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1. Introduction

Let L(P2, P3, . . . , Pn) ≡ L be the differential operator generated in the space Lm
2 (−∞,∞) by the

differential expression

l(y) = y(n)(x) + P2(x)y(n−2)(x) + P3(x)y(n−3)(x) + · · · + Pn(x)y, (1.1)

and Lt(P2, P3, . . . , Pn) ≡ Lt be the differential operator generated in Lm
2 (0, 1) by the same

differential expression and the boundary conditions

Uν,t(y) ≡ y(ν)(1) − eity(ν)(0) = 0, ν = 0, 1, . . . , (n − 1), (1.2)

where n ≥ 2, Pν = (pν,i,j) is anm ×mmatrix with the complex-valued summable entries pν,i,j ,
Pν(x + 1) = Pν(x) for ν = 2, 3, . . . , n, the eigenvalues μ1, μ2, . . . , μm of the matrix,

C =
∫1

0
P2(x)dx, (1.3)
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are simple, and y = (y1, y2, . . . , ym) is a vector-valued function. Here, Lm
2 (a, b) is the space of

the vector-valued functions f = (f1, f2, . . . , fm), where fk ∈ L2(a, b) for k = 1, 2, . . . , m, with
the norm ‖·‖ and inner product (·, ·) defined by

‖f‖2 =
∫b

a

|f(x)|2dx, (f, g) =
∫b

a

〈f(x), g(x)〉dx, (1.4)

where |·| and 〈·, ·〉 are the norm and inner product in C
m.

It is well known that (see [1, 2]) the spectrum σ(L) of L is the union of the spectra
σ(Lt) of Lt for t ∈ [0, 2π). First, we derive an asymptotic formula for the eigenvalues and
eigenfunctions of Lt which is uniform with respect to t in Qε(n),where

Qε(2μ) = {t ∈ Q : |t − πk| > ε, ∀ k ∈ Z}, Qε(2μ + 1) = Q, ε ∈
(
0,

π

4

)
, μ = 1, 2, . . . ,

(1.5)

and Q is a compact subset of C containing a neighborhood of the interval [−π/2, 2π − π/2].
Using these formulas, we prove that the root functions of Lt for t ∈ C(n) form a Riesz basis
in Lm

2 (0, 1), where C(2μ) = C \ {πk : k ∈ Z}, C(2μ + 1) = C. Then we construct the uniformly
convergent spectral expansion for L.

Let us introduce some preliminary results and describe the scheme of the paper.
Denote by Lt(0) the operator Lt(P2, . . . , Pn) when P2(x) = 0, . . . , Pn(x) = 0. Clearly,

ϕk,j,t(x) = e(t)ejei(2πk+t)x for k ∈ Z, j = 1, 2, . . . , m, where (e(t))−2 =
∫1

0
|eitx|2dx, (1.6)

e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . ., em = (0, 0, . . . , 0, 1) are the normalized eigenfunc-
tions of the operator Lt(0) corresponding to the eigenvalue (2πki + ti)n. It easily follows from
the classical investigations [3, Chapter 3, Theorem 2] that the boundary conditions (1.2) are
regular and the large eigenvalues of Lt consist of m sequences

{λk,1(t) : |k| ≥ N}, {λk,2(t) : |k| ≥ N}, . . . , {λk,m(t) : |k| ≥ N}, (1.7)

satisfying the following asymptotic formula uniformly with respect to t in Q

λk,j(t) = (2πki + ti)n +O(kn−1−1/2m) as k −→ ±∞, (1.8)

where N � 1 and j = 1, 2, . . . , m. We say that the formula f(k, t) = O(h(k)) is uniform
with respect to t in Q if there exists positive constants N and c, independent of t, such that
|f(k, t)| < c|h(k)| for all t ∈ Q and |k| ≥ N.

The method proposed here allows us to obtain the asymptotic formulas of high
accuracy for the eigenvalues λk,j(t) and the corresponding normalized eigenfunctions
Ψk,j,t(x) of Lt when pν,i,j ∈ L1[0, 1] for all ν, i, j. Note that to obtain the asymptotic formulas of
high accuracy by the classical methods, it is required that P2, P3, . . . , Pn be differentiable (see
[3]). To obtain the asymptotic formulas for Lt, we take the operator Lt(C),where Lt(P2, . . . , Pn)
is denoted by Lt(C) when P2(x) = C, P3(x) = 0, . . . , Pn(x) = 0 for an unperturbed operator
and Lt − Lt(C) for a perturbation. One can easily verify that the eigenvalues and normalized
eigenfunctions of Lt(C) are

μk,j(t) = (2πki + ti)n + μj(2πki + ti)n−2, Φk,j,t(x) = e(t)vje
i(2πk+t)x (1.9)

for k ∈ Z, j = 1, 2, . . . , m, where v1, v2, . . . , vm are the normalized eigenvectors of the matrix
C corresponding to the eigenvalues μ1, μ2, . . . , μm, respectively.
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In Section 2, we investigate the operator Lt and prove the following theorem.

Theorem 1.1. (a) The large eigenvalues of Lt consist of m sequences (1.7) satisfying the following
formula uniformly with respect to t in Qε(n):

λk,j(t) = (2πki + ti)n + μj(2πki + ti)n−2 +O(kn−3 ln |k|). (1.10)

There exists constant N(ε) such that if |k| ≥ N(ε) and t ∈ Qε(n), then λk,j(t) is a simple eigenvalue
of Lt and the corresponding normalized eigenfunction Ψk,j,t(x) satisfies

Ψk,j,t(x) = e(t)vje
i(2πk+t)x +O(k−1 ln |k|). (1.11)

This formula is uniform with respect to t and x in Qε(n) and in [0, 1], that is, there exists a constant
c1, independent of t, such that the term O(k−1 ln |k|) in (1.11) satisfies

|O(k−1 ln |k|)| < c1|k−1 ln |k|| ∀ t ∈ Qε(n), x ∈ [0, 1], |k| ≥ N(ε). (1.12)

(b) If t ∈ C(n), then the root functions of Lt form a Riesz basis in Lm
2 (0, 1).

(c) Let L∗
t be adjoint operator of Lt and Xk,j,t be the eigenfunction of L∗

t corresponding to the
eigenvalue λk,j(t) and satisfying (Xk,j,t,Ψk,j,t) = 1, where |k| ≥ N(ε) and t ∈ Qε(n). Then, Xk,j,t(x)
satisfies the following formula uniformly with respect to t and x in Qε(n) and in [0, 1], respectively,

Xk,j,t(x) = uj(e(t))
−1ei(2kπ+t)x +O(k−1 ln |k|), (1.13)

where uj is the eigenvector of C∗ corresponding to μj and satisfying (uj, vj) = 1.
(d) If f is absolutely continuous function satisfying (1.2) and f ′ ∈ Lm

2 [0, 1], then the
expansion series of f(x) by the root functions of Lt converges uniformly, with respect to x in [0, 1],
where t ∈ C(n).

Shkalikov [4, 5] proved that the root functions of the operators generated by an
ordinary differential expression with summable coefficients and regular boundary conditions
form a Riesz basis with brackets. Luzhina [6] generalized these results for the matrix case. In
[7], we prove that if n = 2 and the eigenvalues of the matrix C are simple, then the root
functions of Lt for t ∈ (0, π) ∪ (π, 2π) form an ordinary Riesz basis. The case n > 2 is more
complicated and the most part of the method of [7] does not work here, since in the case
n > 2 the adjoint operator of the operator generated by expression with arbitrary summable
coefficients cannot be defined by the Lagrange’s formula.

In Section 3 using Theorem 1.1, we obtain spectral expansion for the nonself-adjoint
differential operator L with the periodic matrix coefficients. The spectral expansion for the
self-adjoint differential operators with the periodic coefficients was constructed by Gelfand
[8], Titchmarsh [9], and Tkachenko [10]. In [11], it was proved that the nonself-adjoint Hill
operator H can be reduced to the triangular form if all eigenvalues of the operators Ht for
t ∈ [0, 2π) are simple, whereH andHt denote the operators L and Lt in the casem = 1, n = 2.
McGarvey [2, 12] proved that L, in the case m = 1, is a spectral operator if the projections
of the operator L are uniformly bounded. Gesztesy and Tkachenko [13] proved that the Hill
operator H is a spectral operator of scalar type (see [14] for the definition of the spectral
operator) if and only if for all t ∈ [0, 2π) the operators Ht have not associated function,
the multiple point of either the periodic or antiperiodic spectrum is a point of its Dirichlet
spectrum, and some other conditions hold. (Recall that a function Ψ is called an associated
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function ofHt corresponding to the eigenvalue λ if (Ht − λI)Ψ/= 0 and there exists an integer
k > 1 such that (Ht − λI)kΨ = 0 (see [3]).) However, in general, the eigenvalues are not
simple, projections are not uniformly bounded, and Lt has associated function, since the Hill
operator with simple potential q(x) = ei2πx has infinitely many spectral singularities (see
[15], where Gasymov investigated the Hill operator with special potential). Note that the
spectral singularity of L is the point of σ(L) in neighborhood on which the projections of L
are not uniformly bounded. In [16], we proved that a number λ ∈ σ(Lt) ⊂ σ(L) is a spectral
singularity if and only if Lt has an associated function corresponding to the eigenvalue λ.
The existence of the spectral singularities and the absence of the Parseval’s equality for
the nonself-adjoint operator Lt do not allow us to apply the elegant method of Gelfand
(see [8]) for construction of the spectral expansion for the nonself-adjoin operator L. These
situations essentially complicate the construction of the spectral expansion for the nonself-
adjoint case. In [17, 18], we constructed the spectral expansion for the Hill operator with
continuous complex-valued potential q and with locally summable complex-valued potential
q, respectively. Then, in [19, 20], we constructed the spectral expansion for the nonself-adjoint
operator L in the case m = 1, with coefficients pk ∈ C(k−1)[0, 1] and with pk ∈ L1[0, 1] for
k = 2, 3, . . . , n, respectively. In the paper [21], we constructed the spectral expansion of Lwhen
pk,i,j ∈ C(k−1)[0, 1]. In this paper, we do it when pk,i,j is arbitrary Lebesgue integrable on (0, 1)
function. Besides, in [21], the expansion is obtained for compactly supported continuous
vector functions, while in this paper, we obtain the spectral expansion for each function
f ∈ Lm

2 (−∞,∞) satisfying
∞∑

k=−∞
|f(x + k)| < ∞ (1.14)

if n = 2μ + 1 and for each function from Ω, where f(x) ∈ Ω ⊂ Lm
2 (−∞,∞) if and only if there

exist positive constants M and α such that

|f(x)| < Me−α|x| ∀x ∈ (−∞,∞) (1.15)

if n = 2μ. Moreover, using Theorem 1.1, we prove that the spectral expansion of L converges
uniformly in every bounded subset of (−∞,∞) if f is absolutely continuous compactly
supported function and f ′ ∈ Lm

2 (−∞,∞). Note that the spectral expansion obtained in [21],
when pk,i,j ∈ C(k−1)[0, 1], converges in the norm of Lm

2 (a, b), where a and b are arbitrary real
numbers. Some parts of the proofs of the spectral expansions for Lare just writing in the
vector form of the corresponding proofs obtained in [19] for the case m = 1. These parts are
given in appendices in order to give a possibility to read this paper independently.

Thus, in this paper, we obtain the spectral expansion for the nonself-adjoint differential
operators Lt and L with the periodic matrix coefficients. There exist many important papers
about spectral theory of the self-adjoint differential operators with the periodic matrix
coefficients (see [22, 23] and references therein). We do not discuss the results of those papers,
since those results have no any relation with the spectral expansion for the nonself-adjoint
differential operators Lt and L.

2. On the eigenvalues and root functions of Lt

The formula (1.8) shows that the eigenvalue λk,j(t) of Lt is close to the eigenvalue (2kπi + ti)n

of Lt(0). By (1.5), if t ∈ Qε(n), |k| � 1, then the eigenvalue (2πki + ti)n of Lt(0) lies far from
the other eigenvalues Lt(0). Thus, (1.5) and (1.8) imply that

|λk,j(t) − (2πpi + ti)n| > (||k| − |p|| + 1)(|k| + |p|)n−1 (2.1)
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for p /= k, t ∈ Qε(n),where |k| � 1. Using this, one can easily verify that

∑
p:p>d

|p|n−ν
|λk,j(t) − (2πpi + ti)n| = O

(
1

dν−1

)
∀d > 2|k|, (2.2)

∑
p:p /= k

|p|n−ν
|λk,j(t) − (2πpi + ti)n| = O

(
ln |k|
kν−1

)
, (2.3)

where |k| � 1, ν ≥ 2, and (2.2), (2.3) are uniform with respect to t in Qε(n).
The boundary conditions adjoint to (1.2) is Uν,t(y) = 0. Therefore, the eigenfunctions

ϕ∗
k,s,t and Φ∗

k,s,t of the operators L
∗
t (0) and L∗

t (C) corresponding to the eigenvalues (2πpi + ti)n

and μk,s(t), respectively, and satisfying (ϕk,s,t, ϕ
∗
k,s,t) = 1, (Φk,s,t,Φ∗

k,s,t) = 1 are

ϕ∗
k,s,t(x) = es(e(t))

−1ei(2πk+t)x, Φ∗
k,s,t(x) = us(e(t))

−1ei(2πk+t)x, (2.4)

where μk,s(t) and us are defined in (1.9) and (1.13).
To prove the asymptotic formulas for the eigenvalue λk,j(t) and the corresponding

normalized eigenfunction Ψk,j,t(x) of Lt, we use the formula

(
λk,j − μk,s

)(
Ψk,j,t,Φ∗

k,s,t

)
=
((
P2 − C

)
Ψ(n−2)

k,j,t ,Φ∗
k,s,t

)
+

n∑
ν=3

(
PνΨ

(n−ν)
k,j,t ,Φ∗

k,s,t

)
, (2.5)

which can be obtained from

LtΨk,j,t(x) = λk,j(t)Ψk,j,t(x) (2.6)

by multiplying scalarly by Φ∗
k,s,t(x). To estimate the right-hand side of (2.5), we use (2.2),

(2.3), the following lemma, and the formula

(
λk,j(t) − (2πpi + ti)n

)(
Ψk,j,t, ϕ

∗
p,s,t

)
=

n∑
ν=2

(
PνΨ

(n−ν)
k,j,t , ϕ∗

p,s,t

)
, (2.7)

which can be obtained from (2.6) by multiplying scalarly by ϕ∗
p,s,t(x).

Lemma 2.1. If |k| � 1 and t ∈ Qε(n), then

(
PνΨ

(n−ν)
k,j,t , ϕ∗

p,s,t

)
=

m∑
q=1

( ∞∑
l=−∞

pν,s,q,p−l(2πli + it)n−ν
(
Ψk,t, ϕ

∗
l,q,t

))
, (2.8)

where pν,s,q,k =
∫1
0 pν,s,q(x)e

−i2πkx dx.Moreover, there exists a constant c2, independent of t, such that

max
p∈Z, s=1,2,...,m

∣∣∣∣∣
n∑

ν=2

(
PνΨ

(n−ν)
k,j,t

, ϕ∗
p,s,t

)∣∣∣∣∣ < c2|k|n−2 ∀ t ∈ Qε(n), j = 1, 2, . . . , m. (2.9)

Proof. Since P2Ψ
(n−2)
k,j,t + P3Ψ

(n−3)
k,j,t + · · · + PnΨk,j,t ∈ Lm

1 [0, 1], we have

lim
p→∞

∣∣∣∣∣
n∑

ν=2

(
PνΨ

(n−ν)
k,j,t

, ϕ∗
p,s,t

)∣∣∣∣∣ = 0. (2.10)
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Therefore, there exists a positive constant M(k, j) and indices p0, s0 satisfying

max
p∈Z,

s=1,2,...,m

∣∣∣∣∣
n∑

ν=2

(
PνΨ

(n−ν)
k,j,t

, ϕ∗
p,s,t

)∣∣∣∣∣ =
∣∣∣∣∣

n∑
ν=2

(
PνΨ

(n−ν)
k,j,t

, ϕ∗
p0,s0,t

)∣∣∣∣∣ = M(k, j). (2.11)

Then using (2.7) and (2.2), we get

∣∣(Ψk,j,t, ϕ
∗
p,s,t

)∣∣ ≤ M(k, j)∣∣λk,j(t) − (2πpi + it)n
∣∣ ,∑

p:|p|>d

∣∣(Ψk,j,t, ϕ
∗
p,s,t

)∣∣ = M(k, j)O
(

1
dn−1

)
,

(2.12)

where d > 2|k|. This implies that the decomposition of Ψk,j,t(x) by the basis {ϕp,s,t(x) : p ∈ Z,
s = 1, 2, . . . , m} has the form

Ψk,j,t(x) =
∑

p:|p|≤d

(
Ψk,j,t, ϕ

∗
p,s,t)ϕp,s,t(x) + g0,d(x), (2.13)

where

sup
x∈[0,1]

|g0,d(x)| = M(k, j)O
(

1
dn−1

)
. (2.14)

Now using the integration by parts, (1.2), and the inequality (2.12), we obtain
(
Ψ(n−ν)

k,j,t
, ϕ∗

p,s,t) = (2πip + it)n−ν
(
Ψk,j,t, ϕ

∗
p,s,t),

|(Ψ(n−ν)
k,j,t , ϕ∗

p,s,t)| ≤
|2πip + it|n−νM(k, j)
|λk(t) − (2πpi + it)n| .

(2.15)

Therefore, arguing as in the proof of (2.13) and using (2.2), we get

Ψ(n−ν)
k,j,t (x) =

∑
p:|p|≤d

(
Ψ(n−ν)

k,j,t , ϕ∗
p,s,t)ϕp,s,t(x) + gν,d(x), (2.16)

sup
x∈[0,1]

|gν,d(x)| = M(k, j)O
(

1
dν−1

)
, (2.17)

where ν = 2, 3, . . . , n. Now using (2.16) in (PνΨ
(n−ν)
k,j,t , ϕ∗

p,s,t) and letting q → ∞, we get (2.8).
Let us prove (2.9). It follows from (2.11) and (2.8) that

M(k, j) =

∣∣∣∣∣
n∑

ν=2

(
PνΨ

(n−ν)
k,j,t

, ϕ∗
p0,s0,t

)

∣∣∣∣∣
=

∣∣∣∣∣
n∑

ν=2

m∑
q=1

( ∞∑
l=−∞

pν,s0,q,p0−l(2πim + it)n−ν
(
Ψk,j,t, ϕ

∗
l,q,t)

)∣∣∣∣∣.
(2.18)

By (2.12) and (2.3), we have∣∣∣∣∣
n∑

ν=2

m∑
q=1

(∑
l /= k

pν,s0,q,p0−l(2πim + it)n−ν
(
Ψk,j,t, ϕ

∗
l,q,t)

)∣∣∣∣∣ = M(k, j)O
(
ln |k|
|k|

)
,

∣∣∣∣∣
n∑

ν=2

m∑
q=1

(
pν,s0,q,p0−k(2πim + it)n−ν

(
Ψk,j,t, ϕ

∗
k,q,t))

∣∣∣∣∣ = O
(
kn−2).

(2.19)

Therefore, using (2.18), we get M(k, j) = M(k, j)O(ln |k|/k) + O(|k|n−2),M(k, j) = O(|k|n−2)
which means that (2.9) holds.
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It follows from (2.9)–(2.12) that

∣∣(Ψk,j,t, ϕ
∗
p,q,t

)∣∣ ≤ c2|k|n−2
|λk,j(t) − (2πpi + it)n| ∀ p /= k. (2.20)

Lemma 2.2. The equalities,

((
P2 − C)Ψ(n−2)

k,j,t ,Φ∗
k,s,t) = O

(
kn−3 ln |k|),

(
PνΨ

(n−ν)
k,j,t

,Φ∗
k,s,t) = O

(
kn−3),

(2.21)

hold uniformly with respect to t in Qε(n), where ν ≥ 3.

Proof. Using (2.8) for ν = 2, p = k and the obvious relation

(CΨ(n−2)
k,j,t

, ϕ∗
k,s,t) =

m∑
q=1

(
p2,s,q,0(2πki + it)n−2

(
Ψk,j,t, ϕ

∗
k,q,t)), (2.22)

we see that

((
P2 − C

)
Ψ(n−2)

k,j,t , ϕ∗
k,s,t

)
=

m∑
q=1

(∑
l /= k

p2,s,q,k−l(2πli + it)n−2
(
Ψk,j,t, ϕ

∗
l,q,t)

)
. (2.23)

This with (2.20) and (2.3) for ν = 2 implies that

((
P2 − C

)
Ψ(n−2)

k,j,t , ϕ∗
k,s,t

)
= O

(
kn−3 ln |k|). (2.24)

Similarly, using (2.8), (2.20), (2.3), we obtain

((PνΨ
(n−ν)
k,j,t

, ϕ∗
k,s,t) = O(kn−3) ∀ ν ≥ 3. (2.25)

Since (2.3) is uniform with respect to t inQε(n) and the constant c2 in (2.20) does not depend
on t (see Lemma 2.1), these formulas are uniform with respect to t inQε(n).Hence, using the
definitions of Φ∗

k,s,t
and ϕ∗

k,q,t
(see (2.4)), we get the proof of (2.21).

Lemma 2.3. There exist positive numbersN1(ε) and c3, independent of t, such that

max
s=1,2,...,m

∣∣(Ψk,j,t,Φ∗
k,s,t

)∣∣ > c3 (2.26)

for all |k| ≥ N1(ε), t ∈ Qε(n), and j = 1, 2, . . . , m.

Proof. It follows from (2.20) and (2.3) that

∑
s=1,2,...,m

( ∑
p:p /= k

∣∣(Ψk,j,t, ϕ
∗
p,s,t

)∣∣
)

= O

(
ln |k|
k

)
(2.27)

and this formula is uniform with respect to t in Qε(n). Then, the decomposition of Ψk,j,t(x)
by the basis {ϕp,s,t(x) : s = 1, 2, . . . , m, p ∈ Z} has the form

Ψk,j,t(x) =
∑

s=1,2,...,m

(Ψk,j,t, ϕ
∗
k,s,t)ϕk,s,t(x) +O

(
ln |k|
k

)
. (2.28)
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Since ‖Ψk,j,t‖ = ‖ϕk,j,t‖ = 1 and (2.28) is uniform with respect to t in Qε(n), there exists a
positive constant N1(ε), independent of t, such that

max
s=1,2,...,m

|(Ψk,j,t, ϕ
∗
k,s,t)| >

1
m + 1

(2.29)

for all |k| ≥ N1(ε), t ∈ Qε(n), and j = 1, 2, . . . , m. Therefore, using (2.4) and taking into
account that the vectors u1, u2, . . . , um form a basis in C

m, that is, es is a linear combination of
these vectors, we get the proof of (2.26).

Proof of Theorem 1.1(a). It follows from Lemma 2.2 that there exist positive constants N2(ε)
and c4, independent of t, such that if |k| ≥ N2(ε), t ∈ Qε(n), then the right-hand side of
(2.5) is less than c4|k|n−3 ln |k|. Therefore, (2.5) and Lemma 2.3 imply that there exist positive
constants c5, N(ε), independent of t, such that if t ∈ Qε(n) and |k| ≥ N(ε), then

{λk,1(t), λk,2(t), . . . , λk,m(t)} ⊂ (D(k, 1, t) ∪D(k, 2, t) ∪ · · · ∪D(k,m, t)), (2.30)

where D(k, s, t) = U(μk,s(t), c5|k|n−3 ln |k|), U(μ, c) = {λ ∈ C : |λ − μ| < c}. Now let us prove
that in each of the disks D(k, s, t) for s = 1, 2, . . . , m and |k| ≥ N(ε), there exists a unique
eigenvalue of Lt. For this purpose, we consider the following family of operators:

Lt,z = Lt(C) + z(Lt − Lt(C)), 0 ≤ z ≤ 1. (2.31)

It is clear that (2.30) holds for Lt,z, that is, the eigenvalues λk,1,z(t), λk,2,z(t), . . . , λk,m,z(t),
where |k| ≥ N(ε), of Lt,z lie in the union of the pairwise disjoint m disks
D(k, 1, t), D(k, 2, t), . . . , D(k,m, t). Besides, in each of these disks, there exists a unique
eigenvalue of Lt,0. Therefore, taking into account that the family Lt,z is holomorphic with
respect to z, and the boundaries of these disks lie in the resolvent set of the operators Lt,z for
all z ∈ [0, 1], we obtain the following proposition.

Proposition 2.4. There exists a positive constant N(ε), independent of t, such that if t ∈ Qε(n)
and |k| ≥ N(ε), then the disk D(k, j, t) contains unique eigenvalue, denoted by λk,j , of Lt and this
eigenvalue is a simple eigenvalue of Lt, where j = 1, 2, . . . , m and the setsQε(n), D(k, j, t) are defined
in (1.5), (2.30).

Using this proposition and the definition of μk,s (see (1.9)) and taking into account that
the eigenvalues of C are simple, we get

|λk,j − μk,s| > aj |k|n−2 ∀ s /= j, |k| ≥ N(ε), (2.32)

where aj = mins /= j |μj − μs|. This together with (2.5), (2.21) gives

(Ψk,j,t,Φ∗
k,s,t) = O(k−1 ln |k|) ∀ s /= j. (2.33)

On the other hand, by (2.4) and (2.27), we have

∑
s=1,2,...,m

( ∑
p:p /= k

|(Ψk,j,t,Φ∗
p,s,t)|

)
= O(k−1 ln |k|). (2.34)

Since (2.21), (2.27) are uniform with respect to t in Qε(n), the formulas (2.33) and (2.34) are
also uniform. Therefore, decomposing Ψk,j,t by basis {Φp,s,t : s = 1, 2, . . . , m, p ∈ Z}, we see
that (1.11) and (1.12) hold. Theorem 1.1(a) is proved.
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Proof of Theorem 1.1(b). It follows from (1.11) that the root functions of Lt quadratically close
to the system,

{vje(t)ei(2πk+t)x : k ∈ Z, l = 1, 2, . . . , m}, (2.35)

which form a Riesz basis in Lm
2 (0, 1). On the other hand, the system of the root functions of

Lt is complete and minimal in Lm
2 (0, 1) (see [6]). Therefore, by Bari theorem (see [24]), the

system of the root functions of Lt forms a Riesz basis in Lm
2 (0, 1).

Proof of Theorem 1.1(c). To prove the asymptotic formulas for normalized eigenfunction Ψ∗
k,j,t

of L∗
t corresponding to the eigenvalue λk,j(t), we use the formula

(
λk,j(t) − (2πpi + ti)n

)
(Ψ∗

k,j,t, ϕp,s,t) =
n∑

ν=2

(
Ψ∗

k,j,t, (2πpi + ti)n−νPνϕp,s,t

)
(2.36)

obtained from L∗
tΨ

∗
k,j,t

= λk,j(t)Ψ∗
k,j,t

by multiplying by ϕp,s,t and using

(
L∗
tΨ

∗
k,j,t, ϕp,s,t

)
=
(
Ψ∗

k,j,t, Ltϕp,s,t

)
. (2.37)

Instead of (2.7) using this formula and arguing as in the proof of (2.20), we obtain

|(Ψ∗
k,j,t, ϕp,q,t)| = 1

|λk,j(t) − (2πpi + it)n|O(kn−2) ∀ p /= k. (2.38)

This together with (1.9) and (2.3) implies the following relations:

|(Ψ∗
k,j,t

,Φp,q,t)| = 1
|λk,j(t) − (2πpi + it)n|O(kn−2) ∀ p /= k, (2.39)

∑
s=1,2,...,m

∑
p:p /= k

∣∣(Ψ∗
k,j,t

,Φp,s,t

)∣∣
)

= O
(
k−1 ln |k|). (2.40)

On the other hand (1.11) and the equality (Ψ∗
k,j,t

,Ψk,s,t) = 0 for j /= s give

(Ψ∗
k,j,t,Φk,s,t) = O(k−1 ln |k|) ∀ s /= j. (2.41)

Clearly, the formulas (2.39)–(2.41) are uniform with respect to t in Qε(n) and they yield

Ψ∗
k,j,t(x) = uj(e(t))

−1e(2kπi+it)x +O
(
k−1 ln |k|), (2.42)

where uj is defined in (1.13). Now, (1.11) and (2.42) imply (1.13), since

Xk,j,t =
Ψ∗

k,j,t

(Ψ∗
k,j,t

,Ψk,j,t)
= (1 +O(k−1 ln |k|))Ψ∗

k,j,t. (2.43)
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Proof of Theorem 1.1(d). To investigate the convergence of the expansion series of Lt, we
consider the series ∑

k:|k|≥N, j=1,2,...,m

(f,Xk,j,t)Ψk,j,t(x), (2.44)

where N = N(ε) and N(ε) is defined in Theorem 1.1(a), f(x) is absolutely continuous
function satisfying (1.2) and f ′(x) ∈ Lm

2 (0, 1). Without loss of generality, instead of the series
(2.44), we consider the series ∑

k:|k|≥N, j=1,2,...,m

(ft, Xk,j,t)Ψk,j,t(x), (2.45)

since (2.45)will be used in the next section for spectral expansion of L,where ft(x) is defined
by Gelfand transform (see [8, 9])

ft(x) =
∞∑

k=−∞
f(x + k)e−ikt, (2.46)

f is an absolutely continuous compactly supported function and f ′ ∈ Lm
2 (−∞,∞). It follows

from (2.46) that

ft(x + 1) = eitft(x), f ′
t ∈ Lm

2 [0, 1]. (2.47)

To prove the uniform convergence of (2.45), we consider the series∑
|k|≥N, j=1,2,...,m

|(ft, Xk,j,t)|. (2.48)

To estimate the terms of this series, we decomposeXk,j,t by basis {Φ∗
p,s,t : p ∈ Z, s = 1, 2, . . . , m}

and then use the inequality

|(ft, Xk,j,t)| ≤
∑

s=1,2,...,m

|(ft,Φ∗
k,s,t)||(Xk,j,t,Φk,s,t)|

+
∑

p /= k, s=1,2,...,m

|(ft,Φ∗
p,j,t)||(Xk,j,t,Φp,s,t)|.

(2.49)

Using the integration by parts and then Schwarz inequality, we get

∑
|k|≥N,

s=1,2,...,m

|(ft,Φ∗
k,s,t)| =

∑
|k|≥N,

s=1,2,...,m

∣∣∣∣ 1
2πki + it

(f ′
t ,Φ

∗
k,s,t)

∣∣∣∣ < ∞. (2.50)

Again using the integration by parts, Schwarz inequality, and (2.39), (2.43), we obtain that
there exists a constant c6, independent of t, such that the expression in the second row of
(2.49) is less than

c6‖f ′
t‖
( ∑

p /= k, s=1,2,...,m

∣∣∣∣1p
|k|n−2

|λk,s(t) − (2πpi + it)n|

∣∣∣∣
2
)1/2

, (2.51)

which isO(k−2). Therefore, the relations (2.49), (2.50) imply that the expression in (2.48) tends
to zero, uniformly with respect to t inQε(n), asN → ∞, and the expression in (2.45) tends to
zero, uniformly with respect to t and x in Qε(n) and in [0, 1], respectively, as N → ∞. Since
in the proof of the uniform convergence of (2.45)we used only the properties (2.47) of ft, the
series (2.44) converges uniformly with respect to x in [0, 1], that is, Theorem 1.1(d) is proved.
Moreover, we proved the following theorem, which will be used in the next section.
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Theorem 2.5. If f is absolutely continuous compactly supported function and f ′ ∈ Lm
2 (−∞,∞), then

the series (2.45) converges uniformly with respect to t and x in Qε(n) and in any bounded subset of
(−∞,∞).

Indeed, we proved that (2.45) converges uniformly with respect to t and x in Qε(n)
and in [0, 1]. Therefore, taking into account that (1.2) implies the equality

Ψk,j,t(x + 1) = eitΨk,j,t(x), (2.52)

we get the proof of Theorem 2.5.

3. Spectral expansion for L

Let Y1(x, λ), Y2(x, λ), . . . , Yn(x, λ) be the solutions of the matrix equation

Y (n)(x) + P2(x)Y (n−2)(x) + P3(x)Y (n−3)(x) + · · · + Pn(x)Y = λY (x), (3.1)

satisfying Y
(j)
k

(0, λ) = 0m for j /= k − 1 and Y
(k−1)
k

(0, λ) = Im, where 0m and Im are m × m zero
and identity matrices, respectively. The eigenvalues of the operator Lt are the roots of the
characteristic determinant

Δ(λ, t) = det(Y (ν−1)
j (1, λ) − eitY

(ν−1)
j (0, λ))nj,ν=1

= einmt + f1(λ)ei(nm−1)t + f2(λ)ei(nm−2)t + · · · + fnm−1(λ)eit + 1
(3.2)

which is a polynomial of eit with entire coefficients f1(λ), f2(λ), . . .. Therefore, the multiple
eigenvalues of the operators Lt are the zeros of the resultant R(λ) ≡ R(Δ,Δ′) of the
polynomials Δ(λ, t) and Δ′(λ, t) ≡ (∂/∂λ)Δ(λ, t). Since R(λ) is entire function and the large
eigenvalues of Lt for t /= 0, π are simple (see Theorem 1.1(a)):

kerR =
{
λ : R(λ) = 0

}
=
{
a1, a2, . . .

}
, lim

k→∞
|ak| = ∞. (3.3)

For each ak, there are nm values tk,1, tk,2, . . . , tk,nm of t satisfying Δ(ak, t) = 0. Hence, the set

A =
∞⋃
k=1

{
t : Δ

(
ak, t

)
= 0

}
=
{
tk,i : i = 1, 2, . . . , nm; k = 1, 2, . . .

}
(3.4)

is countable and for t /∈A, all eigenvalues of Lt are simple eigenvalues. By Theorem 1.1(a),
the possible accumulation points of the set A are πk, where k ∈ Z.

Lemma 3.1. The eigenvalues of Lt can be numbered as λ1(t), λ2(t), . . . , such that for each p, the
function λp(t) is continuous in Q and is analytic in Q \ A(p), where Q is defined in (1.5), A(p) is
a subset of A consisting of finite numbers tp1 , t

p

2 , . . . , t
p
sp , and |λp(t)| → ∞ as p → ∞. Moreover, there

exists a number N0 such that if |k| ≥ N0, t ∈ Qε(n), then

λp(k,j)(t) = λk,j(t), (3.5)

where N0 ≥ N(ε), p(k, j) = 2|k|m + j if k > 0, p(k, j) = (2|k| − 1)m + j if k < 0, and the set Qε(n)
and the number N(ε) are defined in (1.5) and in Theorem 1.1(a), respectively.
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Proof. Let t ∈ Q. It easily follows from the classical investigations [3, Chapter 3, Theorem 2]
(see (1.7), (1.8)) that there exist numbers r, c, independent of t, and an integer N0 ≥ N(ε)
such that all eigenvalues of the operators Lt,z for z ∈ [0, 1], where Lt,z is defined by (2.31), lie
in the set

U(0, r) ∪
( ⋃

k:|k|≥N0

U((2πki + ti)n, ckn−1−1/2m)

)
, (3.6)

where U(μ, c) = {λ ∈ C : |λ − μ| < c}. Clearly, there exists a closed curve Γ such that the
following hold.

(a) The curve Γ lies in the resolvent set of the operator Lt,z for all z ∈ [0, 1].

(b) All eigenvalues of Lt,z, for all z ∈ [0, 1] that do not lie in U((2πki + ti)n, ckn−1−1/2m)
for |k| ≥ N0, belong to the set enclosed by Γ.

Therefore, taking into account that the family Lt,z is holomorphic with respect to z,we
obtain that the number of eigenvalues of the operators Lt,0 = Lt(C) and Lt,1 = Lt lying inside of
Γ are the same. It means that apart from the eigenvalues λk,j(t),where |k| ≥ N0, j = 1, 2, . . . , m,
there exist (2N0 − 1)m eigenvalues of the operator Lt.We define λp(t) for p > (2N0 − 1)m and
t ∈ Qε(n) by (3.5). Let us first prove that these eigenvalues, that is, the eigenvalues λk,j(t) for
|k| ≥ N0 are the analytic functions on Qε(n). By Theorem 1.1(a) if t0 ∈ Qε(n) and |k| ≥ N0,
where N0 ≥ N(ε), then λk,j(t0) is a simple zero of (3.2), that is, Δ(λ, t0) = 0, and Δ′(λ, t0)/= 0
for λ = λk,j(t0). By implicit function theorem, there exist a neighborhood U(t0) of t0 and an
analytic function λ(t) on U(t0) such that Δ(λ(t), t) = 0 for t ∈ U(t0) and λ(t0) = λk,j(t0).
By Proposition 2.4, λk,j(t0) ∈ D(k, j, t0). Since μk,j(t) and λ(t) are continuous functions, the
neighborhood U(t0) of t0 can be chosen so that λ(t) ∈ D(k, j, t) for all t ∈ U(t0). On the other
hand, by Proposition 2.4, there exists a unique eigenvalue of Lt lying in D(k, j, t) and this
eigenvalue is denoted by λk,j(t). Therefore, λ(t) = λk,j(t) for all t ∈ U(t0), that is, λk,j(t) is an
analytic function in U(t0) for any t0 ∈ Qε(n).

Now let us construct the analytic continuation of λp(k,j)(t) from Qε(n) to the sets
U(0, ε), U(π, ε) by using (3.2) and the implicit function theorem. Consider (3.2) for t ∈
U(0, ε), λ ∈ U0 = U

((
2πki)n, 2n(2πk)n−1ε). Since U0 is a bounded region, (kerR) ∩ U0

is a finite set (see (3.3)). Therefore, the subset A(U0) of A corresponding to (kerR) ∩ U0,
that is, the values of t corresponding to the multiple zeros of (3.2) lying in U0 is finite. It
follows from (1.7) and (1.8) that for any t ∈ U(0, ε) \A(U0), the equation Δ(λ, t) = 0 has 2m
different solutions d1(t), d2(t), . . . , d2m(t) in U0 and Δ′(λ, t)/= 0 for λ = d1(t), d2(t), . . . , d2m(t).
Using the implicit function theorem and taking into account (1.8), we see that there exists a
neighborhood U(t, δ) of t such that the following hold.

(i) There exist analytic functions d1,t(z), d2,t(z), . . . , d2m,t(z) in U(t, δ) coinciding with
d1(t), d2(t), . . . , d2m(t) for z = t, respectively, and satisfying

Δ(ds,t(z), z) = 0, ds,t(z)/=dj,t(z) ∀z ∈ U(t, δ), s = 1, 2, . . . , 2m, j /= s. (3.7)

(ii) U(t, δ) ∩A(U0) = ∅ and ds,t(z) ∈ U0 for z ∈ U(t, δ), s = 1, 2, . . . , 2m.

Now, take any point t0 fromU(0, ε) \A(U0). Let γ be a line segment inU(0, ε) \A(U0)
joining t0 and a point of the circle S(0, ε) = {t : |t| = ε}. For any t from γ , there exists U(t, δ)
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satisfying (i) and (ii). Since γ is a compact set, the cover {U(t, δ) : t ∈ γ} of γ contains a
finite coverU(t0, δ), U(t1, δ), . . . , U(tv, δ),where tv ∈ S(0, ε). For any z ∈ U(tv, δ)∩Qε(n), the
eigenvalue λp(k,j)(z) coincides with one of the eigenvalues d1,tv(z), d2,tv(z), . . . , d2m,tv(z) since
there exists 2m eigenvalue of Lz lying inU0.Denote by Bs the subset of the setU(tv, δ)∩Qε(n)
for which the function λp(k,j)(z) coincides with ds,tv(z). Since ds,t(z)/=di,t(z) for s /= i, the
sets B1, B2, . . . , B2m are pairwise disjoint and the union of these sets is U(tv, δ) ∩ Qε(n).
Therefore, there exists index s for which the set Bs contains an accumulation point and hence
λp(k,j)(z) = ds,tv(z) for all z ∈ U(tv, δ) ∩ Qε(n). Thus, ds,tv(z) is an analytic continuation
of λp(k,j)(z) to U(tv, δ). In the same way, we get the analytic continuation of λp(k,j)(z) to
U(tv−1, δ), U(tv−2, δ), . . . , U(t0, δ). Since t0 is arbitrary point of U(0, ε) \A(U0), we obtain the
analytic continuation of λp(k,j)(z) toU(0, ε) \A(U0). The analytic continuation of λp(k,j)(z) to
U(π, ε) \ A(Uπ) can be obtained in the same way, where A(Uπ) can be defined as A(U0).
Thus, the function λp(k,j)(t) is analytic in Q \ A(p), where A(p)consists of finite numbers
t
p

1 , t
p

2 , . . . , t
p
sp . Since Δ(λ, t) is continuous with respect to (λ, t), the function λp(k,j)(t) can be

extended continuously to the set Q.
Now let us define the eigenvalues λp(t) for p ≤ (2N0 − 1)m, t ∈ Q, which are apart

from the eigenvalues defined by (3.5). These eigenvalues lie in a bounded set B, and by (3.3),
the set B ∩ kerR and the subset A(B) of A corresponding to B are finite. Take a point a
from the set Q \ A. Denote the eigenvalues of La in an increasing (of absolute value) order
|λ1(a)| ≤ |λ2(a)| ≤ · · · ≤ |λ(2N0−1)m(a)|. If |λp(a)| = |λp+1(a)|, then by λp(a), we denote the
eigenvalue that has a smaller argument, where argument is taken in [0, 2π). Since a/∈A, the
eigenvalues λ1(a), λ2(a), . . . , λ(2N0−1)m(a) are simple zeros of Δ(λ, a) = 0. Therefore, using the
implicit function theorem, we obtain the analytic functions λ1(t), λ2(t), . . . , λ(2N0−1)m(t) on a
neighborhoodU(a, δ) of awhich are eigenvalues of Lt for t ∈ U(a, δ). These functions can be
continued analytically to Qε(n) \ A, being the eigenvalues of Lt, where, as we noted above,
A∩Qε(n)consists of a finite number of points. Taking into account thatA(B) is finite, arguing
as we have done in the proof of analytic continuation and continuous extension of λp(t) for
p > (2N0 − 1)m, we obtain the analytic continuations of these functions to the set Q except
finite points and the continuous extension to Q.

By Gelfand’s lemma (see [8, 9]), every compactly supported vector function f(x) can
be represented in the form

f(x) =
1
2π

∫2π

0
ft(x)dt, (3.8)

where ft(x) is defined by (2.46). This representation can be extended to all functions of
Lm
2 (−∞,∞), and

∫1

0
〈ft(x), Xk,t(x)〉dx =

∫∞

−∞
〈f(x), Xk,t(x)〉dx, (3.9)

where {Xk,t : k = 1, 2, . . .} is a biorthogonal system of {Ψk,t : k = 1, 2, . . .}, Ψk,t(x) is
the normalized eigenfunction corresponding to λk(t), the eigenvalue λk(t) is defined in
Lemma 3.1, Ψk,t(x), and Xk,t(x) are extended to (−∞,∞) by (2.52) and by Xk,t(x + 1) =
eitXk,t(x).

Let a ∈ (0, π/2) \ A, ε ∈ (0, a/2) and let l(ε) be a smooth curve joining the points −a
and 2π − a and satisfying

l(ε) ⊂ (Qε(n) ∩Π(a, ε)) \A, l(−ε) ∩A = ∅, D(ε) ∪D(−ε) ⊂ Q, (3.10)
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where Π(a, ε) = {x + iy : x ∈ [−a, 2π − a], y ∈ [0, 2ε)}, l(−ε) = {t : t ∈ l(ε)}, the sets
Q, Qε(n), and A are defined in (1.5) and (3.4), D(ε) and D(−ε) are the domains enclosed by
l(ε) ∪ [−a, 2π − a] and l(−ε) ∪ [−a, 2π − a], respectively, and D(−ε) is the closure of D(−ε).
Clearly, the domain D(ε) ∪D(−ε) is enclosed by the closed curve l(ε) ∪ l−(−ε), where l−(−ε)
is the opposite arc of l(−ε). Suppose f ∈ Ω, that is, (1.15) holds. If 2ε < α, then ft(x) is an
analytic function of t in a neighborhood ofD(ε).Hence, the Cauchy’s theorem and (3.8) give

f(x) =
1
2π

∫
l(ε)

ft(x)dt. (3.11)

Since l(ε) ∈ C(n) (see (3.10) and the definition of C(n) in Section 1, it follows from
Theorem 1.1(b) and Lemma 3.1 that for each t ∈ l(ε), we have a decomposition

ft(x) =
∞∑
k=1

ak(t)Ψk,t(x), (3.12)

where ak(t) = (ft, Xk,t). Using (3.12) in (3.11), we get

f(x) =
1
2π

∫
l(ε)

ft(x)dt =
1
2π

∫
l(ε)

∞∑
k=1

ak(t)Ψk,t(x)dt. (3.13)

Remark 3.2. If λ ∈ σ(L), then there exist points t1, t2, . . . , tk of [0, 2π) such that λ is an
eigenvalue λ(tj) of Ltj of multiplicity sj for j = 1, 2, . . . , k. Let S(λ, b) = {z : |z − λ| = b}
be a circle containing only the eigenvalue λ(tj) of Ltj for j = 1, 2, . . . , k. Using Lemma 3.1, we
see that there exists a neighborhood U(tj , δ) = {t : |t − tj | ≤ δ} of tj such that the following
hold.

(a) The circle S(λ, b) lies in the resolvent set of Lt for all t ∈ U(tj , δ) and j = 1, 2, . . . , k.

(b) If t ∈ (U(tj , δ) \ {tj}), then the operator Lt has only sj eigenvalues, denoted by
Λj,1(t),Λj,2(t), . . . ,Λj,sj (t), lying in S(λ, b) and these eigenvalues are simple.

Thus, the spectrum of Lt for t ∈ U(tj , δ), j = 1, 2, . . . , kis separated by S(λ, b) into
two parts in the sense of [25] (see [25, Chapter 3, Section 6.4]). Since {Lt : t ∈ U(tj , δ)}
is a holomorphic family of operators in the sense of [25] (see [25, Chapter 7, Section
1]), the theory of holomorphic family of the finite dimensional operators can be applied
to the part of Lt for t ∈ U(tj , δ) corresponding to the inside of S(λ, b). Therefore, (see
[13, Chapter 2, Section 1]) the eigenvalues Λj,1(t),Λj,2(t), . . . ,Λj,sj (t) and corresponding
eigenprojections P(Λj,1(t)), P(Λj,2(t)), . . . , P(Λj,sj (t)) are branches of an analytic function.
These eigenprojections are represented by a Laurent series in t1/ν, where ν ≤ sj , with finite
principal parts. One can easily see that if λp(t) is a simple eigenvalue of Lt, then

P(λp(t))f = (f,Xp,t)Ψp,t, ‖P(λp(t))‖ =
1

‖Xp,t‖ =
∣∣∣∣ 1
αp(t)

∣∣∣∣, (3.14)

and P(λp(t)) is analytic function in a neighborhood of t, where αp(t) = (Ψp,t,Ψ∗
p,t). This and

Lemma 3.1 show that ap(t)Ψp,t is analytic function of t on D(ε) ∪D(−ε) except finite points.
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Theorem 3.3. (a) If f is absolutely continuous, compactly supported function and f ′ ∈ Lm
2 (−∞,∞),

then

f(x) =
1
2π

∞∑
k=1

∫
l(ε)

ak(t)Ψk,t(x)dt, (3.15)

f(x) =
1
2π

∞∑
k=1

∫
[0,2π)+

ak(t)Ψk,t(x)dt, (3.16)

where ∫
[0,2π)+

ak(t)Ψk,t(x)dt = lim
ε→0

∫
l(ε)

ak(t)Ψk,t(x)dt, (3.17)

and the series (3.15), (3.16) converge uniformly in any bounded subset of (−∞,∞).
(b) Every function f ∈ Ω, whereΩ is defined in (1.15), has decompositions (3.15) and (3.16),

where the series converges in the norm of Lm
2 (a, b) for every a, b ∈ R.

Proof. The proof of (3.15) in the case (a) follows from (3.13), Theorem 2.5, and Lemma 3.1.
In Appendix A, by writing the proof of Theorem 2 of [19] in the vector form, we obtain the
proof of (3.15) in the case (b). In Appendix B, the formula (3.16) is obtained from (3.15) by
writing the proof of Theorem 3 of [19] in the vector form.

Definition 3.4. Let λ be a point of the spectrum σ(L) of L and t1, t2, . . . , tk be the points of
[0, 2π) such that λ is an eigenvalue of Ltj of multiplicity sj for j = 1, 2, . . . , k. The point λ is
called a spectral singularity of L if

sup ‖P(Λj,i(t))‖ = ∞, (3.18)

where supremum is taken over all t ∈ (U(tj , δ) \ {tj}), j = 1, 2, . . . , k; i = 1, 2, . . . , sj , the set
U(tj , δ), and the eigenvalues Λj,1(t),Λj,2(t), . . . ,Λj,sj (t) are defined in Remark 3.2. In other
words, λ is called a spectral singularity of L if there exist indices j, i such that the point tj is a
pole of P(Λj,i(t)). Briefly speaking, a point λ ∈ σ(L) is called a spectral singularity of L if the
projections of Lt corresponding to the simple eigenvalues lying in the small neighborhood of
λ are not uniformly bounded. We denote the set of the spectral singularities by S(L).

Remark 3.5. Note that if γ = {λp(t) : t ∈ (α, β)} is a curve lying in σ(L) and containing no
multiple eigenvalues of Lt, where t ∈ [0, 2π), then arguing as in [16, 21], one can prove that
the projection P(γ) of L corresponding to γ satisfies the following relations:

P(γ)f =
∫
(α,β)

(f,Xp,t)Ψp,t dt, ‖P(γ)‖ = sup
t∈(α,β)

‖P(λp(t))‖. (3.19)

These relations show that Definition 3.4 is equivalent to the definition of the spectral
singularity given in [16, 21], where the spectral singularity is defined as a point in the
neighborhood of which the projections P(γ) are not uniformly bounded. The proof of (3.19) is
long and technical. In order to avoid eclipsing, the essence by the technical details and taking
into account that in the spectral expansion of L, the eigenfunctions and eigenprojections of Lt

for t ∈ [0, 2π) are used (see (3.16)), in this paper, in the definition of the spectral singularity,
without loss of naturalness, instead of the boundlessness of the projections P(γ) of L, we use
the boundlessness of the projections P(λp(t)) of Lt, that is, we use Definition 3.4. In any case,
the spectral singularity is a point of σ(L) that requires the regularization in order to get the
spectral expansion.
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Theorem 3.6. (a) All spectral singularities of L are contained in the set of the multiply eigenvalues
of Lt for t ∈ 0, 2π , that is, S(L) = {Λ1,Λ2, . . .} ⊂ kerR ∩ σ(L), where S(L) and kerR are defined in
Definition 3.4 and in (3.3), respectively.

(b) Let λ = λp(t0) ∈ σ(L) \S(L), where t0 ∈ (a, 2π − a). If γ1, γ2, . . . , is a sequence of smooth
curves lying in a neighborhood U = {t ∈ C : |t − t0| ≤ δ0} of t0 and approximating the interval
[t0 − δ0, t0 + δ0], then

lim
k→∞

∫
γk

ap(t)Ψp,t(x)dt =
∫ t0−δ0

t0−δ0
ap(t)Ψp,t(x)dt, (3.20)

whereU is a neighborhood of t0 such that if t ∈ U, then λp(t) is not a spectral singularity.
(c) If the operator L has no spectral singularities, then we have the following spectral expansion

in term of the parameter t:

f(x) =
1
2π

∞∑
k=1

∫2π

0
ak(t)Ψk,t(x)dt. (3.21)

If f(x) is an absolutely continuous, compactly supported function and f ′ ∈ Lm
2 (−∞,∞), then the

series in (3.21) converges uniformly in any bounded subset of (−∞,∞). If f(x) ∈ Ω, where Ω is
defined in (1.15), then the series converges in the norm of Lm

2 (a, b) for every a, b ∈ R.

Proof. (a) If λp(t0) is a simple eigenvalue of Lt0 , then due to Remark 3.2(see (3.14) and the
end of Remark 3.2, the projection P(λp(t)) and |αp(t)| continuously depend on t in some
neighborhood of t0. On the other hand, αp(t0)/= 0, since the system of the root functions of
Lt0 is complete. Thus, it follows from Definition 3.4 that λ is not a spectral singularity of L.

(b) It follows from (3.3) and Theorem 3.6(a) that there exists a neighborhood U of t0
such that if t ∈ U, then λp(t) is not a spectral singularity of L. If λp(t0) ∈ σ(L) \ S(L), then
by Definition 3.4, t0 is not a pole of P(λp(t)), that is, by Remark 3.2, the Laurent series in t1/ν,
where ν ≤ s, of P(λp(t)) at t0 has no principal part. Therefore, (3.14) implies that

1
|αp(t)|(ft,Ψ

∗
p,t)Ψp,t (3.22)

is a bounded continuous functions in a neighborhood of t0, which implies the proof of (b).
(c) By Theorem 3.6(b) if the operator L has not spectral singularities, then

∫
[0,2π)+

ak(t)Ψk,t(x)dt =
∫2π

0
ak(t)Ψk,t(x)dt, (3.23)

where the left-hand side of this equality is defined by (3.17). Thus, (3.21) follows from (3.23),
(3.16) and Theorem 3.6(c) follows from Theorem 3.3.

Now, we change the variables to λ by using the characteristic equation Δ(λ, t) = 0
and the implicit-function theorem. By (3.2),Δ(λ, t) and ∂Δ(λ, t)/∂t are polynomials of eit and
their resultant T(λ) is entire function. It is clear that T(λ) is not zero function. Let b1, b2, . . . ,
be zeros of T(λ). Then, |bk| → ∞ as k → ∞ and the equation Δ(λ, t) = 0 defines a function
t(λ) such that

Δ
(
λ, t(λ)

)
= 0,

dt

dλ
= −∂Δ/∂λ

∂Δ/∂t
,

∂Δ(λ, t)
∂t

/
t=t(λ)

/= 0 (3.24)
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for all λ ∈ C \ {b1, b2, . . .}. Consider the functions

Fp,t(x) =
∑

k=1,2,...,n

Yk(x, λp(t))Ak(t, λp(t)) =

( ∑
k=1,2,...,n

Yk(x, λ)Ak(t(λ), λ)

)
λ=λp(t)

, (3.25)

where Y1(x, λ), Y2(x, λ), . . . , Yn(x, λ) are linearly independent solutions of (3.1), Ak =
(Ak,1, Ak,2, . . . , Ak,m), Ak,i = Ak,i(t, λ) is the cofactor of the entry in mn row and (k − 1)m + i
column of the determinant (3.2). One can readily see that

Ak,i(t, λ) = gs(λ)eist + gs−1(λ)ei(s−1)t + · · · + g1(λ)eit + g0(λ), (3.26)

where g0(λ), g1(λ), . . . , are entire functions. By (3.24), Ak,i(t(λ), λ) is an analytic function of
λ in C \ {b1, b2, . . .}. Since the operator Lt for t /= 0, π has a simple eigenvalue, there exists a
nonzero cofactor of the determinant (3.2). Without loss of generality, it can be assumed that
Ak,1(t(λ), λ) is nonzero function. Then,Ak,1(t(λ), λ) has a finite number zeros in each compact
subset of C \ {b1, b2, . . .}. Thus, there exists a countable set E1 such that

{b1, b2, . . .} ⊂ E1, Ak,1(t(λ), λ)/= 0 ∀λ/∈E1. (3.27)

Let A1 be the set of all t satisfying Δ(λ, t) = 0 for some λ ∈ E1. Clearly, A1 is a
countable set. Now, using Lemma 3.1, (3.25), (3.27) and taking into account that the functions
Y1(x, λ), Y2(x, λ), . . . , Yn(x, λ) are linearly independent, we obtain

Ψp,t(x) =
Fp,t(x)
‖Fp,t‖ , ‖Fp,t‖/= 0 ∀ t ∈ (

D(ε) ∪D(−ε)) \ (A ∪A1), (3.28)

where Ψp,t(x) is a normalized eigenfunction corresponding to λp(t). Since the set A ∪ A1 is
countable, there exist the curves l(ε1), l(ε2), . . . , such that

lim
s→∞

l(εs) = [−a, 2π − a], l(εs) ∈
(
D(ε) ∪D(−ε)) \ (A ∪A1) ∀ s. (3.29)

Now let us do the change of variables in (3.15). Using (3.24), (3.25), (3.28), we get

ap(t(λ))Ψp,t(λ)(x) =
h(λ)
α(λ)

F(x, λ), where F(x, λ) =
∑

j=1,2,...,n

Yj(x, λ)Aj(λ), (3.30)

Aj(λ) = Aj(t(λ), λ), Aj(t, λ) is defined in (3.25), and (F(x, λ))λ=λp(t) = Fp,t(x), h(λ) =

(f(·),Φ(·, λ)), Φ(x, λp(t)) is eigenfunction of L∗
t corresponding to λp(t) and α(λ) ≡

(F(·, λ),Φ(·, λ)). Using these notations and (3.24), we obtain

∫
l(εs)

ap(t)Ψp,t(x)dt =
∫
Γp(εs)

−h(λ)ϕ(λ)
α(λ)φ(λ)

(
n∑
j=1

Yj(x, λ)Aj(λ)

)
dλ, (3.31)

where Γp(εs) = {λ = λp(t) : t ∈ l(εs)}, ϕ = ∂Δ/∂λ, φ = ∂Δ/∂t. Note that it follows from
(3.24) and (3.29) that φ(λ)/= 0 for λ ∈ Γp(εs). If t ∈ l(εs), then by the definition of A and by
(3.29) λp(t) is a simple eigenvalue. Hence, αp(t)/= 0, since the root functions of Lt is complete
in Lm

2 (0, 1). Therefore, α(λ)/= 0 for λ ∈ Γp(εs).
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To do the regularization about the spectral singularities Λ1,Λ2, . . . , we take into
account that there exist numbers il, δ, and c7 such that if |λ −Λl| < δ, then the equality

∣∣∣∣ (λ −Λl)
ilh(λ)ϕ(λ)Aj(λ)
α(λ)φ(λ)

∣∣∣∣ < c7 (3.32)

holds for j = 1, 2, . . . , n andU(Λ1, δ), U(Λ2, δ), . . . are pairwise disjoint disks, whereU(Λ, δ) =
{λ : |λ −Λ| < δ}. Introduce the mapping B as follows:

Bf(x, λ) = f(x, λ) −
∑
l

il−1∑
ν=0

Bl,ν(λ)
∂ν(f(x,Λl))

∂λν
, (3.33)

where Bl,ν(λ) = (λ −Λl)
ν/ν! for λ ∈ U(Λl, δ) and Bl,ν(λ) = 0 for λ/∈U(Λl, δ).We set

Γk = {λ = λk(t) : t ∈ [0, 2π)}, Sk = {l : Λl ∈ Γk ∩ S(L)}. (3.34)

Now, using these notations and formulas (3.16), (3.17), (3.31), we get

f(x) =
1
2π

∞∑
k=1

(∫
Γk

−h(λ)ϕ(λ)
α(λ))φ(λ)

(
n∑
j=1

B(Yj(x, λ))Aj(λ)

)
dλ +

∑
l∈Sk

Mk,l(x)

)
, (3.35)

where

Mk,l(x) = lim
s→∞

1
2π

∫
Γk(εs)

−h(λ)ϕ(λ)
α(λ))φ(λ)

(
n∑
j=1

(
il−1∑
ν=0

Bl,ν(λ)
∂ν(Yj(x,Λl))

∂λν
Aj(λ)

)
dλ. (3.36)

Thus, Theorem 3.3 implies the following spectral expansion of L.

Theorem 3.7. Every function f(x) ∈ Ω has decomposition (3.35), where the series in (3.35)
converges in the norm of Lm

2 (a, b) for every a, b ∈ R. If f(x) is absolutely continuous, compactly
supported function and f ′ ∈ Lm

2 (−∞,∞), then the series in (3.35) converges uniformly in any
bounded subset of (−∞,∞).

Remark 3.8. Let n = 2μ + 1. Then by Theorem 1.1 all large eigenvalue of Lt for t ∈ Q are
simple and hence the set A ∩Q, where A is defined in (3.4), is finite. The number of spectral
singularities is finite and (3.23) holds for k � 1. If ε � 1, thenD(ε)∩A = ∅ andD(−ε)∩A = ∅,
where D(ε) and D(−ε) are defined in (3.10). Therefore, the spectral expansion (3.35) has a
simpler form. Moreover, repeating the proof of Corollary 1(a) of [20], we obtain that every
function f ∈ Lm

2 (−∞,∞), satisfying (1.14), has decomposition (3.35).

Appendices

A. Proof of (3.15)

Here, we justify the term by term integration of the series in (3.13). LetHN,t be the linear span
ofΨ1,t(x),Ψ2,t(x), . . . ,ΨN,t(x) and fN,t be the projection of ft(x) ontoHN,t. Since {Ψk,t(x)} and
{Xk,t(x)} are biorthogonal system, we have

fN,t(x) =
∑

k=1,2,...,N

aN
k (t)Ψk,t(x), (A.1)
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where aN
k (t) = (fN,t, Xk,t).Using the notations gN,t = ft − fN,t, b

N
k (t) = (gN,t, Xk,t), the equality

(A.1), and then (3.11), we obtain aN
k
(t) = ak(t) − bN

k
(t),

ft =
∑

k=1,2,...,N

(ak(t) − bN
k
(t))Ψk,t + gN,t,

f(x) =
1
2π

(
N∑
k=1

∫
l(ε)

(
ak(t)Ψk,t(x)dt +

∫
l(ε)

(
gN,t(x) −

n∑
k=1

bNk (t)

)
Ψk,t(x)

)
dt

)
.

(A.2)

To obtain (3.15), we need to prove that the last integral in (A.2) tends to zero as N → ∞. For
this purpose, we prove the following.

Lemma A.1. The functions

‖gN,t‖,
∥∥∥∥∥

∑
k=1,2,...,N

bNk (t))Ψk,t

∥∥∥∥∥ (A.3)

tend to zero asN → ∞ uniformly with respect to t in l(ε).

Proof. First, we prove that ‖gN,t‖ tends to zero uniformly. Let PN,t and P∞,t be projections of
Lm
2 [0, 1] onto HN,t and H∞,t, respectively, where H∞,t = ∪∞

n=1HN,t. If follows from (3.12) that
ft ∈ H∞,t. On the other hand, one can readily see that

HN,t ⊂ HN+1,t ⊂ H∞,t, PN,t ⊂ P∞,t, PN,t −→ P∞,t. (A.4)

Therefore, PN,tft → ft, that is, ‖gN,t‖ → 0. Since ‖gN,t‖ is a distance from ft to HN,t, for each
sequence {t1, t1, . . .} ⊂ l(ε) converging to t0, we have

‖gN,ts‖ ≤
∥∥∥∥∥fts −

∑
k=1,2,...,N

aN
k (t0)Ψk,ts(x)

∥∥∥∥∥
≤ ‖gN,t0‖ + ‖fts − ft0‖ +

∥∥∥∥∥
∑

k=1,2,...,N

aN
k (t0)(Ψk,t0 −Ψk,ts)

∥∥∥∥∥
≤ ‖gN,t0‖ + αs,

(A.5)

where αs → 0 as s → ∞ by continuity of ft andΨk,t on l(ε). Similarly (interchanging t0 and ts),
we get ‖gN,t0‖ ≤ ‖gN,ts‖+βs,where βs → 0 as s → ∞.Hence, ‖gN,t‖ is a continuous function on
the compact l(ε). On the other hand, the first inclusion of (A.4) implies that ‖gN,t‖ ≥ ‖gN+1,t‖.
Now, it follows from the proved three properties of ‖gN,t‖ that ‖gN,t‖ tends to zero asN → ∞
uniformly on the compact l(ε).

Now, to prove that the second function in (A.3) tends to zero uniformly, we consider
the family of operators Γp,t for t ∈ l(ε), p = 1, 2, . . . , defined by formula

Γp,t(f) =
∑

k=1,2,...,p

(f,Xk,t)Ψk,t(x). (A.6)

First, let us prove that the set Γ(f) = {Γp,t(f) : t ∈ l(ε), p = 1, 2, . . .} is a bounded subset
of Lm

2 [0, 1]. Since in the Hilbert space every weakly bounded subset is a strongly bounded
subset, it is enough to show that for each g ∈ Lm

2 [0, 1], there exists a constant M such that

|(g, ϕ)| < M, ∀ϕ ∈ Γ(f). (A.7)
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Decomposing g by the basis {Xk,t : k = 1, 2, . . .}, using definition of ϕ and then the uniform
asymptotic formulas (1.11), (1.13), we obtain

|(g, ϕ)| ≤
∑

k=1,2,...,p

|(ϕ,Xk,t)(g,Ψk,t)|

≤
∑

k=1,2,...,p

|(ϕ,Xk,t)|2 +
∑

k=1,2,...,p

|(g,Ψk,t)|2

= ‖ϕ‖2 + ‖g‖2 +O(1),

(A.8)

which implies (A.7). Thus, Γ(f) is a bounded set. On the other hand, one can readily see that
Γp,t, for t ∈ l(ε), p = 1, 2, . . . , is a linear continuous operator. Therefore, by Banach- Steinhaus
theorem, the family of operators Γp,t is equicontinuous. Now, using the equality

ΓN,tgN,t =
∑

k=1,2,...,N

bNk,j(t)Ψk,j,t, (A.9)

and taking into account that the first function in (A.3) tends to zero uniformly, we obtain that
the second function in (A.3) also tends to zero uniformly.

Using Lemma A.1 and Schwarz inequality, we get
∥∥∥∥∥
∫
l(ε)

(
gN,t(x) −

∑
k=1,2,...,N

bNk (t)

)
Ψk,t(x)

∥∥∥∥∥dt

≤ Cε

∫b

a

∫
l(ε)

∣∣∣∣∣gN,t(x) −
∑

k=1,2,...,N

bNk, (t)Ψk,t(x)

∣∣∣∣∣|dt|dx

= Cε

∫
l(ε)

∥∥∥∥∥
(
gN,t(x) −

∑
k=1,2,...,N

bNk (t)

)
Ψk,t(x)

∥∥∥∥∥|dt| −→ 0 as N −→ ∞,

(A.10)

where Cε is the length of l(ε), the norm used here is the norm of Lm
2 (a, b), a and b are the real

numbers. This and (A.2) justify the term by term integration of the series in (3.13).

B. Proof of (3.16)

Here, we use the notation introduced in (3.10) and prove (3.16). Since for fixed k the
function ak(t)Ψk,t is analytic on D(ε) except finite number points tk1 , t

k
2 , . . . , t

k
pk (see the end

of Remark 3.2), we have
∫
l(ε)

ak(t)Ψk,t dt =
∫
[0,2π]+

ak(t)Ψk,t dt +
∑

s:tks∈D(ε)

Rest=tks ak(t)Ψk,t. (B.1)

Similarly,
∫
l(−ε)

ak(t)Ψk,t dt =
∫
[0,2π]+

ak(t)Ψk,t dt +
∑

s:tks∈D(−ε)
Rest=tks ak(t)Ψk,t. (B.2)

Since l(ε) ∪ l−(−ε) is a closed curve enclosing D(−ε) ∪D(−ε),we have
∫
l(ε)∪l−(−ε)

ak,j(t)Ψk,t(x)dt =
∑

s:tks∈D(−ε)∪D(−ε)
Rest=tks ak(t)Ψk,t. (B.3)
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Now applying (3.15) to the curves l(ε), l(−ε), l(ε) ∪ l−(−ε), using (B.1), (B.2), (B.3) and taking
into account that l(ε) ∪ l−(−ε) is a closed curve, we obtain

f(x) =
1
2π

∑
k=1,2,...

(∫
[0,2π]+

ak(t)Ψk,t(x)dt +
∑

s:tks∈D(ε)

Rest=tks ak(t)Ψk,t

)
, (B.4)

f(x) =
1
2π

∑
k=1,2,...

(∫
[0,2π]+

ak(t)Ψk,t(x)dt +
∑

s:tks∈D(−ε)
Rest=tks ak(t)Ψk,t

)
, (B.5)

0 =
1
2π

∫
l(ε)∪l−(−ε)

ft(x)dt =
1
2π

∑
k=1,2,...

( ∑
s:tks∈(D(−ε)∪D(−ε))

Rest=tks ak(t)Ψk,t

)
. (B.6)

Adding (B.4) and (B.5) and then using (B.6), we get the proof of (3.16).
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