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1. Introduction

A key step in the study of second-order quasilinear parabolic equations is establishing
suitable a priori estimates for any solution of the equation. This fact is the theme of many
books on the subject [1–5] and our focus here is on one particular such estimate: a local
pointwise gradient estimate for solutions of equations in divergence form:

ut = divA(X ,u,Du) +B(X ,u,Du). (1.1)

The role of this divergence structure has been noted many times under varying hypothe-
ses on the functions A and B (see, in particular [6, Sections VIII.4 and VIII.5], [3, Section
V.4], [5, Section 11.5]). Our current interest is deriving this estimate using a surprising
variant (detailed below) of standard methods. Although this variant seems, at first, to be
a purely technical modification, we mention here two quite different types of estimates
which follow from this variant and which appear to be new. First, we derive a local gra-
dient estimate for a class of equations which includes the parabolic false mean curvature
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equation, that is, the equation with

A(X ,z, p)= exp
(
1
2

(
1+ |p|2)

)
p (1.2)

and some conditions on B. Such an operator does not fall under the hypotheses from,
for example, [3], and the present author has, previously, given an incorrect proof of this
estimate [7, page 569] (we will point out the error later), and then in [5, Section 11.5,
page 281] a correct but weaker version of the estimate. Second, we estimate the gradient
of a solution to a large class of equations only in terms of the structure of the equation
and a bound for the gradient of the initial function. (Ordinarily, a gradient estimate is
given in terms of a maximum estimate for the solution, which, in turn, depends on some
estimate on the boundary and initial data.) Such an estimate was first proved by Ecker for
the parabolic prescribed mean curvature equation [8, Theorem 3.1], but we also show
that such an estimate is valid for the parabolic p-Laplacian if p < 2, and this fact seems
to be new. (In [9], a corresponding estimate was given for the Lq norm of the solution in
terms of the Lq norm of the initial data, and this estimate can be used to infer a gradient
estimate, but our goal here is to give an estimate directly.) This gradient estimate provides
an interesting counterpoint to known results on these equations (see [6, Chapter XII] for
a detailed description of these results). In particular, it is known that for p > 2n/(n+1),
solutions of this equation are bounded (and have Hölder continuous spatial derivatives)
at any positive time for quite general initial data, in particular for L1 initial data. On the
other hand, [6, Section XII.13-(i)] provides an initial datum in L1 for which the solution
is unbounded for all sufficiently small positive time. Although the counterexample is de-
scribed in all of Rn × (0,∞), it should be noted that it satisfies the boundary condition
u = 0 on {|x| = 1, t > 0}, so the regularity of the solution is affected only by that of the
initial datum. An important point for our comparison is that the solution becomes infi-
nite only at x = 0 (for t > 0 as well) and the initial function is smooth except at x = 0. Our
result shows that this is the only configuration in which the solution can be unbounded
since we obtain a gradient estimate at any x �= 0. Of course, the additional surprise is that
our gradient estimate also applies to some equations with p > 2n/(n+1).

The basic plan is to modify the Moser iteration technique [10] along the lines of Si-
mon’s estimate for elliptic equations [11]. Of course, this is the plan followed by the au-
thor before (especially [7]) but we add two important new twists. As in [12], we obtain
an estimate that does not use an upper bound on the maximum eigenvalue of the matrix
∂A/∂p. Such an approach is also useful in studying anisotropic problems (see [13, 14])
andwe present the calculations for this case in [15]. In addition, we use amodified version
of the Sobolev inequality from [11]. This inequality will allow us to prove some unusual
estimates (in particular the estimates for parabolic p-Laplace equations) and also to use
some more standard notations, in particular, we will use ai j to denote the components
of the matrix ∂A/∂p; in [7, 11, 16], ai j denoted the components of a slightly different
matrix.

Following [11], we break the estimate into several steps. After giving some notation in
Section 2, we prove an energy-type inequality in Section 3. We then present the Sobolev
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inequality in Section 4, and we use the energy inequality along with the Sobolev inequal-
ity in Section 5 to bound the maximum of the gradient in terms of an integral:

∫
w
(|Du|)qDu ·AdX (1.3)

for some function w and some exponent q, which we will detail in that section. This in-
tegral is estimated in Section 6 in terms of the integral of Du ·A, and this final integral is
easily estimated; we will quote [5, Lemma 11.13]. Section 7 contains some examples, es-
pecially the false mean curvature equation, to illustrate our structure conditions. We also
discuss some interesting variants of our estimate. In Section 8, we examine the applica-
tion of our Sobolev inequality to some equations satisfying structure conditions depend-
ing on the maximum eigenvalue of ∂A/∂p; the most important of such equations are the
parabolic prescribed mean curvature equation and parabolic p-Laplacian with p < 2 de-
scribed above. Finally, we look at parabolic equations with faster than exponential growth
in Section 9; our method is only partially successful in dealing with such problems.

2. Notation

For the most part, we follow the notation in [5], so X = (x, t) denotes a point inRn+1 with

|X| =
( n∑

i=1

(
xi
)2
+ |t|

)1/2

, (2.1)

and, for R > 0, we write

Q(R)= {X ∈Rn+1 : |x| < R,−R2 < t < 0
}
,

B(R)= {x ∈Rn : |x| < R
}
.

(2.2)

We also use �Q(R) to denote the parabolic boundary of Q(R), that is, the set of X such
that either

|x| = R, −R2 ≤ t ≤ 0, (2.3)

or

|x| < R, t =−R2. (2.4)

Moreover, we use N to denote n if n > 2 and an arbitrary constant greater than 2 if n= 2.
We always assume that u∈ C2,1(Q(R)) for some R > 0 and we set

v = (1+ |Du|2)1/2, ν= Du

v
, gi j = δi j − νiν j . (2.5)

We will also use this notation, without further comment, with p in place ofDu to describe
structural conditions on the functions A and B (and their derivatives). We also set

ai j = ∂Ai

∂pj
, �2 = ai jgkmDikuDjmu, �= ai jDivDjv, (2.6)
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where we use the Einstein summation convention that repeated indices are summed
from 1 to n. (Note that ai j , �2, and � are not quite the same as in [7, 11, 16].)

We also define the oscillation of u over a set S by

osc
S
u= sup

S
u− inf

S
u. (2.7)

In addition, for parameters τ > 1 and r ∈ (0,R], we write Qτ(r) and qτ(r, t) for the
subsets of Q(r) and B(r)×{t}, respectively, on which v > τ.

3. The energy inequality

In this section, we prove an energy inequality, that is, an inequality which estimates in-
tegrals involving second spatial derivatives of u in terms of integrals involving only first
derivatives. Before stating this inequality, we present some preliminary structure condi-
tions. We suppose that there are matrices [Ci

k] and [D
i
k] such thatD

i
k is differentiable with

respect to (x,z, p) and

Ci
k +Di

k =
∂Ai

∂z
pk +

∂Ai

∂xk
+Bδik. (3.1)

For simplicity, we set

�i j = νk
∂Di

k

∂pj
, �=

(
pi
∂Di

k

∂z
+
∂Di

k

∂xi

)
νk. (3.2)

Our structure conditions are stated in terms of these expressions.We assume that there
are nonnegative constants τ0 ≥ 1, β1, and β2 along with positive functions Λ0, Λ1, and Λ2

such that

Ci
kg

jkηi j ≤ β1Λ
1/2
0

(
ai jηikηjk

)1/2
, (3.3a)

Ci
kν

kξi ≤ β1Λ
1/2
0

(
ai jξiξ j

)1/2
, (3.3b)

v�i jηi j ≤ β1Λ
1/2
0

(
ai jηikηjk

)1/2
, (3.3c)

v�≤ β21Λ0, (3.3d)

v
∣∣νkDi

k − νiB
∣∣≤ β1Λ1, (3.3e)

|A|gi jηi j ≤ β2Λ
1/2
2

(
ai jηikηjk

)1/2
, (3.3f)

|A|ν · ξ ≤ β2Λ
1/2
2

(
ai jξiξ j

)1/2
, (3.3g)

for all n× n matrices η, all n-vectors ξ, and all (X ,z, p) ∈ Q(R)×R×Rn such that z =
u(X) and v > τ0. Note that conditions (3.3a)–(3.3d) are exactly the same as [5, (11.41a–d)]
(except for a slight variation in notation).

Our energy estimate is then a variant of [5, Lemma 11.10] (which in turn comes from
[11, (2.11)]).
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Lemma 3.1. Let χ be an increasing, nonnegative Lipschitz function defined on [τ,∞) for
some τ ≥ τ0 and let ζ be a nonnegative C2,1(Q(R)) function which vanishes in a neighbor-
hood of �Q(R). Suppose conditions (3.3) hold, and define

Ξ(σ)=
∫ σ

τ
(ξ − τ)χ(ξ)dξ. (3.4)

Then

∫
qτ (R,s)

Ξ(v)ζ2dx+
∫
Qτ (R)

[(
1− τ

v

)
�2 +�

]
χζ2dX

≤ 20β21

∫
Qτ (R)

Λ0
(
(v− τ)χ′ + χ

)
ζ2dX +4β1

∫
Qτ (R)

Λ1χζ|Dζ|dX

+4
∫
Qτ (R)

|A|χ[∣∣D2ζ
∣∣ζ + |Dζ|2]vdX +32β22

∫
Qτ (R)

Λ2
(
(v− τ)χ′ + χ

)|Dζ|2dX

+4
∫
Qτ (R)

ΞζζtdX

(3.5)

for any s∈ (−R2,0). (Here, and in what follows, the argument v from χ and Ξ is suppressed.)

Proof. We begin just as in [5, Lemma 11.10]. Let θ be a vector-valued C2 function which
vanishes in a neighborhood of �Q(R), and set Q = B(R)× (−R2,s). If we multiply the
differential equation by divθ and then integrate by parts, we obtain

∫
Q

[−utDkθ
k +DkA

iDiθ
k +BDkθ

k
]
dX = 0. (3.6)

An easy approximation argument shows that this identity holds for any θ which is only
Lipschitz (with respect to x only); in particular, we take

θ = (v− τ)+χ(v)ζ2ν. (3.7)

Just as in [5, pages 270-271], we see that

∫
Q
−utDkθ

kdX =
∫
qτ (R,s)

Ξζ2dx− 2
∫
Q
ΞζζtdX. (3.8)

Next, we have

∫
Q
DkA

iDiθ
k +BDkθ

kdX =
∫
Q

[
DkA

i +Bδik
]
Di
(
(v− τ)+χνk

)
ζ2dX

+
∫
Q
DkA

i(v− τ)+χνkDi
(
ζ2
)
dX

+
∫
Q
B(v− τ)+χν ·D(ζ2)dX.

(3.9)
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The first integral is handled as usual. We set

Ψ=
⎧⎨
⎩
(v− τ)χ′ + χ if v > τ,

0 if v ≤ τ,
(3.10)

and we note that

Di
[
(v− τ)χνk

]=ΨDivνk +
(
1− τ

v

)
+
χgk jDi ju. (3.11)

It follows that

[
DkA

i +Bδik
]
Di
(
(v− τ)+χνk

)=
(
1− τ

v

)
+
χ
(
�2 +Ci

kg
k jDi ju

)

+Ψ
(
�+ νkCi

kDiv
)
+Di

kDi
[
(v− τ)+χνk

]
.

(3.12)

An integration by parts then yields

∫
Q
Di

kDi
[
(v− τ)+χνk

]
ζ2dX =−

∫
Q

(
�i jDi ju+�

)[
(v− τ)+χ

]
ζ2dX

− 2
∫
Q
Di

k(v− τ)+χνkζDiζ dX.
(3.13)

For the second integral, we integrate by parts again (cf. the proof of [12, Lemma 2.3]):

∫
Q
DkA

i(v− τ)+χνkDi
(
ζ2
)
dX

=−2
∫
Q
AiDk

(
(v− τ)+χνk

)
ζDiζ dX − 2

∫
Q
Aiχ(v− τ)+νk

[
ζDikζ +DiζDkζ

]
dX.

(3.14)

To simplify the notation, we now set

I1 =
∫
qτ (R,s)

Ξζ2dx,

I2 =
∫
Qτ (R)

[(
1− τ

v

)
�2χ+�

(
χ′(v− τ) + χ

)]
ζ2dX.

(3.15)

Then

I1 + I2 = 2
∫
Q
ΞζζtdX +

10∑
j=3

I j , (3.16)
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where

I3 =−
∫
Q

(
1− τ

v

)
+
Ci
kχg

k jDi judX ,

I4 =−
∫
Q
ΨCi

kν
kDivζ

2dX ,

I5 =
∫
Q

�i jDi ju(v− τ)+χζ2dX ,

I6 =
∫
Q

�(v− τ)+χζ2dX ,

I7 = 2
∫
Q

[
Di

k −Bδik
]
(v− τ)χνkζDiζ dX ,

I8 = 2
∫
Q

(
1− τ

v

)
+
AiDiζg

k jDk judX ,

I9 = 2
∫
Q
Ai(v− τ)+χν ·DvζDiζ dX ,

I10 = 2
∫
Q
Aiχ(v− τ)+νk

[
ζDikζ +DiζDkζ

]
dX.

(3.17)

These terms are estimated as in [5, Lemma 11.10] using (3.3) and Cauchy’s inequality.
For the reader’s convenience, we give a brief estimate of each integral.

First, from (3.3a), we have

I3 ≤ β1

∫
Q
Λ1/2
0

(
ai jDikuDjku

)1/2(
1− τ

v

)
+
χζ2dX. (3.18)

Since

ai jDikuDjku=�2 +� (3.19)

and χ′ ≥ 0, we have

ai jDikuDjku
(
1− τ

v

)
+
χ ≤

(
1− τ

v

)
+
χ�2 +Ψ�. (3.20)

Therefore, by Cauchy’s inequality,

I3 ≤ 3β21

∫
Q
Λ0Ψζ

2dX +
1
12

I2. (3.21)

Similarly, since �2 ≥ 0, we see from (3.3b) and Cauchy’s inequality that

I4 ≤ 3β21

∫
Q
Λ0Ψζ

2dX +
1
12

I2. (3.22)

Next, we use (3.3c), (3.20), and Cauchy’s inequality to obtain

I5 ≤ 3β21

∫
Q
Λ0Ψζ

2dX +
1
12

I2. (3.23)
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Moreover, (3.3d) gives

I6 ≤ β21

∫
Q
Λ0Ψζ

2dX , (3.24)

and (3.3e) gives

I7 ≤ 2β1

∫
Q
Λ1χ(v− τ)+ζ|Dζ|dX. (3.25)

From (3.3f) and Cauchy’s inequality, we infer that

I8 ≤ 8β22

∫
Q
Λ2Ψ|Dζ|2dX +

1
8
I2, (3.26)

and, finally, (3.3g), (3.20), and Cauchy’s inequality imply that

I9 ≤ 8β22

∫
Q
Λ2Ψ|Dζ|2dX +

1
8
I2. (3.27)

It follows that

I1 + I2 ≤ 2
∫
Q
ΞζζtdX +10β21

∫
Q
Λ0Ψζ

2dX +2β1

∫
Q
Λ1χζ|Dζ|dX

+16β2

∫
Q
Λ2Ψ|Dζ|2dX +2

∫
Q
|A|χ[∣∣D2ζ

∣∣ζ + |Dζ|2]dX +
1
2
I2.

(3.28)

Then (3.5) follows from this inequality by simple algebra. �

In Section 6, we will need a sharper version of this lemma. To obtain this version, we
note that (3.3d) is only needed to estimate the positive part of �, so (3.5) also holds with
an additional term of

−
∫
Q(R)

�−χ(v− τ)+ζ2dX (3.29)

on the right-hand side.

4. The Sobolev inequality

We now present our modified Sobolev inequality, which is an easy consequence of [17,
Theorem 2.1]; however, for notational reasons (in particular the use of n and m), we
quote a consequence of this theorem (see [5, Corollary 11.9]).

Lemma 4.1. Let n ≥ 2, and let g ∈ L∞(Q(R)) be nonnegative. Set Hi = Dj(gi j) and κ =
(N +2)/N . Then

∫
Q(R)

|h|2κg2/NdX ≤ C(N)

(
sup

s∈(−R2,0)

∫
B(R)

∣∣h(x,s)∣∣2g(x,s)dx
)2/N

×
(∫

Q(R)

[
gi jDihDjh+h2|H|2]dX

)n/N(∫
Q(R)

h2dX
)(N−n)/N (4.1)
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for any h ∈ C(Q(R)) that vanishes on {|x| = R} and which is uniformly Lipschitz with re-
spect to x.

Proof. Let us set m= n+1 and U = B(R). We define νn+1 =−1/v and extend the defini-
tion gi j = δi j − νiν j for i and j in {1, . . . ,m}. With dμ= dx, it is easy to check that all the
hypotheses of [5, Corollary 11.9] are satisfied, and this corollary gives

∫
U
|h|2κg2/Ndx ≤ C(N)

(∫
U
|h|2g dx

)2/N

×
(∫

U

[
gi jDihDjh+h2|H|2]dx

)n/N(∫
U
h2dx

)(N−n)/N (4.2)

for each t ∈ (−R2,0). (In this equation, all functions are evaluated at (x, t).) The proof is
completed as in [5, Theorem 6.9]: note that

∫
U
h2g dx ≤ sup

s∈(−R2,0)

∫
U
h(x,s)2g(x,s)dx, (4.3)

integrate the resulting inequality with respect to t, and then apply Hölder’s inequality if
n= 2. �

Note that the vectorH is not quite the usual mean curvature vector. For later reference,
we observe that

v2|H|2 ≤ C(n)
[
gi jDikug

kmDjmu+ gi jDivDjvv
]
. (4.4)

5. Estimate of the maximum in terms of an integral

From our energy inequality and the Sobolev inequality, we can now reduce our pointwise
estimate of |Du| to an integral estimate of a suitable quantity. For this reduction, we
introduce three positive C1[τ0,∞) functionsw, λ, andΛ. In addition to their smoothness,
the functions w, λ, and Λ obey the following monotonicity properties:

w is increasing, (5.1a)

ξ−βw(ξ) is a decreasing function of ξ, (5.1b)

w(ξ)−β
((

Λ(ξ)/λ(ξ)
)N/2

ξ2

)
is an increasing function of ξ, (5.1c)

ξ−β
(
Λ(ξ)
λ(ξ)

)N/2

is a decreasing function of ξ (5.1d)

for some nonnegative constant β. We also assume that

Λ0 ≤ vΛ, (5.2a)

Λ1 ≤ vΛ, Λ2 ≤ vΛ, (5.2b)

λ≤Λ, (5.2c)

1≤Λ, (5.2d)



10 Boundary Value Problems

and that

|A| ≤ β2Λ. (5.3)

Finally, we assume that

λ

(
1+
(
vλ′

λ

)2)
gi jξiξ j ≤ vai jξiξ j , (5.4)

where (as before) we suppress the argument v from λ, Λ, and their derivatives. These
hypotheses imply a pointwise estimate for the gradient in terms of an integral.

Lemma 5.1. Suppose that conditions (3.3), (5.1), (5.2), (5.3), and (5.4) hold. Then there is
a constant c1(n,β,β1R,β2) such that

sup
Qτ (R/2)

(
1− τ

v

)N+2

w ≤ c1R
−n−2

∫
Qτ (R)

w
(
Λ

λ

)N/2Λ
v
dX. (5.5)

Proof. The proof is essentially the same as that of [5, Lemma 11.11], so we only give a
sketch.

First, for q ≥ 1+β a parameter at our disposal, we set

χ =
(
Λ

λ

)N/2
wq

[(
1− τ

v

)
+

](N+2)(q−1)
v−2. (5.6)

Then conditions (5.1a), (5.1c) imply that χ is increasing while conditions (5.1b), (5.1d)
imply thatΨ≤ C(β)q2χ. Now let ζ be as in Lemma 3.1, and note that we can take ζ so that
|Dζ| ≤ C/R, |D2ζ|+ |ζt| ≤ C/R2, and 0≤ ζ ≤ 1 in Q(R). It then follows from Lemma 3.1
with ζ (N+2)q−N in place of ζ2 that

sup
t∈(−R2,0)

∫
qτ (R,t)

Ξ(v)ζ2dx+
∫
Qτ (R)

[(
1− τ

v

)
�2 +�

]
χζ2dX

≤ C
(
β,β1R,β2

) q2
R2

∫
Qτ (R)

χΛζ (N+2)(q−1)vdX
(5.7)

by taking (5.2a), (5.2b), (5.2c), and (5.3) into account and observing that

Ξ(v)≤ 1
2
χ(v)(v− τ)2 (5.8)

(because χ is increasing).
Now we define h by the equation

h2 = χλ
(
1− τ

v

)2
vζ (N+2)q−N , (5.9)

so

gi jDihDjh≤ Cq2ζ (N+2)(q−1) χλ
v

(
ζ2
(
1+
(
vλ′

λ

)2)
gi jDivDjv+

v2

R2

)
. (5.10)
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In addition, from conditions (5.1b), (5.1d), we infer that

Ξ(v)≥ 1
2+C(β)q

χ(v)(v− τ)2. (5.11)

It then follows from (4.4) and (5.4) that

sup
t∈(−R2,0)

∫
B(R)×{t}

h2
v

λ
dx+

∫
Q(R)

[
gi jDihDjh+h2|H|2

]
dX≤Cq4R−2

∫
Qτ (R)

χΛvζ (N+2)(q−1)dX.

(5.12)

Lemma 4.1, with g = v/λ, then yields

(∫
Σ
wκqdμ

)1/κ
≤ Cq4

∫
Σ
wqdμ (5.13)

for w = ζ(1− τ/v)+w,

Σ= {X ∈Qτ(R) : ζ(X) > 0, v > τ
}
,

dμ=
(
Λ

λ

)N/2Λ
v

[(
1− τ

v

)
ζ
]−N−2

dX.
(5.14)

A standard iteration argument (based on [10]) completes the proof. �

If we assume further that there are nonnegative constants β3 and β4 such that

w
(
Λ

λ

)N/2
Λ≤ β3w

β4+1Du ·A (5.15)

(see [11, (1.5)] or [5, (11.50)]), then we have reduced the pointwise estimate to an esti-
mate of the integral

∫
vqDu ·AdX (5.16)

for q = β4, and we estimate this integral in the next section. (Note that if β4 = 0, this
estimate is particularly simple.)

6. Estimate of the integral

We now examine the integral (5.16), and we provide an estimate specifically for the case
w = v. To this end, wemake some basic assumptions relating the sizes ofA, B, andDu ·A:

v|A| ≤ β5Du ·A, (6.1a)

B ≤ β6Du ·A. (6.1b)

We also use a variant of (3.3e): we assume that there is a decreasing function ε such that

−νkDi
kνi ≤ ε(v)Du ·A. (6.2)
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Next, we suppose that the functions Λ0, Λ1, and Λ2 can be estimated suitably in terms of
Du ·A:

Λ0 ≤ ε(v)2v2Du ·A, (6.3a)

for the same function ε as in (6.2),

Λ1 ≤ vDu ·A, (6.3b)

Λ2 ≤Du ·A. (6.3c)

Finally, we assume that

v ≤ β7Du ·A. (6.4)

Under these hypotheses, we obtain an estimate for (5.16) provided that ε can be made
sufficiently small when v is large.

Lemma 6.1. Suppose conditions (3.3), (6.1), (6.2), (6.3), and (6.4) are satisfied. Let q >
0 and set ω = oscQ(R)u, E = exp(β6ω), Σ = 1 + β7ω/R, and q∗ =max{q,2}. If there is a
constant τ1 greater thanmax{τ,2} such that

8ωε
(
τ1
)
+
[
10β2q3∗ +640β2q4∗ +1280

(
β1q∗ωε

(
τ1
))2

+ 80q2∗
]
Eβ21q∗ω

2ε
(
τ1
)2 ≤ 1, (6.5)

then there is a constant C determined only by β1ωε(τ1), β2, β5, and q such that

∫
Qτ (R)

vqDu ·AdX ≤ C
(
τ1 +ΣE

ω

R

)q ∫
Qτ (2R)

Du ·AdX. (6.6)

Proof. Suppose first that q ≥ 2. Our proof in this case is a modification of the proof of
[11, Lemma 2]. First, we set

G(σ)=
⎧⎨
⎩
σq− qτq−1σ + (q− 1)τq if σ > τ,

0 if σ ≤ τ,
(6.7)

and we observe that G′(σ)= q(σq−1− τq−1)+. Hence

0≤G(σ)≤ 1
2
G′(σ)σ , (6.8a)

G′(σ)≤ qσq−1
(
1− τ

σ

)
+
, (6.8b)

G(σ)≤ σq
(
1− τ

σ

)
+
, (6.8c)

0≤G′′(σ)≤ q2σq−2. (6.8d)

In what follows, we suppress the argument v from G and its derivatives. Next, we set

F(z)= 1
β26

(
β6zexp

(
β6z
)
+1− exp

(
β6z
))

(6.9)
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and F1(z) = F(z)exp(−β6z). We note that F1(0)= F′1(0) = 0 and F′′1 (z) ≤ 1 for z ≥ 0, so
F1(z)≤ (1/2)z2 for z ≥ 0. It follows that for z replaced by u= u− infQ(R)u, F satisfies the
properties

0≤ F ≤ 1
2
ω2E ≤ 1

2
ω2E, (6.10a)

0≤ F′ ≤ ωE ≤ ωE, (6.10b)

0≤ F′′ ≤ (1+β6ω
)
E, (6.10c)

F′′ −β6F
′ = E, (6.10d)

where E = exp(β6u).
We also define

ζ(X)=
[(

1− |x|
2

4R2

)
+

]2(
1+

t

4R2

)
, (6.11)

so that

|Dζ| ≤ 1
2R

,
∣∣D2ζ

∣∣≤ 1
R2

,
∣∣ζt∣∣≤ 1

4R2
. (6.12)

Now, we set

I′ = −
∫
Q(2R)

ζ2qF′′GDu ·AdX =−
∫
Q(2R)

[
ζ2qGA

] ·D(F′)dX , (6.13)

and an integration by parts gives

I′ = I1 + I2 + I3 (6.14)

with

I1 =
∫
Q(2R)

ζ2qF′GdivAdX ,

I2 =
∫
Q(2R)

ζ2qF′G′A ·DvdX ,

I3 = 2q
∫
Q(2R)

ζ2q−1F′GA ·Dζ dX.

(6.15)

The estimate for I1 is, in the present situation, the most complex. First, we use the differ-
ential equation to see that I1 = I4 + I5 with

I4 =
∫
Q(2R)

ζ2qF′GutdX =
∫
Q(2R)

ζ2qFtGdX ,

I5 =−
∫
Q(2R)

ζ2qF′GBdX.
(6.16)
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To estimate I4, we need some further integration by parts which is easily justified if A,
B, and u are smoother than we have assumed. The justification under our current hy-
potheses is to let (um) be a sequence of C∞ functions which converge in C2,1 to u. Writing
vm = (1+ |Dum|2)1/2 and Gm for G(vm), we have

∫
Q(2R)

ζ2qFtGmdX =−
∫
Q(2R)

(
ζ2qGm

)
tF dX +

∫
B(R)×{0}

ζ2qFGmdx

=−2q
∫
Q(2R)

ζ2q−1GmFζtdX

−
∫
Q(2R)

ζ2qG′m
(
vm
)
tF dX +

∫
B(R)×{0}

ζ2qFGmdx.

(6.17)

But (vm)t = νkmDk(um)t, so

−
∫
Q(2R)

ζ2qG′m
(
vm
)
tF dX =

∫
Q(2R)

Dk
[
ζ2qG′mνkmF

](
um
)
tdX. (6.18)

Sendingm→∞ then gives

I4 =−2q
∫
Q(2R)

ζ2q−1FGζtdX +
∫
Q(2R)

Dk
[
ζ2qFG′νk

]
utdX +

∫
B(2R)×{0}

ζ2qFGdx. (6.19)

Then we use the differential equation again to conclude that

I4=−2q
∫
Q(2R)

ζ2q−1FGζtdX+
∫
Q(2R)

Dk
[
ζ2qFG′νk

](
DiA

i+B
)
dX+

∫
B(2R)×{0}

ζ2qFGdx,

(6.20)

and another integration by parts (as in Lemma 3.1) gives us

∫
Q(2R)

Dk
[
ζ2qFG′νk

]
DiA

idX =
∫
Q(2R)

Di
[
ζ2qFG′νk

]
DkA

idX. (6.21)

It follows that I4 = I6 + I7 + I8 + I9 with

I6 =
∫
Q(2R)

Di
[
ζ2qFG′νk

]
DkA

idX ,

I7 =
∫
Q(2R)

Di
[
ζ2qFG′νk

]
δikBdX ,

I8 =−2q
∫
Q(2R)

ζ2q−1FGζtdX ,

I9 =
∫
B(2R)×{0}

ζ2qFGdx.

(6.22)
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Next, we write

I6 =
∫
Q(2R)

Di
(
ζ2qF

)
G′νkDkA

idX +
∫
Q(2R)

ζ2qFDi
(
G′νk

)
DkA

idX , (6.23)

and another integration by parts yields

∫
Q(2R)

Di
(
ζ2qF

)
G′νkDkA

idX =−
∫
Q(2R)

Dik
(
ζ2qF

)
G′νkAidX

−
∫
Q(2R)

Di
(
ζ2qF

)
Dk
(
G′νk

)
AidX ,

(6.24)

so

I6 =
19∑
j=10

I j , (6.25)

with

I10 =−2q
∫
Q(2R)

ζ2q−2FG′νk
[
ζDikζ + (2q− 1)DiζDkζ

]
AidX ,

I11 =−2q
∫
Q(2R)

ζ2q−1F′G′
[
(ν ·Dζ)(Du ·A) + (ν ·Du)(Dζ ·A)]dX ,
I12 =−I2,

I13 =−
∫
Q(2R)

ζ2qF′′G′ν ·DuDu ·AdX ,

I14 =−2q
∫
Q(2R)

ζ2q−1FG′′ν ·DvDζ ·AdX ,

I15 =−2q
∫
Q(2R)

ζ2q−1FG′
1
v
gk jDjkuDζ ·AdX ,

I16 =−
∫
Q(2R)

ζ2qF′G′′ν ·DvDu ·AdX ,

I17 =−
∫
Q(2R)

ζ2qF′G′
1
v
gk jDjkuDu ·AdX ,

I18 =
∫
Q(2R)

ζ2qFG′′νkai jDjkuDivdX +
∫
Q(2R)

ζ2qF
G′

v
gkmDimua

i jDjkudX ,

I19 =
∫
Q(2R)

ζ2qFG′′νkDiv
(
∂Ai

∂z
Dku+

∂Ai

∂xk

)
dX

+
∫
Q(2R)

ζ2qFG′
1
v
gk jDi ju

(
∂Ai

∂z
Dku+

∂Ai

∂xk

)
dX.

(6.26)
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We now combine some of these integrals:

I5 + I7 + I19 =
∫
Q(2R)

ζ2qFDi
(
G′νk

)(
Ci
k +Di

k

)
dX

+
∫
Q(2R)

Dk
(
ζ2qF

)
G′νkBdX −

∫
Q(2R)

ζ2qF′GBdX

= I20 + I21 + I22 + I23 + I24 + I25 + I26,

(6.27)

with

I20 =
∫
Q(2R)

ζ2qFG′
1
v
Ci
kg

k jDi judX ,

I21 =
∫
Q(2R)

ζ2qFG′′νkCi
kDivdX ,

I22 =−
∫
Q(2R)

ζ2qF′G′νkDi
kDiudX ,

I23 =−2q
∫
Q(2R)

ζ2q−1FG′
[
νkDi

k − νiB
]
Diζ dX ,

I24 =−
∫
Q(2R)

ζ2qFG′�i jDi judX ,

I25 =−
∫
Q(2R)

ζ2qFG′�dX ,

I26 =
∫
Q(2R)

ζ2qF′(G′ν ·Du−G)BdX.

(6.28)

It follows that

∫
Q(2R)

ζ2qF′′(G′ν ·Du−G)Du ·AdX = I′ − I13 = I3 +
11∑
j=8

I j +
18∑
j=14

I j +
26∑
j=20

I j . (6.29)

If we assume now that τ ≥ 2, we have ν ·Du≥ (3/4)v for v ≥ τ, and hence (6.8a) implies
that

G′ν ·Du−G≥ 1
4
G′v = q

4

(
vq− τq−1v

)
+. (6.30)

From (6.1b) and (6.10d), we then conclude that

q

4

∫
Q(2R)

ζ2qE
(
vq− τq−1v

)
+Du ·AdX ≤

∫
Q(2R)

ζ2qE[G′ν ·Du−G]Du ·AdX

≤ I3 +
11∑
j=8

I j +
18∑
j=14

I j +
25∑
j=20

I j .

(6.31)
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We are now ready to estimate the right-hand side of this inequality, one term at a time.
First, we define the measure μ by

μ(S)=
∫
Qτ (2R)∩S

Du ·AdX , (6.32)

so, for any function f , we have
∫
S
f dμ=

∫
Qτ (2R)∩S

f (X)Du ·AdX , (6.33)

then

I3 ≤ β5qE
ω

R

∫
Q(2R)

(
ζ2v
)q−1

dμ (6.34)

by (6.1a), (6.8c), and (6.10b);

I8 ≤ 1
2
β7qE

ω2

R2

∫
Q(2R)

(
ζ2v
)q−1

dμ (6.35)

by (6.4), (6.8c), and (6.10a);

I9 ≤ 1
2
Eω2

∫
B(R)×{0}

ζ2qG(v)dx (6.36)

by (6.10a);

I10 ≤ q3β5E
ω2

R2

∫
Q(2R)

(
ζ2v
)q−2

dμ (6.37)

by (6.1a), (6.8b), and (6.10a);

I11 ≤ 2β5q2E
ω

R

∫
Q(2R)

(
ζ2v
)q−1

dμ (6.38)

by (6.1a), (6.8b), (6.10b), and the observation that β5 ≥ 1. Next

I14 ≤ 1
2
β2q

3E
ω2

R

(∫
Qτ (2R)

ζ2qvq−2�dX

)1/2(∫
Q(2R)

(
ζ2v
)q−2

dμ

)1/2

(6.39)

by (3.3g), (6.3c), (6.8d), and (6.10a);

I15 ≤ 1
2
β2q

2E
ω2

R

(∫
Qτ (2R)

ζ2qvq−2
[(

1− τ

v

)
�2 +�

]
dX

)1/2(∫
Q(2R)

(
ζ2v
)q−2

dμ
)1/2

(6.40)

by (3.3f), (6.3c), (6.8b), and (6.10a);

I16 ≤ β2q
2ω

(
E
∫
Qτ (2R)

ζ2qvq−2�dX

)1/2(∫
Q(2R)

E
(
ζ2v
)q
dμ

)1/2

(6.41)
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by (3.3g), (6.3c), (6.8d), and (6.10b);

I17 ≤ β2qω

(
E
∫
Qτ (2R)

ζ2qvq−2
[(

1− τ

v

)
�2 +�

]
dX

)1/2(∫
Q(2R)

E
(
ζ2v
)q
dμ

)1/2

(6.42)

by (3.3f), (6.3c), (6.8b), and (6.10b);

I18 ≤ 1
2
q2Eω2

∫
Qτ (2R)

ζ2qvq−2
[(

1− τ

v

)
�2 +�

]
dX (6.43)

by (6.8b), (6.8d), and (6.10b);

I20 ≤ 1
2
β1qω

2ε(τ)

(
E
∫
Qτ (2R)

ζ2qvq−2
[(

1− τ

v

)
�2 +�

]
dX

)1/2(∫
Q(2R)

E
(
ζ2v
)q
dμ

)1/2

(6.44)

by (3.3a), (6.3a), (6.8a), and (6.10b);

I21 ≤ 1
2
β1q

2ω2ε(τ)

(
E
∫
Qτ (2R)

ζ2qvq−2�dX

)1/2(∫
Q(2R)

E
(
ζ2v
)q
dμ

)1/2

(6.45)

by (3.3b), (6.3a), (6.8d), and (6.10a);

I22 ≤ ωε(τ)q
∫
Q(2R)

E
(
ζ2v
)q
dμ (6.46)

by (6.2), (6.8b), and (6.10b);

I23 ≤ 1
2
β1q

2E
ω2

R

∫
Q(2R)

(
ζ2v
)q−1

dμ (6.47)

by (3.3e), (6.3b), (6.8b), and (6.10a);

I24 ≤ 1
2
β1qω

2ε(τ)

(
E
∫
Qτ (2R)

ζ2qvq−2
[(

1− τ

v

)
�2 +�

]
dX

)1/2(∫
Q(2R)

E
(
ζ2v
)q
dμ

)1/2

(6.48)

by (3.3c), (6.3a), (6.8b), and (6.10a);

I25 ≤ 1
2
qEω2

∫
Q(2R)

�−ζ2qvq−2(v− τ)+dX (6.49)

by (6.8b) and (6.10a).
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Combining all these estimates and using Cauchy’s inequality, we find that

q

4

∫
Q(2R)

Eζ2q
(
vq− τq−1v

)
dμ

≤ K1ΣE
ω

R

∫
Q(2R)

(
ζ2v
)q−1

dμ+K2E
2ω

2

R2

∫
Q(2R)

(
ζ2v
)q−2

dμ

+K3Eω
2
∫
Qτ (2R)

ζ2qvq−2
[(

1− τ

v

)
�2 +�

]
dX +Eω2

∫
B(R)×{0}

ζ2qGdx

+
(
1
4
+ωε(τ)q

)∫
Q(2R)

E
(
ζ2v
)q
dμ+

1
2
qEω2

∫
Q(2R)

�−ζ2qvq−2(v− τ)+dX

(6.50)

with

K1 = 4β5q2 +
1
2
q2β1ω

2 +
1
4
q, K2 = β5q

3 +β2q
3,

K3 = 1
8
β2q

3 + 4β22q
4 + 8

(
β1ωε(τ)q

)2
+
1
2
q2.

(6.51)

We now use the remark after Lemma 3.1 with χ = vq−2 and ζq in place of ζ . Since
G≤ qΞ and K3 ≥ q, we infer from (6.1), (6.3), and (6.4) that

ω2
∫
B(R)×{0}

ζ2qGdx+K3ω
2
∫
Qτ (2R)

ζ2qvq−2
[(

1− τ

v

)
�2 +�

]
dX

≤ K4Σ
ω

R

∫
Q(2R)

(
ζ2v
)q−1

dμ+K5
ω2

R2

∫
Q(2R)

(
ζ2v
)q−2

dμ

+K6ω
2ε(τ)2

∫
Q(2R)

(
ζ2v
)q
dμ+

q

2
ω2
∫
Q(2R)

�−ζ2qvq−2(v− τ)+dX

(6.52)

with

K4 =
(
2+2β1ω

)
K3,

K5 =
(
4β5q2 + 8β2q2

)
K3,

K6 = 20q2β21K3.

(6.53)

Since K3 ≥ q/2, it follows that

q

4

∫
Q(2R)

E
(
ζ2v
)q
dμ

≤ (K1 +K4
)
ΣE

ω

R

∫
Q(2R)

(
ζ2v
)q−1

dμ+
(
K2 +K5

)
E2ω

2

R2

∫
Q(2R)

(
ζ2v
)q−2

dμ

+
(
1
4
+ qωε(τ) +K6Eω

2ε(τ)2
)∫

Q(2R)
E
(
ζ2v
)q
dμ+ qτq−1

∫
Q(2R)

ζ2qvdμ.

(6.54)
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If we now replace τ by τ1 and write μ1 for the measure defined by replacing τ by τ1 in
(6.32), we infer that

∫
Q(2R)

(
ζ2v
)q
dμ1 ≤ Cτ

q−1
1

∫
Q(2R)

(
ζ2v
)
dμ1

+CΣE
ω

R

∫
Q(2R)

(
ζ2v
)q−1

dμ1 +CE2ω
2

R2

∫
Q(2R)

(
ζ2v
)q−2

dμ1.

(6.55)

Applying Young’s inequality yields

∫
Q(2R)

(
ζ2v
)q
dμ1 ≤ C

(
τ1 +ΣE

ω

R

)q ∫
Q(2R)

dμ1, (6.56)

so

∫
Qτ1 (2R)

(
ζ2v
)q
Du ·AdX ≤ C

(
τ1 +ΣE

ω

R

)q ∫
Qτ1 (2R)

Du ·AdX , (6.57)

and it is clear that
∫
Qτ (2R)\Qτ1 (2R)

(
ζ2v
)q
Du ·AdX ≤ (τ1)q

∫
Qτ (2R)\Qτ1 (2R)

Du ·AdX. (6.58)

Adding these last two inequalities gives the desired result.
The case q < 2 follows from this one via Hölder’s inequality. �

Note that we can take ε to be a constant provided that a modulus of continuity is
known for u; all we need is to take R small enough that (6.5) holds.

The estimate of
∫
Du ·AdX is given in [5, Lemma 11.13], so we give the estimate

without proof.

Lemma 6.2. Suppose conditions (6.1) hold and set ω = oscQ(R)u. Also set τ2 =max{τ0,
8β5ω/R} and

Δ= sup
v<τ2

{(
B−β6Du ·A

)
+ + (Du ·A)+ + ω

R
|A|
}
. (6.59)

Then
∫
Qτ (R/2)

Du ·AdX ≤ C(n)exp
(
β6ω

)
Rn
[
ω2 +ΔR2]. (6.60)

We can combine all of these results into a single estimate although we will see in the
next section that sometimes a different combination is more useful.

Theorem 6.3. Suppose there are functions w, Λ0, Λ1, Λ2, Λ, λ, and ε such that conditions
(3.3), (5.1), (5.2), (5.3), (5.4), (5.15), (6.1), (6.2), (6.3), and (6.4) hold for some nonnegative
constants β, β1, . . . ,β7, and τ1 ≥max{2,τ0} with ω = oscQ(R)u and q∗ =max{β4,2}. Set
τ2 =max{τ0,8β5ω/R}, E = exp(β6ω), and Σ = 1 + β7ω/R, and define Δ by (6.59). Then
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there is a constant C, determined only by n, β, β1R, β1ωε(τ1), β2, β3, β4, β5 such that

sup
Q(R/8)

w(v)≤max

{
w
(
2τ0
)
,C
(
τ1 +ΣE

ω

R

)β4
E
[
ω2

R2
+Δ
]}

. (6.61)

7. Examples

We start by assuming that the functions A and B satisfy the conditions

Du ·A≥ γ0vΨ(v)− γ1, |A| ≤ γ2Ψ(v),

γ0
Ψ(v)
v
|ξ|2 ≤ ai jξiξ j ,

v
∣∣Az

∣∣+∣∣Ax

∣∣+ |B| ≤ ε1(v)vΨ(v)

(7.1)

for a positive constant γ0, nonnegative constants γ1 and γ2, an increasing function Ψ ∈
C1([1,∞)) such that Ψ(1)= 1 and

Ψ′(v)≤ ψ0v
α−1Ψ(v) (7.2)

for some nonnegative constants ψ0 and α and a decreasing, positive function ε1 such that
limτ→∞ ε1(τ)= 0. Then conditions (3.3) are satisfied with Di

k = 0,

Λ0 = γ0
2
ε1(v)
ε1(1)

v3Ψ(v), Λ1 = γ0
2
ε1(v)
ε1(1)

v2Ψ(v), Λ2 = γ0
2
vΨ(v),

β1 = (2n)1/2
ε1(1)
γ0

, β2 = n1/2
γ2
γ0
.

(7.3)

In addition, we can take w = v, Λ= (1/2)γ0v2Ψ(v), and

λ= γ0
1+ 4α2 +ψ2

0
v−2αΨ(v) (7.4)

to satisfy (5.1)–(5.4) with β = (1+α)N . Condition (5.15) holds with

β3 =
(
2
[
1+4α2 +ψ2

0

])N/2 γ0
2

(7.5)

and β4 = (1+α)N +1 if τ0 is sufficiently large. Finally, conditions (6.1)–(6.4) hold with

β5 = 2
γ2
γ0
, β6 = 2

ε1(1)
γ0

, β7 = 1
γ0
,

ε(v)= ε1(v)
ε1(1)

.

(7.6)

Since ε(v)→ 0 as v→∞, we have a gradient estimate under these hypotheses.
In particular, the equation

ut = div
(
exp

(
1
2
v2
)
Du
)
+B(X ,u,Du) (7.7)



22 Boundary Value Problems

is included under these hypotheses if |B| = o(v2 exp((1/2)v2)) as |p| →∞: we takeΨ(v)=
v exp((1/2)[v2− 1]), and note that (7.2) is satisfied with ψ0 = 2 and α= 2. It would be of
interest to know if a gradient estimate can be obtained for |B| =O(v2 exp((1/2)v2)).

The difficulty with [7, Lemma 5.4] is easy to explain in terms of the notation here. We
write divA= ai jDi ju since, in this case, A is independent of z and x. Moreover, under the
hypotheses of that lemma, one needs to estimate the integral

I =
∫
Q(R)

wq
(
1− τ

v

)
+
ζ2qai jDi judX (7.8)

for some function w, which was claimed to equal v2 in [7]. The structure of the function
A shows that

ai jDi ju≤
(
�2 +�

)1/2
(Du ·A)1/2, (7.9)

so

I ≤
(∫

Qτ (R)
(ζw)q

[(
1− τ

v

)
�2 +�

]
dX

)1/2(∫
Q(R)

(ζw)qdμ

)1/2

, (7.10)

and the integral
∫
Qτ (R)

(ζw)q
[(

1− τ

v

)
�2 +�

]
dX (7.11)

cannot be estimated by a small multiple of
∫
Q(R)

(ζw)qdμ. (7.12)

(Note that this estimation does not arise in the proof of [13, Lemma 2.3], so the latter
result is correct.)

Note also that whenΨ satisfies (7.2) with α= 0, we have the uniformly parabolic equa-
tions described in [16, Example 4] but without any assumptions on the maximum eigen-
value of the matrix [ai j]. In particular, we reproduce the usual gradient estimate for para-
bolic p-Laplacian equations once we observe that the conditionΨ(1)= 1 can be replaced
by Ψ(τ∗) = 1 for some τ∗ ≥ 1. If we further assume that ε1(v) = γ3/v for some positive
constant γ3 and that Ψ(v) ≥ v (which is the case if vΨ′(v) ≥ Ψ(v)), then we can take as
structure functions

Λ0 =Λ1 =Λ2 = γ0
2
vΨ(v), (7.13)

and hence Λ= λ= (1/2)γ0Ψ(v). With w = v2, (5.5) reads

sup
Qτ (R/2)

v2 ≤ C
(
τ2 +R−n−2

∫
Qτ (R)

vΨ(v)dX
)
. (7.14)

The integral here can be estimated directly via Lemma 6.2 and our estimate has the same
form as [6, Equation VIII.5.1] although we have used the choices σ = 1/2, θ = ρ2 = R2 for
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the parameters in [6]. Moreover, ifΨ(v)= (v2− 1)(m−1)/2 withm∈ (1,2), then we choose
r ≥ 2 so that n[m− 2]+ 2r > 2, and we take Λ= v, λ= vm−1, and w = vr+N(2−m)/2. In this
way, we also reproduce [6, Equation VIII.5.3] (with the same choice of parameters).

On the other hand, when A= ν and B ≡ 0, our method does not apply. To see why, we
examine (3.3g) and (6.3c) with ξ = ν. First, |A|ν · ξ ≥ 1/8 for v sufficiently large, while
ai jξiξ j ≤ v−3, so the structure function Λ2 needs to be at least (some multiple of) v3 and
this choice ofΛ2 clearly does not satisfy (6.3c). This example is important because it is the
motivating case for the structure described in [11]. Moreover, the hypotheses for gradient
estimates in [11] and [5] are clearly satisfied for this choice of A and B.

8. Gradient estimates without boundary data

In [8], Ecker showed that the gradient of a solution to a prescribed mean curvature equa-
tion can be estimated, locally in space, just in terms of its initial data. Here, we show
how that result follows from a simple modification of our estimates. In fact, we obtain a
corresponding estimate for a larger class of equations.

To this end, we need to adjust our notation slightly. First, for any R > 0 and T > 0, we
set

Q(R,T)= {X ∈Rn+1 : |x| < R, 0 < t < T
}
, (8.1)

and we write Qτ(R,T) for the subset of Q(R,T) on which v > τ. We then have the follow-
ing form of the energy inequality.

Lemma 8.1. Let χ be a nonnegative Lipschitz function defined on [τ,∞) for some τ ≥ τ0 and
let ζ be a nonnegative C2(B(R)) function which vanishes on ∂B(R). Suppose conditions (3.3)
hold, and define Ξ by (3.4). If v(x,0)≤ τ for all x ∈ B(R), then

∫
qτ (R,s)

Ξ(v)ζ2dx+
∫
Qτ (R,T)

[(
1− τ

v

)
�2 +�

]
χζ2dX

≤ 20β21

∫
Qτ (R,T)

Λ0
(
(v− τ)χ′ + χ

)
ζ2dX +4β1

∫
Qτ (R,T)

Λ1χζ|Dζ|dX

+4
∫
Qτ (R,T)

|A|χ[∣∣D2ζ
∣∣ζ + |Dζ|2]vdX +32β2

∫
Qτ (R,T)

Λ2
(
(v− τ)χ′ + χ

)|Dζ|2dX
(8.2)

for any s∈ (0,T).

Proof. We proceed exactly as in Lemma 3.1 except that the integral involving ζt is not
present. �

Next, we note (see, e.g., [5, Corollary 6.9]) that our Sobolev inequality (4.1) holds if
we replaceQ(R) byQ(R,T) and (−R2,0) by (0,T). Then the proof of Lemma 5.1 gives the
following gradient bound.

Lemma 8.2. Suppose that all the hypotheses of Lemma 5.1 hold except for (5.2d), which
is replaced by the assumption that v(x,0) ≤ τ for all x ∈ B(R). Then there is a constant



24 Boundary Value Problems

c3(n,β,β1R,β2) such that

sup
Qτ (R/2,T)

(
1− τ

v

)N+2

w ≤ c3R
−n−2

∫
Qτ (R,T)

w
(
Λ

λ

)N/2Λ
v
dX. (8.3)

Note that if Λ = λ = vθ for some constant θ < 1, then we can take w = v1−θ to infer
that the integrand in (8.3) is identically one, and hence we obtain a gradient bound di-
rectly which depends only on a gradient bound for the initial function and on data of the
equation. In particular, we have the following result for p-Laplacian equations.

Corollary 8.3. Letm∈ (1,2), and suppose u is a solution of the equation

−ut +div
(|Du|m−2Du)= 0 (8.4)

in some cylinder Q(R,T) with |Du| bounded on B(R)×{0}. Then

sup
B(R/2)×(0,T)

|Du| ≤ C(m,n)

(
1+ sup

B(R)×{0}
|Du|+

(
T

R2

)1/(2−m))
. (8.5)

To include the mean curvature equations, we must modify our structure conditions to
include a condition on the maximum eigenvalue of the matrix ∂A/∂p. Following [11], we
assume that there is a positive function μ such that

ai jψiξ j ≤
(
μ|ψ|2)1/2(ai jξiξ j)1/2 (8.6)

for all vectors ξ and ψ. Of course if [ai j] is symmetric, then we can take μ to be the
maximum eigenvalue of this matrix. With this hypothesis in hand, we have the following
version of the energy inequality.

Lemma 8.4. Let χ be a nonnegative Lipschitz function defined on [τ,∞) for some τ ≥ τ0
and let ζ be a nonnegative C1(B(R)) function which vanishes on ∂B(R). Suppose conditions
(3.3a)–(3.3d) and (8.6) hold, and define Ξ by (3.4). If v(x,0)≤ τ for all x ∈ B(R), then

∫
qτ (R,s)

Ξ(v)ζ2dx+
∫
Qτ (R,T)

[(
1− τ

v

)
�2 +�

]
χζ2dX

≤ 12β21

∫
Qτ (R,T)

Λ0
(
(v− τ)χ′ + χ

)
ζ2dX +4

∫
Qτ (R,T)

v2μ|Dζ|2dX
(8.7)

for any s∈ (0,T).

Proof. This is an easy modification of the proof of Lemma 5.1. See [5, Lemma 11.10]
for details but note the differences in notation between that reference and the current
paper. �

From this energy inequality, we obtain the following gradient estimate.

Lemma 8.5. Suppose that conditions (3.3a)–(3.3d), (5.1), (5.2a), (5.2d), (5.3), (8.6) and

vμ≤Λ (8.8)
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are satisfied and that v(x,0) ≤ τ for all x ∈ B(R), then there is a constant c3(n,β,β1R,β2)
such that (8.3) holds.

Note that Corollary 8.3 also follows from this lemma. Furthermore, in caseA(X ,z, p)=
ν and B depends only on X and z, we suppose that B is nonincreasing as a function of z
and Lipschitz with respect to x, all the conditions of this lemma are satisfied (cf. [5, pages
279-280]) with Ci

k = 0,

Λ0 = v, μ= 1
v
, w = v, λ=Λ= 1,

β = 2, β1 =
(
sup

∣∣Bx

∣∣)1/2, τ0 = sup
B(R)×{0}

v,
(8.9)

and hence we infer that

sup
Q(R/2,T)

v ≤ C
(
n, R2 sup

∣∣Bx|
)(

sup
B(R)×{0}

v+TR−2
)
, (8.10)

which is a sharper form of [8, Theorem 3.1] in case the constant κ there is zero. To infer
the estimate for general κ, we perform a simple transformation. In our notation, the
assumption involving κ is that Bz ≤ κ, so let us note that u= exp(κt)u is a solution of the
equation

−ut +divA(X ,u,Du) +B(X ,u,Du)= 0 (8.11)

with

A(X ,z, p)= exp(−κt)A(X , exp(κt)z, exp(κt)p),
B(X ,z, p)= exp(−κt)B(x, exp(κt)z)− κz.

(8.12)

Now the hypotheses of Lemma 8.5 are satisfied for u, A, and B with Ci
k = 0,

Λ0 = v, μ= 1
v
, w = v, λ= exp(−2κT), Λ= 1,

β = 2, β1 = exp(κT)
(
sup

∣∣Bx

∣∣)1/2, τ0 = sup
B(R)×{0}

v.
(8.13)

The corresponding estimate for v(Du) then implies that

sup
Q(R/2,T)

v ≤ C
(
n, exp(κT), R2 sup

∣∣Bx

∣∣)
(

sup
B(R)×{0}

v+TR−2
)
, (8.14)

which is a sharper version of the full force of [8, Theorem 3.1].

9. Equations with faster than exponential growth

An important element in the theory of a priori estimates is the question of what classes of
operators are encompassed. As we have already seen, if A(p)=Ψ(v)ν for some increasing
scalar function Ψ, then our method provides a gradient estimate for some choices of Ψ
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but not others. In particular, if Ψ grows too slowly (e.g., if Ψ is a constant), then our
method does not supply a gradient estimate. In this section, we examine this structure
when Ψ grows more rapidly than any exponential function.

Our first step is a positive one, reducing the pointwise gradient estimate to an integral
estimate. We only need a slight variant of the argument in Section 5.

We assume that there is a positive increasing function y with y(τ0)≥ 1 such that

w′(v)≤ y(v)
v

w(v),

d

dv

(
Λ(v)
λ(v)

)N/2

≤ y(v)
v

(
Λ(v)
λ(v)

)N/2

.

(9.1)

[(
vy′

y

)2
+
(
vλ′

λ

)2
+ y2

]
yλgi jξiξ j ≤ vai jξiξ j (9.2)

for all ξ ∈Rn. In addition, we assume that

Λ0y ≤ vΛ,

Λ2y ≤ vΛ.
(9.3)

Theorem 9.1. Suppose u is a solution of (1.1), and suppose that w, Λ, and λ satisfy con-
ditions (3.3), (5.1a), (5.1c), (5.2), (5.3), (9.1), (9.2), and (9.3). Then (5.5) holds with c1
determined by n, β, β1R, and β2.

Proof. Take χ as in Lemma 5.1 so that χ is increasing. It is not hard to see that

(v− τ)χ′(v)≤ Y(v)χ(v) (9.4)

for Y(v)= (n+2)qy(v), and hence

Ξ(v)=
∫ v

τ
(σ − τ)χ(σ)dσ ≥

∫ v

τ

(σ − τ)2

Y(σ)
χ′(σ)dσ

≥ 1
Y(v)

∫ v

τ
(σ − τ)2χ′(σ)dσ = 1

Y(v)

[
(v− τ)2χ(v)− 2Ξ(v)

]
.

(9.5)

Simple rearrangement gives

Ξ(v)≥ 1
Y(v) + 2

(v− τ)2χ(v) (9.6)

and a simple calculation (cf. [5, Lemma 6.15]) gives

Ξ(v)≤ 1
2
(v− τ)2χ(v). (9.7)

We now define h by

h2 = χyλ
(
1− τ

v

)2
vζ (N+2)q−N (9.8)

to infer (5.12). From this inequality, the proof is exactly the same as for Lemma 5.1. �
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As a specific example, we suppose that

A(X ,z, p)= exp
(
exp

(
1
2
v2
))

p, B(X ,z, p)≡ 0. (9.9)

Then (3.3) is easily checked with

Λ0 =Λ1 = 0, Λ2 = exp
(
exp

(
1
2
v2
))

, β1 = 0, (9.10)

and suitable β2. The remainder of the hypotheses are satisfied with w = vK for any K > 0
and

Λ= v3 exp
(
exp

(
1
2
v2
))

, λ= v−5 exp
(− v2

)
exp

(
exp

(
1
2
v2
))

,

y = (N +1)v2.
(9.11)

In particular, for K = 1, we thus obtain

supv ≤ C
(
1+R−n−2

∫
Q
v4N+3 exp

(
N

2
v2
)
exp

(
exp

(
1
2
v2
))

dX
)
. (9.12)

To see why we cannot infer a complete gradient estimate for this example, we note that
(9.2) immediately implies that

λ≤ exp
(
exp

(
1
2
v2
))

exp
(− v2

)
v−2 (9.13)

while (9.3) implies that Λ ≥ exp(exp((1/2)v2)), so we must take y no less than some
constant times v2. Hence, the integral in (5.5) is at least

∫
w

v
exp

(
exp

(
1
2
v2
))

exp
(
N

2
v2
)
dX , (9.14)

and this integrand cannot be estimated by an expression of the form vqDu ·A for any
power q, so Lemma 6.1 does not apply to this example. If we note that the integrand can
be estimated by an expression of the form w

q
1Du ·A with w1 = exp(v2), then it would

seem that the proof of that lemma could be modified. If we try to imitate the proof of
Lemma 6.1 but with G(w1) in place of G(v) (as was done in [11]), the integral I3 causes
problems since the integrand has the form

ζ2q−1wq
1|A|, (9.15)

and this cannot be estimated by ζ2q−1wq−θ
1 Du ·A for any positive constant θ. Hence it is

not possible to adapt the proof of Lemma 6.1 to this situation.
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