \Big)}{M_{l} \int _{0}^{1}G(s,s) C^{\frac{2}{N-2}} \Big( (N-2)^{2}(B-s)^{2 \frac{N-1}{N-2}} \theta \Big((\frac{C}{B-s})^{\frac{1}{N-2}} \Big) \Big)^{-1} ds}, \quad \text{if}\, N\geq 3, \end{cases}\displaystyle \end{aligned} $$

and

$$ \begin{aligned} \textstyle\begin{cases} & \sigma > \dfrac{\eta \Big( \omega b^{2} \log (\frac{a}{b}) \int _{0}^{1} (\frac{a}{b})^{2y} g(U_{n})dy \Big)}{\lambda \int _{\frac{1}{4}}^{\frac{3}{4}} G(s,s) \Big(b^{1-s}a^{s} \log (\frac{b}{a}) \Big)^{2} \Big( \theta (b^{1-s}a^{s})\Big)^{-1} ds }, \quad \text{if}\, N=2 \\ & \sigma > \dfrac{\eta \Big( \frac{\omega}{C(N-2)} \int _{0}^{1} (\frac{C}{B-y})^{2\frac{N-1}{N-2}} g(U_{n})dy \Big)}{ \lambda \int _{\frac{1}{4}}^{\frac{3}{4}} G(s,s) C^{\frac{2}{N-2}}\Big( (N-2)^{2}(B-s)^{2 \frac{N-1}{N-2}} \theta \Big((\frac{C}{B-s})^{\frac{1}{N-2}} \Big)\Big)^{-1} ds} ,\quad \text{if}\, N\geq 3, \end{cases}\displaystyle \end{aligned} $$

it follows that

$$ h(t, U) \geq \sigma U, \quad \text{for}\, U \geq L_{0}, L_{0} > 0. $$

If \(L > L_{0}\), the equation \(U = \xi T U\), \(\xi > 1\), does not have a solution to \(\|U\| = L\). By the absurd, there is a sequence \((L_{n})_{n \geq 1 }\) that approaches to infinity, where \(L_{n} > L_{0}\). Additionally, a sequence \((\xi _{n})_{n \geq 1} \) of real numbers with \(\xi _{n} > 1\), and a sequence of function \(( U_{n})_{n \geq 1} \) such that \(\| U_{n}\| = L_{n}\) with \(U_{n}\) satisfies (3.12). We get

$$ U_{n}(t) \geq \xi _{n} \lambda \sigma \int _{0}^{1} G(t,s)U_{n}(s) \frac{q_{N}(s)}{\mathcal{A} \Big(s, \displaystyle{\int _{0}^{1}} j(U_{n}) dy \Big)} ds. $$

Choosing \(\tilde{t} \in [\frac{1}{4}, \frac{3}{4}]\),

$$ \min _{t \in [\frac{1}{4} ,\frac{3}{4}] } U_{n}(t) = U_{n}( \tilde{t}), \quad \forall n \in \mathbb{N}^{*}. $$

Since \(N=2\),

$$ \begin{aligned} U_{n}( \tilde{t}) & \geq \xi _{n} \lambda \sigma \int _{0}^{1} \Big( \min _{t \in [\frac{1}{4} ,\frac{3}{4}] } G(t,s) \Big) U_{n}(s) \frac{q(s)}{\mathcal{A} \Big(s, \displaystyle{\int _{0}^{1}} j(U_{n}) dy \Big)} ds \\ & \geq \frac{\xi _{n} \lambda \sigma }{ 4\eta \Big( \omega b^{2} \log (\frac{a}{b}) \int _{0}^{1} (\frac{a}{b})^{2y} g(U_{n})dy \Big)} u_{n}(t^{*}) \int _{\frac{1}{4}}^{\frac{3}{4}} G(s,s) \frac{\Big(b^{1-s}a^{s} \log (\frac{b}{a}) \Big)^{2}}{\theta (b^{1-s}a^{s}) } ds \\ & > \xi _{n} U_{n}( \tilde{t}) > U_{n}( \tilde{t}). \end{aligned} $$

If \(N \geq 3\), we have

$$ \begin{aligned} U_{n}( \tilde{t}) \geq{}& \xi _{n} \lambda \sigma \int _{0}^{1} \Big( \min _{t \in [\frac{1}{4} ,\frac{3}{4}] } G(t,s) \Big) U_{n}(s) \frac{q(s)}{\mathcal{A} \Big(s, \displaystyle{\int _{0}^{1}} j(U_{n}) dy \Big)} ds \\ \geq{}& \frac{\xi _{n} \lambda \sigma }{ 4 \eta \Big( \frac{\omega}{C(N-2)} \int _{0}^{1} (\frac{C}{B-y})^{2\frac{N-1}{N-2}} g(U_{n}(y))dy \Big)} U_{n}(t^{*})\\ &{}\times \int _{\frac{1}{4}}^{\frac{3}{4}} G(s,s) \frac{C^{\frac{2}{N-2}}}{(N-2)^{2}(B-s)^{2 \frac{N-1}{N-2}} \theta \Big((\frac{C}{B-s})^{\frac{1}{N-2}} \Big)} ds \\ >{}& \xi _{n} U_{n}(\tilde{t} ) > U_{n}( \tilde{t}). \end{aligned} $$

This contradiction confirms the validity of our claim.

Assume that \(D= \{ U \in P: \, l \leq \| U \|\leq L \}\). Then, the first condition of Theorem 3.4 is satisfied. For \(U \in D\) such that \(U= \xi T U\), \(0 < \xi < 1\), we will establish that \(\|U\| \neq l\). By the absurd, suppose that \(\|U\|= l\). If \(N=2\), we have

$$ \begin{aligned} l= \| u \| & = \xi \lambda \int _{0}^{1}G(s,s) q_{N}(s) \frac{h(s, U(s))}{\mathcal{A} \Big(s, \displaystyle{\int _{0}^{1}} j(U) dy \Big) } ds \\ & \leq \frac{ \xi \lambda _{l} M_{l}\| U\|}{\eta \Big( \omega b^{2} \log (\frac{a}{b}) \int _{0}^{1} (\frac{a}{b})^{2y} g(U)dy \Big)} \int _{0}^{1}G(s,s) \frac{\Big(b^{1-s}a^{s} \log (\frac{b}{a}) \Big)^{2}}{\theta (b^{1-s}a^{s}) } ds \\ & < \xi \| U \| < \| U \| =l. \end{aligned} $$

Since \(N \geq 3\),

$$\begin{aligned} l= \| u \| ={}& \xi \lambda \int _{0}^{1}G(s,s) q_{N}(s) \frac{h(s, u(s))}{\mathcal{A} \Big( s, \displaystyle{\int _{0}^{1}} j(u) dy \Big)} ds \\ \leq{}& \frac{ \xi \lambda _{l} M_{l}\| u\|}{\eta \Big( \frac{\omega}{C(N-2)} \int _{0}^{1} (\frac{C}{B-y})^{2\frac{N-1}{N-2}} g(u_{n})dy \Big)} \\ &{}\times \int _{0}^{1}G(s,s) \frac{C^{\frac{2}{N-2}}}{(N-2)^{2}(B-s)^{2 \frac{N-1}{N-2}} \theta \Big((\frac{C}{B-s})^{\frac{1}{N-2}} \Big)} ds \\ < {}& \xi \| u \| < \| u \| =l. \end{aligned}$$

This leads to a contradiction.

Then, problem (1.2) has a positive solution U, such that \(\underset{t \in [0,1]}{\min} U(t) \geq l\). Using the previously mentioned steps, we complete the proof. □

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Alves, C.O., Boudjeriou, T.: Existence of solution for a class of nonlocal problem via dynamical methods. Rend. Circ. Mat. Palermo 2, 1–22 (2021)

    Google Scholar 

  2. Arcoya, D., Leonori, T., Primo, A.: Existence of solutions for semilinear nonlocal elliptic problems via a Bolzano theorem. Acta Appl. Math. 127(1), 87–104 (2013)

    Article  MathSciNet  Google Scholar 

  3. Bellamouchi, C., Zaouche, E.: Positive solutions, positive radial solutions and uniqueness results for some nonlocal elliptic problems. J. Elliptic Parabolic Equ., 1–23 (2024)

  4. Bouali, T., Guefaifia, R., Boulaaras, S.: Fractional double-phase nonlocal equation in Musielak-Orlicz Sobolev space. Bound. Value Probl. 2024, 68 (2024). https://doi.org/10.1186/s13661-024-01877-9

    Article  MathSciNet  Google Scholar 

  5. Bouali, T., Guefaifia, R., Boulaaras, S.: Multiplicity of solutions for fractional p(z)-Kirchhoff-type equation. J. Inequal. Appl. 2024, 50 (2024). https://doi.org/10.1186/s13660-024-03131-3

    Article  MathSciNet  Google Scholar 

  6. Bousselsal, M., Zaouche, E.: Existence of solution for nonlocal heterogeneous elliptic problems. Mediterr. J. Math. 17(4), 129 (2020)

    Article  MathSciNet  Google Scholar 

  7. Bueno, H., Ercole, G., Ferreira, W., Zumpano, A.: Existence and multiplicity of positive solutions for the p-Laplacian with nonlocal coefficient. J. Math. Anal. Appl. 343(1), 151–158 (2008)

    Article  MathSciNet  Google Scholar 

  8. Caffarelli, L., Tomasetti, I.: Fully nonlinear equations with applications to grad equations in plasma physics. Commun. Pure Appl. Math. 76(3), 604–615 (2023)

    Article  MathSciNet  Google Scholar 

  9. Chhetri, M., Robinson, S.: Existence and multiplicity of positive solutions for classes of singular elliptic pdes. J. Math. Anal. Appl. 357(1), 176–182 (2009)

    Article  MathSciNet  Google Scholar 

  10. Chipot, M., Corrêa, F.J.: Boundary layer solutions to functional elliptic equations. Bull. Braz. Math. Soc. 40(3), 381–393 (2009)

    Article  MathSciNet  Google Scholar 

  11. Chipot, M., Roy, P.: Existence results for some functional elliptic equations. Differ. Integral Equ. 27(3–4), 289–300 (2014)

    MathSciNet  Google Scholar 

  12. Chipot, M., Savitska, T.: Asymptotic behaviour of the solutions of nonlocal p-Laplace equations depending on the \(L^{p}\) norm of the gradient. J. Elliptic Parabolic Equ. 1(1), 63–74 (2015)

    Article  MathSciNet  Google Scholar 

  13. Corrêa, F.J.: On positive solutions of nonlocal and nonvariational elliptic problems. Nonlinear Anal., Theory Methods Appl. 59(7), 1147–1155 (2004)

    Article  MathSciNet  Google Scholar 

  14. Corrêa, F.J., Figueiredo, G.M.: A variational approach for a nonlocal and nonvariational elliptic problem. J. Integral Equ. Appl., 549–557 (2010)

  15. Corrêa, F.J., Filho, D.M.: On a class of nonlocal elliptic problems via Galerkin method. J. Math. Anal. Appl. 310(1), 177–187 (2005)

    Article  MathSciNet  Google Scholar 

  16. Corrêa, F.J., Menezes, S.D., Ferreira, J.: On a class of problems involving a nonlocal operator. Appl. Math. Comput. 147(2), 475–489 (2004)

    MathSciNet  Google Scholar 

  17. Dancer, E., Schmitt, K.: On positive solutions of semilinear elliptic equations. Proc. Am. Math. Soc. 101(3), 445–452 (1987)

    Article  MathSciNet  Google Scholar 

  18. Delgado, M., Suárez, A.: On the structure of the positive solutions of the logistic equation with nonlinear diffusion. J. Math. Anal. Appl. 268(1), 200–216 (2002)

    Article  MathSciNet  Google Scholar 

  19. do Ó, J., Lorca, S., Ubilla, P.: Multiparameter Elliptic Equations in Annular Domains, Contributions to Nonlinear Analysis. A Tribute to D. G. de Figueiredo on the Occasion of His 70th Birthday pp. 233–245. Birkhäuser, Basel (2006)

    Google Scholar 

  20. Enguiça, R., Sanchez, L.: Radial solutions for a nonlocal boundary value problem. Bound. Value Probl., 21–18 (2006)

  21. Gatica, J., Kim, Y.H.: Positive solutions of superlinear and sublinear boundary value problems. Korean J. Math. 25(1), 37–43 (2017)

    MathSciNet  Google Scholar 

  22. Goodrich, C.S.: Nonlocal differential equations with concave coefficients of convolution type. Nonlinear Anal. 211, 112437 (2021)

    Article  MathSciNet  Google Scholar 

  23. Goodrich, C.S.: A topological approach to nonlocal elliptic partial differential equations on an annulus. Math. Nachr. 294(2), 286–309 (2021)

    Article  MathSciNet  Google Scholar 

  24. Guefaifia, R., Allahem, A., Jan, R., Boulaaras, S., Biomy, M.: Analysis of positive weak solutions for a class of fractional Laplacian elliptic systems of type Kirchhoff. J. Nonlinear Math. Phys. 31, 1 (2024). https://doi.org/10.1007/s44198-024-00165-5

    Article  MathSciNet  Google Scholar 

  25. Guo, D., Lakshmikantham, V.: Nonlinear Problems in Abstract Cones, vol. 5. Academic Press, San Diego (2014)

    Google Scholar 

  26. Gustafson, G., Schmitt, K.: Methods of Nonlinear Analysis in the Theory of Differential Equations. Lecture Notes. Department of Mathematics, University of Utah (1975)

    Google Scholar 

  27. Hamdani, M.K., Mbarki, L., Allaoui, M., Darhouche, O., Repovš, D.D.: Existence and multiplicity of solutions involving the \(p (x) \)-Laplacian equations: on the effect of two nonlocal terms. Discrete Contin. Dyn. Syst., Ser. S 16(6) (2023)

  28. Iturriaga, L., Massa, E., Sánchez, J., Ubilla, P.: Positive solutions for an elliptic equation in an annulus with a superlinear nonlinearity with zeros. Math. Nachr. 287(10), 1131–1141 (2014)

    Article  MathSciNet  Google Scholar 

  29. Khrapak, S.A., Kryuchkov, N.P., Yurchenko, S.O.: Thermodynamics and dynamics of two-dimensional systems with dipolelike repulsive interactions. Phys. Rev. E 97(2), 022616 (2018)

    Article  Google Scholar 

  30. Liang, F., Qiao, H.: Existence and uniqueness for some nonlocal elliptic problem. Appl. Anal. 97(15), 2618–2625 (2018)

    Article  MathSciNet  Google Scholar 

  31. Lin, S.S.: Positive radial solutions and non-radial bifurcation for semilinear elliptic equations in annular domains. J. Differ. Equ. 86(2)

  32. Maya, C., Shivaji, R.: Multiple positive solutions for a class of semilinear elliptic boundary value problems. Nonlinear Anal., Theory Methods Appl. 38(4), 497–504 (1999)

    Article  MathSciNet  Google Scholar 

  33. Perera, K.: Multiple positive solutions for a class of quasilinear elliptic boundary-value problems. Electron. J. Differ. Equ. [electronic only] (2003)

  34. Shivaji, R.: Uniqueness results for a class of positone problems. Nonlinear Anal., Theory Methods Appl. 7(2), 223–230 (1983)

    Article  MathSciNet  Google Scholar 

  35. Sousa, T.F., Rodrigo, C.M., Suárez, A.: A non-local non-autonomous diffusion problem: linear and sublinear cases. Z. Angew. Math. Phys. 68(5), 108 (2017)

    Article  MathSciNet  Google Scholar 

  36. Vaulina, O.S., Koss, X.: Thermodynamics and phase transitions in two-dimensional Yukawa systems. Phys. Lett. A 378(46), 3475–3479 (2014)

    Article  Google Scholar 

  37. Yan, B., Ma, T.: The existence and multiplicity of positive solutions for a class of nonlocal elliptic problems. Bound. Value Probl. 2016(1), 165 (2016)

    Article  MathSciNet  Google Scholar 

  38. Yan, B., Wang, D.: The multiplicity of positive solutions for a class of nonlocal elliptic problem. J. Math. Anal. Appl. 442(1), 72–102 (2016)

    Article  MathSciNet  Google Scholar 

  39. Yao, Q., Ma, Q.: Existence of positive radial solutions for some semilinear elliptic equations in annulus. Appl. Math. Mech. 23(12), 1452–1457 (2002)

    Article  MathSciNet  Google Scholar 

  40. Zou, W., Li, F., Liu, M., Lv, B.: Existence of solutions for a nonlocal problem arising in plasma physics. J. Differ. Equ. 256(4), 1653–1682 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Hamdani was supported by the Tunisian Military Research Center for Science and Technology Laboratory LR19DN01.

The authors would like to thank the editor and the referees for their helpful suggestions and comments, which have greatly improved the presentation of this paper.

Funding

Not Applicable

Author information

Authors and Affiliations

Authors

Contributions

The authors have contributed equally in this manuscript.

Corresponding author

Correspondence to Salah Boulaaras.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bellamouchi, C., Hamdani, M.K. & Boulaaras, S. Existence and uniqueness of positive solution to a new class of nonlocal elliptic problem with parameter dependency. Bound Value Probl 2024, 112 (2024). https://doi.org/10.1186/s13661-024-01924-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13661-024-01924-5

Mathematics Subject Classification

Keywords