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1. Main theorem

We recall some facts on differential forms and quasiregular mappings. Our notation is as
in [1]. Let � be a Riemannian manifold of the class C3, dim� = n, without boundary.
Each differential form α can be written in terms of the local coordinates x1, . . . ,xn as the
linear combination

α=
∑

1≤i1<···<ik≤n
αi1···ik dxi1 ∧···∧dxik . (1.1)

Let α be a differential form defined on an open set D ⊂�. If �(D) is a class of func-
tions defined on D, then we say that the differential form α is in this class provided that
αi1···ik ∈�(D). For instance, the differential form α is in the class Lp(D) if all its coeffi-
cients are in this class.

A differential form α of degree k on the manifold � with coefficients αi1···ik ∈ L
p
loc(�)

is called weakly closed if for each differential form β, degβ = k+1, with compact support
suppβ = {m∈� : β �= 0} in � and with coefficients in the classW1

q,loc(�), 1/p+1/q = 1,
1≤ p, q ≤∞, we have

∫

�
〈α,δβ〉∗ � = 0. (1.2)
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Here the operator ∗ and the exterior differentiation d define the codifferential operator
δ by the formula

δα= (−1)k ∗−1d∗α (1.3)

for a differential form α of degree k.
Clearly, δα is a differential form of degree k− 1. For smooth differential forms α con-

dition (1.2) agrees with the traditional condition of closedness dα= 0.
For an arbitrary simple form of degree k,

w =w1∧···∧wk, (1.4)

we set

‖w‖ =
( k∑

i=1

∣∣wi

∣∣2
)1/2

. (1.5)

For a simple form w we have Hadamard’s inequality

|w| ≤
k∏

i=1

∣∣wi

∣∣. (1.6)

Taking these into account and using the inequality between geometric and arithmetic
means

( k∏

i=1

∣∣wi

∣∣
)1/k

≤ 1
k

k∑

i=1

∣∣wi

∣∣≤
(
1
k

k∑

i=1

∣∣wi

∣∣2
)1/2

(1.7)

we obtain

|w| ≤ k−k/2‖w‖k. (1.8)

Let

w =w1∧···∧wk, θ = θ1∧···∧ θn−k (1.9)

be simple weakly closed differential forms on �.
We say that the pair of forms (1.9) satisfies a ��-condition on � if there exist con-

stants ν1,ν2 > 0 such that almost everywhere on �

ν1‖w‖kp ≤ 〈w,∗θ〉, ‖θ‖ ≤ ν2‖w‖. (1.10)

Our main removability result for differential forms is the following.

Theorem 1.1. Let � be a Riemannian C3-manifold, dimM = n ≥ 2, and let E ⊂� be
a compact set of p-capacity zero, 1 ≤ p ≤ n. Let Z and θ be simple forms on � \ E of de-

grees k− 1, n− k, respectively, ‖dZ‖ ∈ L
kp
loc. Suppose that the pair dZ and θ satisfies a ��-

condition on � \E.
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If

ess sup
m∈�\E

∣∣Z(m)
∣∣ <∞, (1.11)

then there exist forms Z̃, θ̃ such that ‖dZ̃‖,‖θ̃‖ ∈ Lkp on �, the pair dZ̃, θ̃ satisfies the
��-condition on � and their restrictions to � \E coincide with Z, θ, respectively.

2. p-capacity

First we recall some basic facts about condensers. Let D be an open set on � and let
A,B ⊂ D be such that A and B are compact in D and A∩B =∅. Each triple (A,B;D) is
called a condenser on �.

We fix p ≥ 1. The p-capacity of the condenser (A,B;D) is defined by

capp(A,B;D)= inf
∫

D
|∇ϕ|p∗ �, (2.1)

where the infimum is taken over the set of all continuous functions ϕ of class W1
p,loc(D)

such that ϕ|A = 0, ϕ|B = 1. It is easy to see that for a pair (A,B;D) and (A1,B1;D) with
A1 ⊂ A, B1 ⊂ B we have

capp

(
A1,B1;D

)≤ capp(A,B;D). (2.2)

A standard approximation argument shows that the quantity capp(A,B;D) does not
change if one restricts the class of functions in the variational problem (2.1) to smooth
functions ϕ equal to 0 and 1 in the setsA and B, respectively, and∇ϕ �=0 a.e. on�\(A∪B).

We say that a compact set E ⊂� is of p-capacity zero, if capp(E,U ;�)= 0 for all open

sets U ⊂� such that E∩U =∅.
We will need the following lemma.

Lemma 2.1. A set E ⊂� is of 1-capacity zero if and only if

�n−1(E)= 0. (2.3)

Proof. Fix ε > 0 and an open set U ⊂� such that cap1(E,U ;M) = 0. Choose a smooth
function ϕ : �→ [0,1] such that ϕ|E = 0, ϕ|U = 1,∇ϕ �= 0 a.e. on � \ (E∪U) and

∫

�
|∇ϕ|∗ � ≤ ε. (2.4)

By the coarea formula we have

∫

�
|∇ϕ|∗ � =

∫ 1

0
dt
∫

Gt

d�n−1 =
∫ 1

0
�n−1(Gt

)
, (2.5)

where Gt = {m∈� : ϕ(m)= t} is a level set of ϕ [2, Section 3.2].
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Thus we obtain

inf
t

�n−1(Gt
)≤ ε (2.6)

and there exist sets Gt of arbitrarily small (n− 1)-measure.
Since U is open it is possible only for the set E of (n− 1)-measure zero. �

If a compact set E ⊂ � is of p-capacity zero, then E is of q-capacity zero for all
q ∈ [1, p]. By Lemma 2.1 we conclude that a set E of p-capacity zero, p ≥ 1, satisfies
�n−1(E)= 0. In particular, such a set has n-measure zero.

3. Applications to quasiregular mappings

Let � and � be Riemannian manifolds of dimension n. It is convenient to use the follow-
ing definition [3, Section 14]. A continuous mapping F : �→� of the classW1

n,loc(�) is
called a quasiregular mapping if F satisfies

∣∣F′(m)
∣∣n ≤ KJF(m) (3.1)

almost everywhere on �. Here F′(m) : Tm(�)→ TF(m)(�) is the formal derivative of
F(m), further, |F′(m)| =max|h|=1 |F′(m)h|. We denote by JF(m) the Jacobian of F at the
pointm∈�, that is, the determinant of F′(m).

For the following statement, see [1, Theorem 6.15, page 90].

Lemma 3.1. If F = (F1, . . . ,Fn) : �→Rn is a quasiregular mapping and 1≤ k < n, then the
pair of forms

w = dF1∧···∧dFk, θ = dFk+1∧···∧dFn (3.2)

satisfies a��-condition on� with the structure constants ν1 = ν1(n,k,K), ν2 = ν2(n,k,K),
and p = n/k.

We point out some special cases of Theorem 1.1.

Theorem 3.2. Let D ⊂ Rn be a domain, 1 ≤ k ≤ n, and let E ⊂ D be a compact set of the
n/k-capacity zero. Suppose that a quasiregular mapping

F = (F1, . . . ,Fk,Fk+1, . . . ,Fn
)
:D \E −→Rn (3.3)

satisfies (1.11) with

Z(x)=
k∑

i=1
(−1)i−1ciFidF1∧dF2∧···∧ d̃Fi∧···∧dFk, (3.4)

where the symbol d̃Fi means that this factor is omitted and ci = const,
∑k

i=1 ci = 1.
Then there exists a quasiregular mapping F̃ :D→Rn for which F̃|D\E = F.
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Proof. Since the statement is a special case of Theorem 1.1, it suffices to show that Z and
θ satisfy the assumptions of the theorem. We have

dZ =
k∑

i=1
(−1)i−1cidFi∧dF1∧dF2∧···∧ d̃Fi∧···∧dFk = dF1∧···∧dFk. (3.5)

If we put

θ = dFk+1∧···∧dFn, (3.6)

then by Lemma 3.1 the pair of forms w = dZ and θ satisfies (1.10) on D \ E. Using
Theorem 1.1 we can conclude that forms Z and θ have extensions to D. Moreover for
an arbitrary subdomain D′, E ⊂D′ ⊂⊂D, it follows
∫

D′\E
JF(x)dx1 ···dxn =

∫

D′\E
dF1∧···∧dFn =

∫

D′\E
dZ∧ θ

≤ C
∫

D′\E
|dZ||θ|dx1 ···dxn ≤ C‖dZ‖Lp(D′\E)‖θ‖Lq(D′\E),

(3.7)

where C = const <∞ [2, Section 1.7] and p = n/k, q = n/(n− k).
From this it is easy to see that the vector function F belongs to W1

n,loc in D and E is
removable for the quasiregular mapping F. Note that in the definition of a quasiregular
mapping continuity is not needed, see [4, Section 3, Chapter II]. This property has a local
character and its proof for subdomains of Rn implies its correctness for manifolds. �

The case k = 1 reduces to the well-known case, see Miklyukov [5].

Corollary 3.3. LetD ⊂Rn be a domain, and let E ⊂D be a compact set of n-capacity zero.
Suppose that

F = (F1,F2, . . . ,Fn
)
:D \E −→Rn (3.8)

is a quasiregular mapping such that

sup
x∈D\E

∣∣F1(x)
∣∣ <∞. (3.9)

Then there exists a quasiregular mapping F̃ :D→Rn for which F̃|D\E = F.

For k = n we have the following result.

Corollary 3.4. Let D ⊂ Rn be a domain, and let E ⊂ D be a compact set of Hausdorff
(n− 1)-measure zero. Suppose that

F = (F1,F2, . . . ,Fn
)
:D \E −→Rn (3.10)

is a quasiregular mapping such that

ess sup
x∈D\E

JF(x) <∞. (3.11)

Then there exists a quasiregular mapping f ∗ :D→Rn for which f ∗|D\E = f .
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Proof. Since the Jacobian determinant of F is bounded and E is of (n− 1)-measure zero,
the quasiregularity of F implies that F and the form

n∑

i=1
(−1)iFidF1dF2∧··· d̃Fi ···∧dFn (3.12)

belong to L∞loc(D). Hence the corollary follows from Theorem 3.2. �

Remark 3.5. Observe that Corollary 3.4 has an easy alternative proof. Since JF(x) is
bounded and E is of (n− 1)-measure zero, the quasiregularity of F implies that the de-
rivative of F belongs to L∞loc(D) and F is a Lipschitz mapping in D \ E. This shows that
F can be extended to a Lipschitz mapping on D. It is clear that the extended mapping is
quasiregular in D.

Corollary 3.4 gives the following version of the well-known Painlevé theorem.

Corollary 3.6. Let E ⊂D ⊂ C be a compact set of linear measure zero. Let F :D \E→ C
be a holomorphic function. The set E is removable for F if and only if

sup
z∈K\E

∣∣F′(z)
∣∣ <∞, (3.13)

for each compact set K ⊂D.

4. Proof of Theorem 1.1

We will need the following integration by parts formula for differential forms [1].

Lemma 4.1. Let α∈W1
p,loc(�) and β ∈W1

q (�) be differential forms, degα+degβ = n− 1,
1/p+1/q = 1, 1≤ p, q ≤∞, and let β have a compact support. Then

∫

�
dα∧β = (−1)degα+1

∫

�
α∧dβ. (4.1)

In particular, the form α is weakly closed if and only if dα= 0 a.e. on �.

Let D ⊂� be a domain containing E and with a compact closure in �. Let {Uk}∞k=1
be a sequence of open sets Uk ⊂� such that

E ⊂Uk, Uk ⊂D, ∩∞k=1Uk = E. (4.2)

Fix a nonnegative smooth function ψ : �→ R, 0 ≤ ψ ≤ 1, with a compact support and
ψ ≡ 1 on D. Fix a k = 1,2, . . . and a smooth function ϕ : � → R, 0 ≤ ϕ ≤ 1, with the
properties

ϕ|E = 0, suppϕ⊂Uk, ϕ= 1 ∀m∈� \Uk. (4.3)

The form ψpϕpZ∧ θ has a compact support in � \E. This yields
∫

�\E
d
(
ψpϕpZ∧ θ

)= 0. (4.4)
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Using (4.1) we have

∫

�\E
ψpϕpdZ∧ θ + (−1)degZ

∫

�\E
ψpϕpZ∧dθ =−

∫

�\E
d
(
ψpϕp

)∧Z∧ θ. (4.5)

Observe that

dZ∧ θ = 〈dZ,∗θ〉∗ �. (4.6)

The form θ is closed and, consequently, from (1.10) we get

ν1

∫

�\E
ψpϕp‖dZ‖kp∗ ≤

∫

�\E
ψpϕp〈dZ,∗θ〉∗ =−

∫

�\E
d
(
ψpϕp

)∧Z∧ θ

=−
∫

�\E

〈
d
(
ψpϕp

)∧Z,∗θ〉∗

≤
∫

�\E

∣∣d
(
ψpϕp

)∧Z
∣∣|∗ θ|∗ .

(4.7)

But degθ = n− k and by (1.8) we have

|∗ θ| = |θ| ≤ (n− k)(n−k)/2‖θ‖n−k. (4.8)

Thus from the second condition of (1.10), it follows that

ν1

∫

�\E
ψpϕp‖dZ‖kp∗ ≤ ν3

∫

�\E

∣∣d
(
ψpϕp

)∧Z
∣∣‖dZ‖p−1∗ , (4.9)

where ν3 = (n− k)(n−k)/2ν2.
By (1.11) there exists a constant 0 <M <∞ such that

∣∣Z(m)
∣∣ <M for a.e. in � \E. (4.10)

Thus, we obtain

ν1

∫

�\E
ψpϕp‖dZ‖kp∗ ≤ ν3M

∫

�\E

∣∣d
(
ψpϕp

)∣∣‖dZ‖p−1∗ . (4.11)

However,

∣∣d
(
ψpϕp

)∣∣≤ pϕpψp−1|∇ψ|+ pϕp−1ψp|∇ϕ|, (4.12)

ν1

∫

�\E
ψpϕp‖dZ‖kp∗

≤ pν3M
∫

�\E
ϕpψp−1|∇ψ|‖dZ‖p−1∗ + pν3M

∫

�\E
ψpϕp−1|∇ϕ|‖dZ‖p−1∗ .

(4.13)
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Next we use the Cauchy inequality

abp−1 ≤ εkp

kp
ap +

p− 1
kp

εkp/(1−p)bkp (4.14)

for a,b,ε > 0, p ≥ 1.
For ε > 0 this implies two estimates

∫

�\E
ϕpψp−1|∇ψ|‖dZ‖n−k ∗

≤ n− k

kp
εkp/(k−n)

∫

�\E
ϕpψp‖dZ‖kp∗ +

εkp

kp

∫

�\E
ϕp|∇ψ|p∗ ,

∫

�\E
ϕp−1ψp|∇ϕ|‖dZ‖n−k ∗

≤ n− k

kp
εkp/(k−n)

∫

�\E
ϕpψp‖dZ‖kp∗ +

εkp

kp

∫

�\E
ψp|∇ϕ|p∗ .

(4.15)

Now from (4.13) it follows

ν1

∫

�\E
ψpϕp‖dZ‖kp∗

≤ C1

∫

�\E
ψpϕp‖dZ‖kp∗ +C2

∫

�\E
ϕp|∇ψ|p∗ +C2

∫

�\E
ψp|∇ϕ|p∗ ,

(4.16)

where

C1 = n− k

k
ν3Mεkp/(k−n), C2 = ν3M

εkp

k
. (4.17)

Choose ε = ε0 > 0 such that C1 = ν1/2. Then we obtain

1
2

ν1

∫

�\E
ψpϕp‖dZ‖kp∗

≤ ν3M
ε
kp
0

k

∫

�\E
ϕp|∇ψ|p∗ + ν3M

ε
kp
0

k

∫

�\E
ψp|∇ϕ|p∗

= ν3M
ε
kp
0

k

∫

Uk\E
|∇ϕ|p∗ + ν3M

ε
kp
0

k

∫

�\D
|∇ψ|p∗

(4.18)

and since 0≤ ψ, ϕ≤ 1,

1
2

ν1

∫

D\Uk

‖dZ‖kp∗ ≤ ν3M
ε
kp
0

k

(∫

Uk\E
|∇ϕ|p∗ +

∫

�\D
|∇ψ|p∗

)
. (4.19)

The special choice of ϕ and ψ permits to take the infimum over ϕ and ψ such that

1
2

ν1

∫

D\Uk

‖dZ‖kp∗ ≤ ν3M
ε
kp
0

k
capp

(
E,Uk;�

)
+ ν3M

ε
kp
0

k
capp(D,�;�). (4.20)
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However, capp(E,� \Uk;�)= 0 and thus we arrive at the estimates

1
2

ν1

∫

D\Uk

‖dZ‖kp∗ ≤ ν3M
ε
kp
0

k
capp(D,�;�), (4.21)

1
2

ν1

∫

D
‖dZ‖kp∗ ≤ ν3M

ε
kp
0

k
capp(D,�;�) (4.22)

because by Lemma 2.1 the set E is of (n− 1)-measure zero.
Next by Lemma 2.1, the coefficients of Z can be extended to W1

p,loc-functions in �.
This is due to the estimate (4.22) and to the ACL-property ofW1

p-functions; note that the
ACL-property can be easily transformed to the manifold � since � is in the class C3.

Thus, Z can be extended up to some form Z̃. Moreover clearly, ‖dZ̃‖ ∈ L
kp
loc(�). The

extension of θ is analogous. Theorem 1.1 is completely proved.
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