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problems of the type —x"(t) = f(t,x(t),y(t)), t € (0,1), =y"(t) = gt x(t),y(t)), t € (0,1),
x(0) = y(0) = 0, x(1) = ax(y), y(1) = ay(n), is established. The nonlinearities f, g : (0,1) x
(0,00) x (0,00) — [0, 00) are continuous and may be singularatt =0,t =1,x = 0, and/or y = 0,
while the parameters 7, a satisfy 77 € (0,1),0 < a < 1/7. An example is also included to show the
applicability of our result.
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1. Introduction

Multipoint boundary value problems (BVPs) arise in different areas of applied mathematics
and physics. For example, the vibration of a guy wire composed of N parts with a uniform
cross-section and different densities in different parts can be modeled as a Multipoint
boundary value problem [1]. Many problems in the theory of elastic stability can also be
modeled as Multipoint boundary value problem [2].

The study of Multipoint boundary value problems for linear second order ordinary
differential equations was initiated by Il'in and Moiseev, [3, 4], and extended to nonlocal
linear elliptic boundary value problems by Bitsadze et al. [5, 6]. Existence theory for nonlinear
three-point boundary value problems was initiated by Gupta [7]. Since then the study of
nonlinear three-point BVPs has attracted much attention of many researchers, see [8-11] and
references therein for boundary value problems with ordinary differential equations and also
[12] for boundary value problems on time scales. Recently, the study of singular BVPs has
attracted the attention of many authors, see for example, [13-18] and the recent monograph
by Agarwal et al. [19].
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The study of system of BVPs has also fascinated many authors. System of BVPs with
continuous nonlinearity can be seen in [20-22] and the case of singular nonlinearity can be
seen in [8, 21, 23-26]. Wei [25], developed the upper and lower solutions method for the
existence of positive solutions of the following coupled system of BVPs:

-x"(t)=f(t,x(t),y(t), te(0,1),
-y" () =g (t,x(t),y(), te(0,1),
x(0)=0, x(1)=0,
y©0) =0, y(@)=0,

(1.1)

where f, g € C((0,1)x(0,00) x (0, 20), [0, 0)), and may be singularatt =0,t =1, x = 0 and/or

y=0.
By using fixed point theorem in cone, Yuan et al. [26] studied the following coupled
system of nonlinear singular boundary value problem:

XD ()= f(Lx®),y1), te(1),
-y" (t)=g(t,x(),y(), te(0,1),
x(0)=x(1)=x"(0)=x"(1) =0,

y(0)=y1)=0,

(1.2)

f, g are allowed to be superlinear and are singular at t = 0 and/or t = 1. Similarly, results are
studied in [8, 21, 23].

In this paper, we generalize the results studied in [25, 26] to the following more general
singular system for three-point nonlocal BVPs:

=x"(t)=f(t,x(t),y(t), te(0,1),

—y' () =gtx®),y®t), te (1),
x(0)=0, x(1)=ax(y),
y(0=0, y@)=ay(n),

(1.3)

wheren7 € (0,1),0<a <1/, f,g € C((0,1) x (0,0) x (0, ), [0,00)). We allow f and g to be
singular att = 0, = 1, and also x = 0 and/or y = 0. We study the sufficient conditions for
existence of positive solution for the singular system (1.3) under weaker hypothesis on f and
g as compared to the previously studied results. We do not require the system (1.3) to have
lower and upper solutions. Moreover, the cone we consider is more general than the cones
considered in [20, 21, 26].

By singularity, we mean the functions f(t,x,y) and g(t,x,y) are allowed to be
unbounded att = 0,f = 1, x = 0, and/or y = 0. To the best of our knowledge, existence
of positive solutions for a system (1.3) with singularity with respect to dependent variable(s)
has not been studied previously. Moreover, our conditions and results are different from those
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studied in [21, 24-26]. Throughout this paper, we assume that f, g : (0,1) x (0, 00) x (0, 00) —
[0, 00) are continuous and may be singularatt =0,f =1, x =0, and/or y = 0. We also assume

that the following conditions hold:

(A1) f(,1,1), g(,1,1) € C((0,1), (0, 0)) and satisfy

1 1
a:=ft(1—t)f(t,1,1)dt<+oo, b:=J‘t(1—t)g(t,1,1)dt<+oo. (1.4)
0 0

(Az) There exist real constants «;, fisuchthata; <0< pi<1,i=1,2, 61 + 2 <1and for
allt € (0,1), x,y € (0,0),
cﬂlf(t,x,y)Sf(t,cx,y)gc"”f(t,x,y), if0<c<1,
c”“f(t,x,y)Sf(t,cx,y)gcﬂlf(t,x,y), ifc>1,
cﬂzf(t,x,y)Sf(t,x,cy)ﬁc"‘zf(t,x,y), if0<c<1,

c?f (t,x,y) < f(tx,cy) < chf (t,xy), ifc>1

(1.5)

(A3) There exist real constants y;, p; such thaty; <0< p;i<1,i=1,2, p; + p» < 1 and for
allt € (0,1), x,y € (0,0),

cPhg(t,x,y)<g(tex,y)<clg(txy), if0<c<l,
g (tx,y)<g(tex,y)<cfg(txy), ifc>1,

(1.6)
cPg(t,x,y) <g(t,x,cy) <cg(txy), if0<c<l,
g (t,x,y)<g(txcy)<chg(txy), ifc>1,
for example, a function that satisfies the assumptions (A;) and (As3) is
h(tx,y) =23 pij () X"y, (17)
i=1 j=1
where p;; € C((0,1),(0,0)),7;,5;<1,i=1,2,...,m;j=1,2,...,n such that
maxr; + maxs; < 1. (1.8)

1<i<m 1<j<n

The main result of this paper is as follows.

Theorem 1.1. Assume that (A1)—(Asz) hold. Then the system (1.3) has at least one positive solution.



4 Boundary Value Problems

2. Preliminaries

For each u € E := C[0, 1], we write ||u|| = max{u(f) : t € [0,1]}. Let P = {u € E : u(t) > 0,t €
[0,1]}. Clearly, (E, || - ||) is a Banach space and P is a cone. Similarly, for each (x,y) € E x E,
we write ||(x, y)|l1 = ||x]| + [ly||. Clearly, (E x E, || - ||1) is a Banach space and P x P is a cone in
E x E. For any real constant r > 0, define Q, = {(x,y) € Ex E : ||(x,y)|1 < r}. By a positive
solution of (1.3), we mean a vector (x,y) € C[0,1]nC?(0,1) xC[0,1]nC?(0,1) such that (x, y)
satisfies (1.3) and x > 0, ¥ > 0 on (0, 1). The proofs of our main result (Theorem 1.1) is based
on the Guo’s fixed-point theorem.

Lemma 2.1 (Guo’s Fixed-Point Theorem [27]). Let K be a cone of a real Banach space E, Qq, Qy
be bounded open subsets of E and 6 € Qq C Q,. Suppose that T : KN (Qy \ Q1) — K is completely
continuous such that one of the following condition hold:

(@) ITx]|| < ||x|| for x € 01 N K and || Tx|| > ||x|| for x € 0, N K;
(ii) ||Tx|| < ||x|| for x € 0Q, N K and || Tx|| > ||x|| for x € 021 N K.

Then, T has a fixed point in K N (Q, \ Q1).
The following result can be easily verified.

Result 1. Let t,t, € R such that t; < ;. Let x € C[t,t2], x > 0 and concave on [t1,t;]. Then,
x(t) > min{t —t;, t, — t}maXsep, 1,1 x(s) for all t € [ty,t>].

Choose ng € {3,4,5,...} such that ng > max{1/7,1/(1-1),(2-a)/(1—an)}. For fixed
ne{ng,ny+1,ny+2,...} and z € C[0,1], the linear three-point BVP

-u" )=z (), te [%1—%] ,

w(2)=0 u(1-2)-autn,

(2.1)

has a unique solution

1-1/n
u(t) = L/ H, (t,s)z(s)ds, (2.2)

where H,, : [1/n,1-1/n] x [1/n,1-1/n] — [0,c0) is the Green’s function and is given by

[ (t- - 1/n- -1 -
O —(t-s), 1ssst51_l,ssn,
1-2/n+a/n-an 1-2/n+a/n-an n n
(tl—lgr/l) (i—/l/n—s) _1tx(t2—/1/f) 511_5) , Letes<i-t <y,
H, (t,s)=1 n+a/n-—ar n+a/n-an n .
(t-1/n)(1- 1/n-5s) 1 1
1-2/n+a/n—ang ’ nStSSSl —, 521,
(t—l/n)(l—l/n—s)_ ~ 1 1
T 2/nraim—ay 479 S<s<t<loo, s>

(2.3)



Boundary Value Problems 5

We note that H,(t,s) — H(t,s) asn — oo, where
(t(1-5) at(n-s)
1-an 1-an

(1o at(r-9)
1-an 1-ang '

(t-s), 0<s<t<l, s<,

0<t<s<1, s<,

H (t,s) = 3 (2.4)
tl-s) 0<t<s<l, s>1,
1-an
t(l_s)—(t—s), 0<s<t<1, s>y,
\ 1—-an
is the Green’s function corresponding the boundary value problem
-u"(t)y=z(t), te[0,1],
(2.5)
u(0)=0, u (1) = au (1)
whose integral representation is given by
1
u(t) = f H (t,5) z (s) ds. (2.6)
0

Lemma 2.2 (see [9]). Let 0 < a < 1/#. If z € C[0,1] and z > 0, then then unique solution u of the
problem (2.5) satisfies

min u () > yull, (2.7)
te[n1]

where y = min{an, a(1 -1)/(1 - an),n}.
We need the following properties of the Green’s function H,, in the sequel.

Lemma 2.3 (see [11]). The function H, can be written as

a(t-1/n)
1-2/n+a/n-an

Hy, (t,5) =Gy (t,s) + Gn (77/ S) ’ (2.8)

where
s—1><1—1—t , 1555:&51—1,
n n n n n
Gn(ts)=— (2.9)
n-2 1 1 1 1
t—-—)(1-=-s), —<t<s<1--
n n n n
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Following the idea in [10], we calculate upper bound for the Green’s function H, in
the following lemma.

Lemma 2.4. The function H, satisfies
1 1 1 1 1 1
< -— -=- —,1-= -, 1-= :
H, (t,s) < puy (s n> <1 p s), (t,s) € [n,l n] X [n,l ], (2.10)

where p, = max{l,a}/(1-2/n+a/n-an).
Proof. For (t,s) € [1/n,1-1/n] x [1/n,1-1/n], we discuss various cases.

Case 1. s <1, s < t; using (2.3), we obtain

(t-=1/n)(s-1/n)

1
Hn(t,s)—s—ﬁ+(a—1)1_2/n+a/n_an. (2.11)
If « > 1, the maximum occurs att = 1 — 1/n, hence
-1 1-1/n-
Hn(t,s)an<l—1,s>:a(s /n)( /n 71)
n 1-2/n+a/n-an
(2.12)
(s=1/n)(1-1/n-5) < _1>< 1 )
=« 1-2/n+a/n-an Stn\s—y ! n °)
and if a < 1, the maximum occurs at t = s, hence
_(s-1/m)(1-1/n-s+a(s-1))
H (t,5) < Hu (s,9) = 1-2/n+a/n-an
(2.13)
(s=1/n)(1-1/n->s) < _l)( 1 >
: 1-2/n+a/n-an Sn\s—y ! n °)
Case 2. s <1, s > t; using (2.3), we have
_ _ _ -1 _ _ _ _
Hn(t,s)=(t 1/n)(1-1/n-s) /n) (11 -s) L =1/mA-1/n-s)
1-2/n+a/n-any 1-2/n+a/n-an 1-2/n+a/n-an (2.14)

cloyma-tng (1) (11,

T 1-2/n+a/n-an " n n

Case 3. s > 1, t < 5; using (2.3), we have

(t-1/m)(1-1/n-s) _(s-1/m)(1-1/n~—s) RAYARS
H (t,5) = 1-2/n+a/n-an < 1-2/n+a/n-an S#"<S n)(l n S)’

(2.15)
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Case 4. s > 1, t > s; using (2.3), we have

n

_ 1 1\ a(n=1/n) - (s -1/m)
Hn(t,s)—s—ﬁ+<t‘_) 1-2/n+a/n—an ~

For a(n—1/n) > s —1/n, the maximum occurs at f =1 —1/n, hence

(n-1/n)(1-1/n-s) < (s-1/n)(1-1/n-5)

1
< - =
Hn(t,s)_Hn<1 nls> 1_2/n+a/n_a1/l - 1—2/1’14—(1/”_“7’[

on (D) (-0

For a(n —1/n) < s —1/n, the maximum occurs at t = s, so

Hy (49) < Hy (s,5) = S0 0 fa‘:) < in <s _ %) (1 1 s> .

Now, we consider the nonlinear nonsingular system of BVPs
-x"(t) = f <t,max {x(t) + %,%} ,max {y(t) + %,%}) , te [%,1 - }1] i
-y (t)=g <t,max {x(t) + %,%},max {y(t) + %,%}) , te [%,1 - %] ,
ORI CHR
y(%) =0, y<1—%> = ay (1) .-

We write (2.19) as an equivalent system of integral equations

. J.l—l/"Hn (t,s) f (s,max{x(s) + %,%},max{y(s) + %,%}) ds,

1/n

y(t) = fl_l/an (t,s) g (s,max {x (s) + %,%} ,max {y (s) + %,%}) ds.

1/n

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

By a solution of the system (2.19), we mean a solution of the corresponding system of integral
equations (2.20). Define a retraction o, : [0,1] — [1/n,1-1/n] by 0,(t) = max{1/n, min{t, 1-

1/n}} and an operator T, : Ex E — P x P by
T (x,y) = (An (x,y)  Ba (x,9)) ,

where operators A, B, : E x E — P are defined by

(2.21)
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1-1/n

Ay (x,y) (1) =J‘ H, (0n(8),8) f <s,max{x(s) + %,%},max{y(s) + %,%}) ds,

1/n

1-1/n

H, (0, (t),s) g (s,max {x(s) + %,%} ,max {y(s) + %,%}> ds.
(2.22)

By (x,y) () = f

1/n

Clearly, if (x,, y») € E x E is a fixed point of T},, then (x,, y,) is a solution of the system (2.19).
Lemma 2.5. Assume that (A1)—(A3z) holds. Then T,, : P x P — P x P is completely continuous.

Proof. Clearly, for any (x,y) € P x P, A,(x,y), B,(x,y) € P. We show that the operator A, :
P x P — P isuniformly bounded. Let d > 0 be fixed and consider

D={(x,y) ePxP:|(xy),<d}. (2.23)

Choose a constant ¢ € (0,1] such that c(x +1/3) <1, c(y +1/3) <1, (x,y) € D. Then, for
every (x,y) € D, using (2.22), Lemma 2.4, (A1) and (A;), we have

1-1/n

An (x,y) (B = L H, (0u (t),5) f <5rx(5) - %,y(s) - %) ds

/n

Hy, (0n (t),8) f ( s, ¢
1/n C

< <1>ﬁ1f1_1/an (on(t),s) f (s,c <x (s) + %> ,cM) ds

c 1/n

@ QL s el D) s(oer )

< cupipo f 1/1/H (0 (1), 5) (x(s) + %) f (s, 1,¢ <y (s) + %)) ds

1-1/n

(M x(s)+1/n y(s)+1/n
—f < - ,C >ds

. cm—ﬁ1+uz—ﬂzf H, (0, (), 5) <x(s) + %)al <y(s) + %)azf (s,1,1) ds

1/n

1,1/,1 1 a 1 as
< cm—[hﬂlz—ﬂzJ‘ H, (O'n (t) ,s) <;> ( ) f (S, 1,1) ds

1/n n

171/71 1 1
< ‘uncm—ﬂﬁuz—ﬂzn—m—tﬂj‘ (S _ _> <1 _ ; _ S) f (s,1,1)ds

1/n n

1-1/n
< /inc“l"ﬂ”"‘z_ﬂzn‘“l_ﬂf s(1-s)f(s,1,1)ds
1/n

1
< ync“l"ﬂ”“rﬂzn‘“l‘“zf s(1-s) f(s,1,1)ds = au,cProfrym-az,
0
(2.24)
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which implies that

14w (2, y) || < apnctPreefapamez, (2.25)

that is, A, (D) is uniformly bounded. Similarly, using (2.22), Lemma 2.4, (A;) and (A3), we
can show that B, (D) is also uniformly bounded. Thus, T,,(D) is uniformly bounded. Now we
show that A, (D) is equicontinuous. Define

1 1
w:max{ max f<t,x+—,y+_>,
(tx,y)e[1/n,1-1/n]x[0,d]x[0,d] n n

1 1
max g<t,x+—,y+—>}.
(t,x,y)e[1/n,1-1/n]x[0,d]x[0,d] n n

(2.26)

Let t1,t, € [0,1] such that t; < t,. Since H,(t, s) is uniformly continuous on [1/n,1 -1/n] x
[1/n,1-1/n], for any € > 0, there exist 6 = 6(¢) > 0 such that |t; — t| < 6 implies

1

£ for s € [1,1 - —] . (2.27)
n n

|Hn (Gn (tl) 'S) - H, (G" (tz) 'S)| < m

For (x,y) € D, using (2.22)-(2.27), we have

|An (%, ) () = An (x,y) (1)

[ (Heoa @9~ Hutont, 97 (s 26+ Ly + 1) Yas

1/n

1-1/n 1 1
< L/n |Hy, (0n (t1),8) — Hy (04 (t2) ,5)| f (s,x (s) + Y (s) + ;> ds (2.28)

1-1/n
Sw’[ |H,, (0, (t1) ,5) — Hu (04 (t2) , 5)| ds
1/n

£ 1_1/”d B £ 1 2\
<‘”w(1—2/n)fl/n S’(l—z/n)< 7)‘5'

Hence,

| A (x,y) () — An (x,y) ()| <e, Y(x,y)€eD, |h-h|<6, (2.29)

which implies that A, (D) is equicontinuous. Similarly, using (2.22)-(2.27), we can show
that B, (D) is also equicontinuous. Thus, T,,(D) is equicontinuous. By Arzela-Ascoli theorem,
T.(D) is relatively compact. Hence, T, is a compact operator.
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Now we show that T, is continuous. Let (x,,, Y1), (x,y) € P x P such that || (2, Ym) —
(x,y)|lli — 0 as m — +oo. Then by using (2.22) and Lemma 2.4, we have

|An (xmrym) (t) - An (.X',y) (t)l

fl_l/nH,, (on (t),5) (f <s,xm (s) + %,ym (s)+ %) -f (5,35(5) " %’y(s) " %>> as

1/n
1-1/n 1 . ' 1
< fl/n Hy (on (8),5) | f <s,xm () + — Ym () + E) ~f <S,x(s) Foy ()4 E) ds

ds.
(2.30)

gynﬁ/jn <s—%> <1—111—s> ‘f <s,xm (s)+%,ym (s)+111>—f <s,x(s)+%,y(s)+%>

Consequently,

[ An Gems ym) = An (x, ) |

nfl (1) (-1

x|f (s,xm (s) + %,ym (s) + %) -f (s,x(s) + %,y(s) + %) ds.
By Lebesgue dominated convergence theorem, it follows that
| An (xm, Ym) — An (x,y)|| — 0 as m — +oo. (2.32)
Similarly, by using (2.22) and Lemma 2.4, we have
|| B (xm, Ym) = Bu (x,y)|| — 0 as m — +co. (2.33)
From (2.32) and (2.33), it follows that
| T (X, Yim) = Tu(x, y)||, — 0 as m — +oo, (2.34)

thatis, T, : PxP — P x P is continuous. Hence, T,, : Px P — P x P is completely continuous.
O

3. Main Results

Proof of Theorem 1.1. Let M = max{u,,, max{1,a}/(1 — arn)}. Choose a constant R > 0 such
that

R > max {(2aM)1/ (-a-a2) op )V <1—n—m} : (3.1)
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Choose a constant ¢; € (0,1] such that ¢; (x(t) + 1/np) < 1, ci(y(t) + 1/np) < 1, (x,y) €

0QrN (P xP),te (0,1). For any (x,y) € 0Qr N (P x P), using (2.22), (3.1), (A1), and (A,), we
have

1-1/n
An () () = L/n H, (04 (1) ,5) f <S,x (5)+ -y (5) + %) ds

1-1/n
=f H, (0, (t),s) f <s,c1x(s);1/",ay(5) +1/n> s

1/n €1
< (Cll)ﬂfi/l/H (0n (t),5) f (s, a (x (s) + %) ,cl%jl/’ﬁ ds

QY Q) s (o (020

< b Ju/n H, (0, (), 5) (x(s) . %) f (s, 1,6 (y (s) + %)) ds

1/n

1-1/n

<Pt 00,9 (0 + %) (vs)+ %)f (5,1,1)ds

1/n
1-1/n

< c;’“f’““Z‘ﬂZJ H, (0 (), 5) (x(5))™ (y(s))“ f (5,1,1) ds

1/n

1-1/n

< ﬂncflﬁ1+“2ﬂzfl/n (s - %) <1 - 111 - s) (x(s))" (y(s))*f (s,1,1)ds
B 1-1/n

< pncy'! prva ﬂzL/ s(1-5) (x(8)" (y(s))*f (s,1,1) ds

1
< #nc;““’“”‘Z‘ﬂZJOs (1-5) (x(s))" (y(5))°f (5,1,1) ds

1
< Mcfl_ﬂlmz_ﬂzj‘os (1-5) (x(s)™(y(s))*f (s,1,1) ds.
(3.2)

Since,

1
Mcllllﬂﬁazﬁzfos (1 _ S) (X(S))ul (y(s))azf (S, 1, 1) ds

< Mf:s (1-5s) (x(s)™ (y(s))* f (s,1,1) ds (3.3)

<aMRtx1+tx2 < B
= —= 2/
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it follows that

| An (x, y)|| < g = M YV (x,y) €0QrN (P xP). (3.4)

Similarly, using (2.22), (3.1), (A1), and (A3), we have

| Bx (x, v) || < I 'y)lll, V(x,y) €0QrN (P xP). (3.5)

From (3.4), and (3.5), it follows that

1T, )|, < V(x,y) €0QrN (P xP). (3.6)
Choose a real constant r € (0, R) such that
7 < min {(ZaM)l/ (=P (2bM)Y <1*P1*P2>} . (3.7)

Choose a constant ¢; € (0,1] such that ca(x(t) + 1/n9) < 1, co(y(t) + 1/np) < 1, (x,y) €
0Q, N(PxP),te(0,1). Forany (x,y) € 0Q, N (P x P), using (2.22), (3.7), (A1), and (Az), we
have

1-1/n

Ay (x,y) () = f Hy, (0, (8),8) f <s, (s) + —,y (s) + >

1/n

1-1/n
:f H, (0"(t)’s)f(S/sz(s)czl/n,qy(s)+1/n> s

1/n (o))

Q)L s o ) 2220,
Q) Q)T s (0D (D)

> cgl “ uzjl_l/an (0, (), 9) (x(s) + %)mf <s,1,cz <y (s) + %)) ds

1/n

> hrathe f H/an (0 (1),5) (x(s) + %)ﬂl <y(s) + %)ﬂz f(s,1,1)ds

1/n

1-1/n
>y “ZIW H, (04 (1), 5) (x())P (y(5))* f (5,1,1) ds >

NI =

(3.8)
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We used the fact that

1-1/n
prrartprma f H, (0 (),8) (x())" (())" f (5,1, 1) ds

1/n
1-1/n 3.9
> L/ H, (0 (8), ) (x()P (y(s))* f (5,1, 1) ds 39
> aMrPrhe,
Thus,
A, (x, )| > M Y (x,y) €0Q, 0 (PxP). (3.10)

Similarly, using (2.22), (3.7), (A1) and (A3), we have,

1Bn (x, )| = M V(x,y) €0Q,N(PxP). (3.11)

From (3.10) and (3.11), it follows that
1T e )l 2 1ol ¥ (xy) €8Q,n(PxP). (3.12)
Hence by Lemma 2.1, T, has a fixed point (x,, y,) € (P x P) N (ﬁR \ Q,), that is,
Xn=An (XnYn),  Yn=Bu (Xn,Yn)- (3.13)

Moreover, by (3.4), (3.5), (3.10) and (3.11), we have

N

~

< lxall <

N =

(3.14)

IN

N[ =

llyall <

N =

Since (xy, y») is a solution of the system (2.19), hence x, and vy, are concave on [1/n,1-1/n].
Moreover, maxte[l/fl,l—l/n]xn(t) = ||x,|| and maxte[l/n,l—l/n]yn(t) = ||yn|| For h € (1/n,1/2),
using result (2.2) and (3.14), we have

%an(t)g , Vtelh1-h],

(3.15)

rh

e <]/n (t) S

5 < , Vtelh,1-h],

Nl N=R
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which implies that {(x,, y,)} is uniformly bounded on [h, 1-h]. Now we show that {(x,, 1,)}
is equicontinuous on [k, 1-h]. Choose 7 € (h,1-h) and 0 < & < (1-2h)/(n—h) and consider
the integral equation

X (1= 1) = x (1) = (1= @) x ()
1-2h+ah-an

Xn (£) = (t=h) +xu (h)

1o (3.16)

1 1
+ . Hh-1(t,s)f<s,xn(s)+g,yn(s)+a>ds, te[h,1-h].

Using Lemma 2.3, we have

(L= h) = 2 (1) = (1~ ) 2, (h
o (1) = 22 )1f;fzzimlwx()u—m+xﬂm

1-h-t(

1 1
o h(s—h)f<s,xn (s)+;,yn (s) +;> ds

—h (" 1 1
+1t——2h,[t (1—h—5)f<s,xn (s) + —Yn (s) + E) ds

a(t - h)

1-h 1 1
1 —2h+ah—a11,[ G (n’s)f <S/xn (S) + E/yn (S) + E) ds, te [h,l—h] .

h
(3.17)

Differentiating with respect to ¢, we obtain

o Xn(L=h)—a x, (17) = (1 - a) x, (h)
n(t) = 1-2h+ah—an

1 1 .
‘mfh (S‘mf(wn () + = Y <s>+;) ds

1

"Ton

r—h (1-h-s)f <S,xn (s) + %,yn (s) + %) ds

t

» 1-h 1 1
+—1—2h+ah—a11,[h Gy (q,s)f(s,xn (s) + —Yn (s) + ;) ds, te[h,1-h],
(3.18)

which implies that

|x;(t)| < : (1+a)R

1-h 1 1
T 2h+ah—ay +fh f <Sfxn (8) + = yn (5) + ;) ds

a

1-h 1 1
+—1—2h+ah—a11,[ thl(q,s)f(s,xn(s)+E,yn(s)+ﬁ>ds, te[h1-H],

h
(3.19)
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In view of (A;) and (3.15), we have

, (1+a)R wr—prrar—p [\ (N
< —f —_
|x"(t)|_1—2h+ah—mz+cl > . f(s,1,1)ds

+ ;calﬂl*“z,@(ﬂ)mmz e (,s) f (s,1,1)ds, te[h1—h]
1-2h+ah—an ! 2 b wt (1,5) f (5,1, ! ¢ ¢
(3.20)
which implies that
. (1+a)R a1-pr+ar—pa (hr>“1+“2 1=h
< e _
||xn||— 1_2h+ah_arl+cl 2 b f(S,l,l)dS
+ ;cal_ﬁlﬂxz—ﬂz<ﬂ>al+azfl_hc (1,s) f (s,1,1)ds, te[h1—h]
1-2h+ah—an ! 2 b wt (1,5) f (5,1, ! ¢ )
(3.21)
Similarly, consider the integral equation
_yn(I=h)—ay, (1) - (1-a)y, (h)
v () = e (= h) + o (h)
- (3.22)
+ Hy- (t,s) g <s,xn (s) + %,yn (s) + %) ds, tel[h,1-h],
h

using (As) and (3.15), we can show that

! 1+a)R Yi=p1+12=p2 < hr>rl+yzjl_h
ST 2h+ah—an 5 1,1
”ynl|_1—2h+ah—aq+cl 2 , g(s,1,1)ds
“a n-prty—p (Hr\" 12 l-h
1-2h+ah-an > s 1,1)ds, t 1-Hhl.
+1—2h+ah—aq1 (2) , Gi (n,5) g (s,1,1)ds, te[h1-h]

(3.23)

In view of (3.21) and (3.23), { (x4, yx)} is equicontinuous on [h,1 — h]. Hence by Arzela-
Ascoli theorem, the sequence {(x,, y,)} has a subsequence {(x,,, y»,)} converging uniformly
on [h,1-h]to (x,y) € (PxP)N (Qr \ ©,). Let us consider the integral equation

Xn (1= h) — a xu (17) — (1 — @) X, ()
1-2h+ah-an (£ =) + 2 ()
- (3.24)

+ Hy- (t,s) f <s,xnk (s) + l,ynk (s) + l) ds, tel[h,1-h].
h Ny Ny

Xy (t) =
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Letting nx — oo, we have

x(I-h)—ax(n)-1-a)x(h)

x(f) = T—2h+ah—ar (t—h)+x(h)
- (3.25)
+ Hy-i (t,s) f (s,x(s),y(s))ds, te[h1-h].
h
Differentiating twice with respect to t, we have
X" (t)=f(t,x(t),y (), tel[h1-h]. (3.26)
Letting h — 0, we have
=x"(t)=f(t,x®t),y), te(01). (3.27)
Similarly, consider the integral equation
_ Y (A-m) —ayn (1) - (L= a) yn, ()
ynk (t)_ 1—2h+ah—a1’l (t h)+ynk (h)
(3.28)
+ Hy1(t,s) g (s,xnk (8) + —, Yn, (5) + —) ds, telh,1-h],
h Nk Nk
we can show that
() =gtxt),y®), teO). (3.29)
Now, we show that (x, i) also satisfies the boundary conditions. Since,
x(0) = lim x <i> = lim x,, <l> =0,
Nk — 0 Ny Nk — 0 N
. . (3.30)
x(1) = lim x <1 - —) = lim x,, <1 - —) = lim ax,, (1) = ax (7).
Nk — 0 Ny Nk — 0 Ny Mk — 00
Similarly, we can show that
yH)=0, y1)=ay(n). (3.31)

Equations (3.27)-(3.31) imply that (x, y) is a solution of the system (1.3). Moreover, (x,y) is
positive. In fact, by (3.27) x is concave and by Lemma 2.2

x (1) > minx (t) > y|x| >0, (3.32)
te[n 1]
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implies that x(t) > 0 for all + € (0,1). Similarly, y(t) > O for all t € (0,1). The proof of
Theorem 1.1 is complete. O

Example 3.1. Let

f (t, x,y) - Z thi (1- t)‘?jxriysj’
i=1 j=1
(3.33)

m, n, / ! J !
g(txy) = tPe(1—t)Tix"x %,
k=1 1=1

where the real constants p;, 4,7, Sj satisfy p;, qi >-2,r,8<1,i=12,....mj=12,...,n,
with maxi<j<m?i + maxicj<,s; < 1 and the real constants p;, q), 7, s satisfy p;,q, > -2, 1}, s; <
1,k=1,2,...,m;1=1,2,...,n,with maxlsksm,r,’< +max1§l§n,s; < 1. Clearly, f and g satisfy the
assumptions (A;)—(As). Hence, by Theorem 1.1, the system (1.3) has a positive solution.
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