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1. Introduction

Throughout this paper, let x = (y, z) be the generic point of RN with y ∈ R
m, z ∈ R

n, where

N = m + n ≥ 3, m ≥ 2, n ≥ 1, 2 < p <
2N

N − 2
. (1.1)

In this paper, we study the multiplicity results of both positive and nodal solutions for the
nonhomogeneous elliptic problems

−Δu + u = a(x)|u|p−2u + f(x) in Ω, u ∈ H1
0(Ω), (1.2)

where 0 ∈ ω ⊆ R
m is a bounded smooth domain,Ω = ω×R

n is a smooth unbounded cylinder
domain in R

N .
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It is assumed that a(x) and f(x) satisfy the following assumptions:

(a1) a(x) is continuous and a(x) ∈ (0, 1] on Ω, and

lim
|z|→∞

a(x) = 1 uniformly for y ∈ ω; (1.3)

(f1) f(x) ≥ 0, f(x)/≡ 0, f(x) ∈ H−1(Ω);

(f2) γf > 0 in which we defined

γf = inf

{[
1

p − 1

](p−1)/(p−2)(
p − 2

)‖u‖2(p−1)/(p−2)

−
∫
Ω
fudx :

∫
Ω
a(x)|u|pdx = 1

}
;

(1.4)

(f3) there exist positive constants C0, ε0, R0 such that

f(x) ≤ C0 exp
(
−
√
1 + μ1 + ε0|z|

)
for |z| ≥ R0,uniformly for y ∈ ω, (1.5)

where μ1 is the first positive eigenvalue of the Dirichlet problem −Δ in ω.

For the homogeneous case, that is, f(x) ≡ 0, Zhu [1] has established the existence of
a positive solution and a nodal solution of problem (1.2) in H1(RN) provided a(x) satisfies
a(x) ≥ 1 in R

N and a(x) − 1 ≥ C/|x|l as |x| → ∞ for some positive constants C and l. More
recently, Hsu [2] extended the results of Zhu [1] with R

N to an unbounded cylinder Ω. Let
us recall that, by a nodal solution we mean the solution of problem (1.2)with change of sign.

For the nonhomogeneous case (f(x)/≡ 0), Adachi and Tanaka [3] have showed that
problem (1.2) has at least four positive solutions in H1(RN) for a(x) and f(x) satisfy some
suitable conditions, but we place particular emphasis on the existence of nodal solutions.
More recently, Chen [4] considered the multiplicity results of both positive and nodal
solutions of problem (1.2) in H1(RN). She has showed that problem (1.2) has at least two
positive solutions and one nodal solution in H1(RN) when a(x) and f(x) satisfy some
suitable assumptions.

In the present paper, motivated by [4] we extend and improve the paper by Chen [4].
We will deal with unbounded cylinder domains instead of the entire space and also obtain
the same results as in [4]. Our arguments are similar to those in [5, 6], which are based on
Ekeland’s variational principle [7].

Now, we state our main results.

Theorem 1.1. Assume (a1), (f1), (f2) hold and a(x) satisfies assumption (a2).

(a2) there exist positive constants C, δ0, R such that

a(x) ≥ 1 − C exp
(
−
√
1 + μ1 + δ0|z|

)
for |z| ≥ R, uniformly for y ∈ ω. (1.6)
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Then problem (1.2) has at least two positive solutions u0 and u1 in H1
0(Ω). Furthermore, u0 and u1

satisfy 0 < u0 < u1, and u0 is a local minimizer of I where I is the energy functional of problem (1.2).

Theorem 1.2. Assume (a1), (f1), (f2), (f3) hold and a(x) satisfies assumption (a3).

(a3) there exist positive constants C,R, and δ0 < 1 + μ1 such that

a(x) ≥ 1 + C exp
(
−
√
1 + μ1 − δ0|z|

)
for |z| ≥ R, uniformly for y ∈ ω. (1.7)

Then problem (1.2) has a nodal solution in H1
0(Ω) in addition to two positive solutions u0 and u1.

For the case Ω = R
N , we also have obtained the same results as in Theorems 1.1 and

1.2.

Theorem 1.3. Assume (a1), (f1), (f2) hold and a(x) satisfies assumption (a2).

(a2) there exist positive constants C, δ0, R such that

a(x) ≥ 1 − C exp
(
−
√
1 + δ0|x|

)
for |x| ≥ R. (1.8)

Then problem (1.2) has at least two positive solutions u0 and u1 inH1(RN). Furthermore, u0 and u1

satisfy 0 < u0 < u1, and u0 is a local minimizer of I where I is the energy functional of problem (1.2).

Theorem 1.4. Assume (a1), (f1), (f2), (f3) hold and a(x) satisfies assumption (a3) below.

(a3) there exist positive constants C,R and δ0 < 1 such that

a(x) ≥ 1 + C exp
(
−
√
1 − δ0|x|

)
for |x| ≥ R. (1.9)

Then problem (1.2) has a nodal solution in H1(RN) in addition to two positive solutions u0 and u1.

Among the other interesting problems which are similar to problem (1.2), Bahri and
Berestycki [8] and Struwe [9] have investigated the following equation:

−Δu = |u|p−2u + f(x) in Ω, u ∈ H1
0(Ω), (1.10)

where 2 < p < 2N/(N − 2), f ∈ L2(Ω), and Ω is a bounded domain in R
N . They found that

(1.10) possesses infinitely many solutions. More recently, Tarantello [5] proved that if p =
2N/(N − 2) is the critical Sobolev exponent and f ∈ H−1 satisfying suitable conditions, then
(1.10) admits two solutions. For the case when Ω is an unbounded domain, Cao and Zhou
[10], Cı̂rstea and Rădulescu [11], and Ghergu and Rădulescu [12] have been investigated the
analogue equation (1.10) involving a subcritical exponent in R

N . Furthermore, Rădulescu
and Smets [13] proved existence results for nonautonomous perturbations of critical singular
elliptic boundary value problems on infinite cones.
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This paper is organized as follows. In Section 2, we give some notations and
preliminary results. In Section 3, we will prove Theorem 1.1. In Section 4, we establish the
existence of nodal solutions.

2. Preliminaries

In this paper, we always assume that Ω is an unbounded cylinder domain or RN(N ≥ 3). Let
ΩR = {x ∈ Ω : |z| < R} for R > 0, and let φ be the first positive eigenfunction of the Dirichlet
problem −Δ in ω with eigenvalue μ1, unless otherwise specified. We denote by C and Ci

(i = 1, 2, . . .) universal constants, maybe the constants here should be allowed to depend
on N and p, unless some statement is given. Now we begin our discussion by giving some
definitions and some known results.

We define

‖u‖ =
(∫

Ω

(
|∇u|2 + u2

)
dx

)1/2

,

‖u‖q =
(∫

Ω
|u|qdx

)1/q

, 1 ≤ q < ∞,

‖u‖∞ = sup
x∈Ω

|u(x)|.

(2.1)

Let H1
0(Ω) be the Sobolev space of the completion of C∞

0 (Ω) under the norm ‖ · ‖ with the
dual space H−1(Ω), H1(RN) = H1

0(R
N) and denote 〈·, ·〉 the usual scalar product in H1

0(Ω).
The energy functional of problem (1.2) is given by

I(u) =
1
2

∫ (
|∇u|2 + u2

)
− 1
p

∫
a(x)|u|p −

∫
fu, (2.2)

here and from now on, we omit “dx” and “Ω” in all the integration if there is no other
indication. It is well known that I is of C1 inH1

0(Ω) and the solutions of problem (1.2) are the
critical points of the energy functional I (see Rabinowitz [14]).

As the energy functional I is not bounded on H1
0(Ω), it is useful to consider the

functional on the Nehari manifold

N =
{
u ∈ H1

0(Ω) \ {0} :
〈
I ′(u), u

〉
= 0

}
. (2.3)

Thus, u ∈ N if and only if

〈
I ′(u), u

〉
= ‖u‖2 −

∫
a(x)|u|p −

∫
fu = 0. (2.4)

Easy computation shows that I is bounded from below in the set N. Note that N contains
every nonzero solution of (1.2).
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Similarly to the method used in Tarantello [5], we split N into three parts:

N+ =
{
u ∈ N : ‖u‖2 − (

p − 1
) ∫

a(x)|u|p > 0
}
,

N0 =
{
u ∈ N : ‖u‖2 − (

p − 1
) ∫

a(x)|u|p = 0
}
,

N− =
{
u ∈ N : ‖u‖2 − (

p − 1
) ∫

a(x)|u|p < 0
}
.

(2.5)

Let us introduce the problem at infinity associated with problem (1.2) as

−Δu + u = |u|p−2u in Ω, u ∈ H1
0(Ω), u > 0 in Ω. (2.6)

We state here some known results for problem (2.6). First of all, we recall that by Esteban [15]
and Lien et al. [16], problem (2.6) has a ground state solution w such that

S∞ = I∞(w) = sup
t≥0

I∞(tw) =
(
1
2
− 1
p

)
Sp/(p−2), (2.7)

where I∞(u) = (1/2)‖u‖2 − (1/p)
∫ |u|p, S∞ = inf{I∞(u) : u ∈ H1

0(Ω), u /≡ 0, (I∞)′(u) = 0} and

S = inf
{∫ (

|∇u|2 + u2
)
: u ∈ H1

0(Ω),
∫

|u|p = 1
}
. (2.8)

Furthermore, fromHsu [2]we can deduce that for any ε ∈ (0, 1+μ1) there exist positive
constants Cε, C̃ε such that, for all x = (y, z) ∈ Ω,

C̃εφ
(
y
)
exp

(
−
√
1 + μ1 + ε|z|

)
≤ w(x) ≤ Cεφ

(
y
)
exp

(
−
√
1 + μ1 − ε|z|

)
. (2.9)

We also quote the following lemma (see Hsu [17] or K.-J. Chen et al. [18] for the proof) about
the decay of positive solution of problem (1.2)which we will use later.

Lemma 2.1. Assume (a1), (f1) and (f3) hold. If u ∈ H1
0(Ω) is a positive solution of problem (1.2),

then

(i) u ∈ Lq(Ω) for all q ∈ [2,∞);

(ii) u(y, z) → 0 as |z| → 0 uniformly for y ∈ ω and u ∈ C1,α(Ω) for any 0 < α < 1;

(iii) for any ε ∈ (0, 1+μ1), there exist positive constants cε, c̃ε such that, for all x = (y, z) ∈ Ω,

c̃εφ
(
y
)
exp

(
−
√
1 + μ1 + ε|z|

)
≤ u(x) ≤ cεφ

(
y
)
exp

(
−
√
1 + μ1 + ε|z|

)
. (2.10)

We end this preliminaries by the following definition.
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Definition 2.2. Let c ∈ R, E be a Banach space and I ∈ C1(E,R).

(i) {un} is a (PS)c-sequence in E for I if I(un) = c + o(1) and I ′(un) = o(1) strongly in
E−1 as n → ∞.

(ii) We say that I satisfies the (PS)c condition if any (PS)c-sequence {un} in E for I has
a convergent subsequence.

3. Proof of Theorem 1.1

In this section, we will establish the existence of two positive solutions of problem (1.2).
First, we quote some lemmas for later use (see the proof of Tarantello [5] or Chen [4,

Lemmas 2.2, 2.3, and 2.4]).

Lemma 3.1. Assume (a1) and (f1) hold, then for every u ∈ H1
0(Ω), u /≡ 0, there exists a unique

t− = t−(u) > 0 such that t−u ∈ N−. In particular, we have

t− >

(
‖u‖2(

p − 1
) ∫

a(x)|u|p
)1/(p−2)

= tmax (3.1)

and I(t−u) = maxt≥tmaxI(tu). Moreover, if
∫
fu > 0, then there exists a unique t+ = t+(u) > 0 such

that t+u ∈ N+. In particular,

t+ < tmax, (3.2)

I(t+u) = min0≤t≤tmaxI(tu) and I(t−u) = maxt≥0I(tu).

Lemma 3.2. Assume (a1), (f1) and (f2) hold, then for every u ∈ N \ {0}, we have

‖u‖2 − (
p − 1

) ∫
a(x)|u|p /= 0 (i.e., N0 = {0}). (3.3)

Lemma 3.3. Assume (a1), (f1) and (f2) hold, then for every u ∈ N \ {0}, there exist a ε > 0 and a
C1-map t = t(w) > 0, w ∈ H1

0(Ω), ‖w‖ < ε satisfying that

t(0) = 1, t(w)(u −w) ∈ N, for ‖w‖ < ε,

〈
t′(0), w

〉
=

2
∫
(∇u∇w + uw) − p

∫
a(x)|u|p−2uw − ∫

fw

‖u‖2 − (
p − 1

) ∫
a(x)|u|p

.
(3.4)

Apply Lemmas 3.1, 3.2, 3.3, and Ekeland variational principle [7], andwe can establish
the existence of the first positive solution.

Proposition 3.4. Assume (a1), (f1) and (f2) hold, then the minimization problem c0 = infNI =
infN+I is achieved at a point u0 ∈ N+ which is a critical point for I. Moreover, if f(x) ≥ 0 and
f(x)/≡ 0, then u0 is a positive solution of problem (1.2) and u0 is a local minimizer of I.
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Proof. Modifying the proof of Chen [4, Proposition 2.5]. Here we omit it.

Since u0 ∈ N+ and c0 = infNI = infN+I, thus, in the search of our second positive
solution, it is natural to consider the second minimization problem:

c1 = inf
N−

I. (3.5)

We will establish the existence of the second positive solution of problem (1.2) by proving
that I satisfies the (PS)c1 -condition.

Proposition 3.5. Assume (a1), (f1) and (f2) hold, then I satisfies the (PS)c-condition with c ∈
(−∞, c0 + S∞).

Proof. Let {un} be a (PS)c-sequence for I with c ∈ (−∞, c0 + S∞). It is easy to see that {un}
is bounded in H1

0(Ω), so we can find a u ∈ H1
0(Ω) such that un ⇀ u weakly in H1

0(Ω) up to
a subsequence and u is a critical point of I. Furthermore, we may assume un → u a.e. in Ω,
un → u strongly in Ls

loc(Ω) for all 1 ≤ s < 2N/(N − 2). Hence we have that I ′(u) = 0 and

∫
fun =

∫
fu + o(1). (3.6)

Set vn = un − u. Then by (3.6) and Brézis and Lieb lemma (see [19]), we obtain

I(un) =
1
2
‖un‖2 − 1

p

∫
a(x)|un|p −

∫
fun

= I(u) +
1
2
‖vn‖2 − 1

p

∫
a(x)|vn|p + o(1).

(3.7)

Moreover, by Vitali’s lemma and I ′(u) = 0,

o(1) =
〈
I ′(un), un

〉

= ‖u‖2 −
∫

a(x)|u|p −
∫

fu + ‖vn‖2 −
∫

a(x)|vn|p + o(1)

=
〈
I ′(u), u

〉
+ ‖vn‖2 −

∫
a(x)|vn|p + o(1)

= ‖vn‖2 −
∫

a(x)|vn|p + o(1).

(3.8)
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In view of assumptions I(un) = c + o(1), and (3.7), (3.8), u ∈ N and by Lemma 3.2, we obtain

c ≥ c0 +
1
2
‖vn‖2 − 1

p

∫
a(x)|vn|p + o(1), (3.9)

‖vn‖2 −
∫

a(x)|vn|p = o(1). (3.10)

Hence, we may assume that

‖vn‖2 −→ b,

∫
a(x)|vn|p −→ b. (3.11)

By the definition of S, we have ‖vn‖2 ≥ S‖vn‖2p, combining with (3.11) and ‖a‖∞ = 1, and we
get that b ≥ Sb2/p. Either b = 0 or b ≥ Sp/(p−2). If b = 0, the proof is complete. Assume that
b ≥ Sp/(p−2), from (2.7), (3.9), and (3.11), we get

c ≥ c0 +
(
1
2
− 1
p

)
b ≥ c0 +

(
1
2
− 1
p

)
Sp/(p−2) ≥ c0 + S∞, (3.12)

which is a contradiction. Therefore, b = 0 and we conclude that un → u strongly in H1
0(Ω).

Let eN = (0, 0, . . . , 0, 1) ∈ R
N , let en = (0, 0, . . . , 0, 1) ∈ R

n, and let k > 0 be a constant,
we denote wk(x) = w(x − keN) and uk(x) = u0(x + keN) for x ∈ Ω where w is the ground
state solution of problem (2.6) and u0 is the first positive solution of problem (1.2).

Proposition 3.6. Assume (a1), (a2) and (f1) hold, then there exists k0 ≥ 1 such that

I(u0 + twk0) < c0 + S∞, ∀ t > 0. (3.13)

The following estimates are important to find a path which lies below the first level of
the break down of the (PS)c condition. Here we use an interaction phenomenon between u0

and wk0 .
To give a proof of Proposition 3.6, we need to establish some lemmas.

Lemma 3.7. Let B1 = {x = (y, z) ∈ Ω : y ∈ ω0, |z| ≤ 1}, and ω0 ⊂⊂ ω is a domain in R
m. Then for

any ε ∈ (0, 1 + μ1), there exists a positive constant C1(ε) such that

∫
B1

uk(x) ≥ C1e
−
√

1+μ1+εk, ∀ k ≥ 1. (3.14)
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Proof. From (2.10), we have for k ≥ 1,

∫
B1

uk(x) =
∫
B1

u(x + keN)

≥
∫
B1

c̃εφ
(
y
)
e−
√

1+μ1+ε|z+keN |

≥ c̃εe
−
√

1+μ1+ε(k+1)
∫
B1

φ
(
y
)

≥ C1e
−
√

1+μ1+εk.

(3.15)

Lemma 3.8. Let Θ be a domain in R
n, and let z = (z1, z2, . . . , zn) be a vector in R

n. If g : Θ → R

satisfies

∫
Θ

∣∣∣g(z)eσ|z|∣∣∣dz < ∞ for some σ > 0, (3.16)

then

(∫
Θ
g(z)e−σ|z+ken|dz

)
eσk =

∫
Θ
g(z)e−σzndz + o(1) as k −→ ∞, (3.17)

or

(∫
Θ
g(z)e−σ|z−ken|dz

)
eσk =

∫
Θ
g(z)eσzndz + o(1) as k −→ ∞. (3.18)

Proof. We know σ|ken| ≤ σ|z| + σ|z + ken|, then
∣∣∣g(z)e−σ|z+ken|eσ|ken|∣∣∣ ≤ ∣∣∣g(z)eσ|z|∣∣∣. (3.19)

Since −σ|z + ken| + σ|ken| = −σ(〈z, ken〉/|ken|) + o(1) = −σzn + o(1) as k → ∞, the lemma
follows from the Lebesgue’s dominated convergence theorem.

Now, we give the proof of Proposition 3.6.

The Proof of Proposition 3.6

Recall B1 = {x = (y, z) ∈ Ω | y ∈ ω0, |z| ≤ 1}, where ω0 ⊂⊂ ω is a domain in R
m. For k ≥ 1, let

Dk = {x ∈ Ω : x − keN ∈ B1},

r = min
x∈Dk

wk(x) = min
x∈B1

w(x) > 0.
(3.20)
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We also remark that for all s > 0, t > 0,

(s + t)p − sp − tp − psp−1t ≥ 0, (3.21)

and for any s0 > 0 and r0 > 0 there exists C2(s0, r0) > 0 such that for all s ∈ [0, r0], t ∈ [s0, r0],

(s + t)p − sp − tp − psp−1t ≥ C2(s0, r0)st. (3.22)

Since I is continuous in H1
0(Ω), there exists t1 > 0 such that for all t ∈ [0, t1],

I(u0 + twk) < I(u0) + I∞(w), ∀ k ≥ 0, (3.23)

and by the fact that I(u0 + twk) → −∞ as t → ∞ uniformly in k ≥ 1, then there exists t0 > 0
such that

sup
t≥0

I(u0 + twk) = sup
0≤t≤t0

I(u0 + twk). (3.24)

Thus, we only need to show that there exists a constant k0 ≥ 1 such that

sup
t1≤t≤t0

I(u0 + twk) < I(u0) + I∞(w), ∀ k ≥ k0. (3.25)

Straightforward computation gives us

I(u0 + twk) =
t2

2
‖u0‖2 + t2

2
‖wk‖2 + 〈u0, twk〉 − 1

p

∫
a(x)|u0 + twk|p

−
∫

fu0 − t

∫
fwk

= I(u0) + I∞(twk)

− 1
p

∫ (
a(x)|u0 + twk|p − a(x)|u0|p − a∞|twk|p

)
+ t

∫
a(x)|u0|p−1wk

= I(u0) + I∞(tw)

− 1
p

∫
a(x)

(
|u0 + twk|p − |u0|p − |twk|p − p|u0|p−1twk

)

+
1
p

∫ (
a∞|twk|p − a(x)|twk|p

)
≤ c0 + S∞ − (I) + (II),

(3.26)
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where

(I) =
1
p

∫
a(x)

(
|u0 + twk|p − |u0|p − |twk|p − p|u0|p−1twk

)
,

(II) =
1
p

∫
(a∞ − a(x))|twk|p.

(3.27)

Thus, we only need to prove that there exists a constant k0 ≥ 1 such that

−(I) + (II) < 0, ∀ t ∈ [t1, t0]. (3.28)

Now we estimate (I) and (II). Without loss of generality, we may assume that δ0 < (p2 −
1)(1 + μ1). Thus, we can choose ε̃0 small enough such that

p
√
1 + μ1 − ε̃0 >

√
1 + μ1 + δ0. (3.29)

By (3.21),

(I) =
1
p

∫
a(x)

(
|u0 + twk|p − |u0|p − |twk|p − p|u0|p−1twk

)

≥ 1
p

∫
Dk

a(x)
(
|u0 + twk|p − |u0|p − |twk|p − p|u0|p−1twk

)
.

(3.30)

Let a0 = infx∈Ωa(x) > 0, s0 = t1minx∈Dkwk(x), r0 = max{maxx∈Ωu0(x), t0maxx∈Ωw(x)} > 0
and by applying (3.22), we obtain

(I) ≥ a0

p

∫
Dk

C2(s0, r0)tu0wk

≥ a0

p
C2(s0, r0)t1

∫
x∈B1

ukw ∀ t ∈ [t1, t0].

(3.31)

Let ε = δ0/2. Then applying (3.14), we have forA = (a0/p)C1(δ0/2)C2(s0, r0)t1(minx∈B1w(x))

(I) ≥ Ae−
√

1+μ1+(δ0/2)k. (3.32)
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Next from (a2), (2.9), (3.29), and Lemma 3.8, there exists a k1 such that for any k ≥ k1,

(II) =
1
p

∫
(a∞ − a(x))|twk|p

=
1
p

∫
ΩR

(a∞ − a(x))|twk|p + 1
p

∫
Ω\ΩR

(a∞ − a(x))|twk|p

≤ t
p

0

p
(a∞ + ‖a‖∞)

∫
ΩR

C
p

ε̃0
φp(y)e−p√1+μ1−ε̃0|z−ken|

+
t
p

0

p

∫
Ω\ΩR

CC
p

ε̃0
φp(y)e−√1+μ1+δ0|z|e−p

√
1+μ1−ε̃0|z−ken|

≤ C3e
−p
√

1+μ1−ε̃0k +
t
p

0

p
CC

p

ε̃0

∫
ω

φp(y)dy∫
Rn

e−
√

1+μ1+δ0|z+ken|e−p
√

1+μ1−ε̃0|z|dz

≤ C3e
−p
√

1+μ1−ε̃0k + C4e
−
√

1+μ1+δ0k.

(3.33)

From (3.29), we have for B = 2max{C3, C4},

(II) ≤ Be−
√

1+μ1+δ0k. (3.34)

Finally, we can choose k0 ≥ k1 large enough such that

Be−
√

1+μ1+δ0k < Ae−
√

1+μ1+(δ0/2)k, ∀ k ≥ k0. (3.35)

Thus from (3.26) and (3.32)–(3.35), we obtain (3.13). This completes the proof of
Proposition 3.6.

Proposition 3.9. For c1 = infN−I, there exists a (PS)c1-sequence {un} ⊂ N− for I. In particular, we
have c1 < c0 + S∞.

Proof. Set Σ = {u ∈ H1
0(Ω) : ‖u‖ = 1} and define the map Ψ : Σ → N− given by Ψ(u) =

t−(u)u. Since the continuity of t−(u) follows immediately from its uniqueness and extremal
property, thusΨ is continuous with continuous inverse given byΨ−1(u) = u/‖u‖. ClearlyN−

disconnecting H1
0(Ω) is exactly two components:

U1 =
{
u = 0 or u : ‖u‖ < t−

(
u

‖u‖
)}

,

U2 =
{
u : ‖u‖ > t−

(
u

‖u‖
)}

,

(3.36)

and N+ ⊂ U1.
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We will prove that there exists t0 such that u0 + t0wk0 ∈ U2. Denote t1 = t−((u0 +
twk0)/‖u0 + twk0‖). Since t−((u0 + twk0)/‖u0 + twk0‖)((u0 + twk0)/‖u0 + twk0‖) ∈ N−, we have

t21 −
t
p

1

∫
a(x)|u0 + twk0 |p
‖u0 + twk0‖p

=
t1

‖u0 + twk0‖
∫

f(u0 + twk0) ≥ 0. (3.37)

Thus

t1 ≤
[

‖u0 + twk0‖(∫
a(x)|u0 + twk0 |p

)1/p
]p/(p−2)

=

[
‖(u0/t) +wk0‖(∫

a(x)|(u0/t) +wk0 |p
)1/p

]p/(p−2)

≤
[

‖(u0/t) +wk0‖(∫
a0|(u0/t) +wk0 |p

)1/p
]p/(p−2)

where a0 = infΩa(x) > 0

−→ a
1/p−2
0 ‖wk0‖ < ∞ as t −→ ∞.

(3.38)

Therefore, there exists t2 > 0 such that t1 = t−((u0+ twk0)/‖u0+ twk0‖) < ‖wk0‖, for t ≥ t2. Since
t0 > t2 + 1, then

‖u0 + t0wk0‖2 = ‖u0‖2 + t20‖wk0‖2 + 2t0

∫
(∇u0∇wk0 + u0wk0)

= ‖u0‖2 + t20‖wk0‖2 + 2t0

∫
|wk0 |p−1u0

> t20‖wk0‖2 > ‖wk0‖2 > t21,

(3.39)

hence u0 + t0wk0 ∈ U2.
N− disconnects H1

0(Ω) in exactly two components, so we can find an s ∈ (0, 1) such
that u0 + st0wk0 ∈ N− . Therefore c1 ≤ I(u0 + st0wk0) < c0 + S∞, which follows from
Proposition 3.6.

Analogously to the proof of Proposition 3.4, by the Ekeland variational principle we
can show that there exists a (PS)c1 -sequence {un} ⊂ N− for I.

Proposition 3.10. Assume (a1), (a2), (f1) and (f2) hold, then the functional I has a minimizer
u1 ∈ N− which is also a critical point of I and u1 > 0 for f ≥ 0, f /≡ 0.

Proof. From Propsitions 3.5 and 3.9, we can deduce that un → u1 strongly in H1
0(Ω).

Consequently, u1 is a critical point of I, u1 ∈ N− (since N− is closed) and I(u1) = c1.
By Lemma 3.1, we can choose a number t−(|u1|) > 0 such that t−(|u1|)|u1| ∈ N−. Since

u1 ∈ N−, t−(u1) = 1. Applying Lemma 3.1 again, we conclude that

t−(|u1|) ≥ tmax(|u1|) = tmax(u1),

c1 = I(u1) = max
t≥tmax(u1)

I(tu1) ≥ I
(
t−(|u1|)u1

) ≥ I
(
t−(|u1|)|u1|

) ≥ c1.
(3.40)
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Hence I(t−(|u1|)u1) = c1. So we can always take u1 ≥ 0. By the maximum principle for weak
solutions (see Gilbarg and Trudinger [20]) we can show that if f ≥ 0, f /≡ 0, then u1 > 0 in
Ω.

The proof of Theorem 1.1

By Propositions 3.4 and 3.10, we obtain the conclusion of Theorem 1.1.

4. Existence of Nodal Solution

In this section, we will study the existence of nodal solutions for problem (1.2). To this end,
we need to compare some different minimization problems. Define

N−
1 =

{
u = u+ − u− ∈ N : u+ ∈ N−},

N−
2 =

{
u = u+ − u− ∈ N : −u− ∈ N−}. (4.1)

Here, we use notation u± = max{±u, 0}. Set

β1 = inf
u∈N−

1

I(u), (4.2)

β2 = inf
u∈N−

2

I(u). (4.3)

Then we have

Proposition 4.1. (a) If β1 < c1, then the minimization problem (4.2) attains its infimum at a point
which defines a sign changing critical point of I. (b) Analogously, if β2 < c1 the same conclusion holds
for the minimization problem (4.3).

Proof. The proof is almost the same as that in Tarantello [6, Proposition 3.1] .

The above proposition would yield the conclusion for the main theorem only if the
given relations between β1, β2, and c1 could be established. While it is not clear whether or not
such inequalities should hold, wewill use these values to comparewith anotherminimization
problem. Namely, set

N−
∗ = N−

1 ∩N−
2 =

{
u = u+ − u− ∈ N : u+,−u− ∈ N−} ⊂ N− (4.4)

and define

c2 = inf
u∈N−∗

I(u). (4.5)

It is clear that c2 ≥ c1. Since I satisfies (PS)c condition only locally, we need the following
upper bound for c2. Recall that eN = (0, 0, . . . , 0, 1) ∈ R

N , en = (0, 0, . . . , 0, 1) ∈ R
n andwk(x) =

w(x − keN) where k > 1 and w is the ground state solution of problem (2.6).



Boundary Value Problems 15

Lemma 4.2. Assume (a1), (a3) and (f1)–(f3) hold. For any fixed k > 1, there exist s > 0, t > 0
such that

su1 − twk ∈ N−
∗ , (4.6)

and for k large,

c2 < sup
s,t≥0

I(su1 − twk) < c1 + S∞. (4.7)

Proof. To prove (4.6), it suffices to show that there exist s > 0 and t > 0 such that

s(u1 − twk)
+ ∈ N−, s(u1 − twk)

− ∈ N−. (4.8)

To this purpose, let

t1 = min
Ω

u1

wk
, t2 = max

Ω

u1

wk
. (4.9)

For t ∈ (t1, t2), denote by s+(t) and s−(t) the positive values given by Lemma 3.1 according to
which we have

s+(t)(u1 − twk)+ ∈ N−, −s−(t)(u1 − twk)− ∈ N−. (4.10)

Note that s+(t) and s−(t) are continuous with respect to t satifying

lim
t→ t+1

s+(t) = t+
(
(u1 − t1wk)+

)
< +∞, lim

t→ t−2
s+(t) = +∞,

lim
t→ t+1

s−(t) = +∞, lim
t→ t−2

s−(t) = t+
(−(u1 − t2wk)−

)
< +∞.

(4.11)

Therefore, by the continuity of s±(t), we can find t0 ∈ (t1, t2) such that s+(t0) = s−(t0) = s0 > 0.
This gives (4.8)with t = t0 and s = s0.

To prove (4.7), we only need to estimate I(su1 − twk) for s ≥ 0 and t ≥ 0. First, it is
obvious that the structure of I guarantees the existence of r0 > 0 (independent of k large)
such that I(su1 − twk) ≤ c1 < c1 + S∞, for all s2 + t2 ≥ r20 . On the other hand, for s2 + t2 ≤ r20 ,
since I is continuous inH1

0(Ω), there exists t ∈ (0, r0) small enough such that

I(su1 − twk) < I(u1) + I∞(w) = c1 + S∞, ∀ s2 + t2 ≤ r20 , t < t. (4.12)
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At this point, we find large k0 ≥ 1, such that I(su1 − twk) < c1 + S∞ holds for all s2 + t2 ≤ r20
and t ≥ t:

I(su1 − twk) =
1
2
‖su1 − twk‖2 − 1

p

∫
a(x)|su1 − twk|p −

∫
f(su1 − twk)

=
(
1
2
‖su1‖2 − 1

p

∫
a(x)|su1|p −

∫
fsu1

)
+
(
1
2
‖twk‖2 − 1

p

∫
|twk|p

)

− st

∫
(∇u1∇wk + u1wk) − 1

p

∫ (
a(x)|su1 − twk|p − a(x)|su1|p − |twk|p

)

+
∫

ftwk

= I(su1) + I∞(twk) − st

∫
u1w

p−1
k +

1
p

∫
a(x)

(|su1|p + |twk|p − |su1 − twk|p
)

− 1
p

∫
(a(x) − a∞)|twk|p + t

∫
ftwk.

(4.13)

By (4.13) and the following elementary inequality:

∣∣α + β
∣∣p ≥ |α|p + ∣∣β∣∣p − C5

(
|α|p−1∣∣β∣∣ + |α|∣∣β∣∣p−1), ∀ α, β ∈ R, p > 1, (4.14)

where C5 is some positive constant, we have

sup
s2+t2≤r20 , s≥0, t≥t

I(su1 − twk) = sup
0≤s≤r0, t≤t≤r0

I(su1 − twk)

≤ sup
s≥0

I(su1) + sup
t≥0

I∞(twk) +
‖a‖∞
p

C5r
p−1
0

∫ (
u
p−1
1 wk + u1w

p−1
k

)

− t
p

p

∫
(a(x) − a∞)wp

k
+ r0

∫
fwk.

(4.15)

Without loss of generality, we may assume R0 = R, and ε ∈ (0, δ0) where R0, R and δ0

are given in (f3) and (a3), respectively.
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(i) First, by the Hölder inequality and (2.9),

∫
ΩR0

u
p−1
1 wk ≤

(∫
ΩR0

u
p

1

)(p−1)/p(∫
ΩR0

w
p

k

)1/p

≤ C6

(∫
ω

∫
{z:|z|≤R0}

φp(y)e−p√1+μ1−ε|z+ken|dy dz

)1/p

≤ C7e
−
√

1+μ1−εk.

(4.16)

From (2.9), (2.10), and applying Lemma 3.8, there exists a k1 such that for k ≥ k1

∫
Ω\R0

u
p−1
1 wk ≤ C8

∫
{z:|z|≥R0}

e−(p−1)
√

1+μ1−ε|z|e−
√

1+μ1−ε|z+ken|dz

≤ C9e
−
√

1+μ1−εk.

(4.17)

Similarly, we also obtain

∫
ΩR0

w
p−1
k

u1 ≤ C10e
−(p−1)

√
1+μ1−εk,

∫
ΩR0

|a(x) − a∞|wp

k
≤ C11e

−p
√

1+μ1−εk,

∫
ΩR0

∣∣f(x)∣∣wk ≤ C12e
−
√

1+μ1−εk,

(4.18)

and there exists a k2 ≥ k1 such that for k ≥ k2

∫
Ω\R0

w
p−1
k u1 ≤ C13e

−
√

1+μ1−εk. (4.19)

(ii) Since a(x) satisfies assumption (a3) and by Lemma 3.8, there exists a k3 ≥ k2 such
that for k ≥ k3,

∫
Ω\ΩR0

(a(x) − a∞)wp

k ≥ C14e
−
√
1+μ1−δ0k. (4.20)

By (f3), (2.9), and Lemma 3.8, there exists a k4 ≥ k3 such that for k ≥ k4,

∫
Ω\R0

fwk ≤ C10

∫
{z:|z|≥R0}

e−
√

1+μ1+ε0|z|e−
√

1+μ1−ε|z+ken|dz

≤ C11e
−
√

1+μ1−εk.

(4.21)
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(iii) Note that the constants Ci (5 ≤ i ≤ 11) in (i), (ii) are independent of k. Thus, by (i),
(ii), 2 < p < 2N/(N − 2) and let ε = δ0/2, we can find a k0 ≥ k4 such that for k ≥ k0,

‖a‖∞
p

C5r
p−1
0

∫ (
u
p−1
1 wk + u1w

p−1
k

)
− t

p

p

∫
(a(x) − a∞)wp

k + r0

∫
fwk < 0. (4.22)

Combining (4.15) and (4.22), we obtain that there exists a k0 ≥ k4 such that for
k ≥ k0,

sup
s2+t2≤r20 , s≥0, t≥t

I(su1 − twk) < sup
s≥0

I(su1) + sup
t≥0

I∞(twk) = c1 + S∞. (4.23)

This completes the proof of Lemma 4.2.

Proposition 4.3. Assume (a1), (a2), (f1) and (f2) hold. If β1 ≥ c1 and β2 ≥ c1, then the
minimization problem c2 = infN−∗ I(u) attains its infimum at u2 ∈ N−

∗ which defines a changing
sign critical point of I.

Proof. It is obvious that N−
∗ is closed. Exactly as in the proof of [6, Proposition 3.2], by means

of Ekeland’s principle, we derive a (PS)c2 -sequence {un} ⊂ N−
∗ for I. In particular, we have

0 < b1 ≤ ‖u±
n‖ ≤ b2, for some constants b1 and b2. Thus, we can take a subsequence, also

denoted by {un}, such that u±
n ⇀ u± weakly in H1

0(Ω). We start by showing that u± /≡ 0.
Indeed, if by contradiction we assume, for instant, that u+ ≡ 0, then we can deduce

that

‖u+
n‖2 −

∫
a(x)|u+

n|p = o(1). (4.24)

On the other hand,

I(u+
n) =

1
2
‖u+

n‖2 −
1
p

∫
a(x)|u+

n|p −
∫

fu+
n =

1
2
‖u+

n‖2 −
1
p

∫
a(x)|u+

n|p + o(1). (4.25)

By (4.24) and ‖u+
n‖ ≥ b1 > 0, we may assume that

‖u+
n‖2 −→ b,

∫
a(x)|u+

n|p −→ b. (4.26)

Using the argument in the proof of Proposition 3.5, by (2.7), (4.24), and (4.25), we can deduce
that b ≥ Sp/(p−2) and

I(u+
n) =

(
1
2
− 1
p

)
b + o(1) ≥

(
1
2
− 1
p

)
Sp/(p−2) + o(1) = S∞ + o(1). (4.27)

However, by Lemma 4.2, I(u+
n) = c2 − I(−u−

n)+o(1) ≤ c2 −c1 +o(1); that is, limn→∞I(u+
n) = c2 −

c1 < S∞ which contradicts (4.27). A similar argument applies to u−. Therefore, u2 = u+−u− /≡ 0
is a weak solution of problem (1.2) changing sign and u2 ∈ N, I(u2) ≥ c0.
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Set u+
n = u+ + v+

n and u−
n = u− + v−

n with v±
n ⇀ 0 weakly in H1

0(Ω). Note that

∥∥v±
n

∥∥2 −
∫

a(x)
∣∣v±

n

∣∣p = o(1). (4.28)

In view of Proposition 3.9 and Lemma 4.2, we also have

lim
n→∞

(
I(v+

n) + I
(
v−
n

))
= lim

n→∞
I(vn) = lim

n→∞
I(un) − I(u2)

≤ c2 − c0 < c1 + S∞ − c0 < 2S∞.
(4.29)

Therefore, we must have

min
{
lim
n→∞

I(v+
n), limn→∞

I
(−v−

n

)}
< S∞. (4.30)

Without loss of generality, we suppose

lim
n→∞

I(v+
n) < S∞. (4.31)

By (4.24), we have

I(v+
n) =

1
2
‖v+

n‖2 −
1
p

∫
a(x)|v+

n |p + o(1). (4.32)

We claim that limn→∞‖v+
n‖2 = 0. Indeed, we assume {v+

n} is bounded below, as above, (4.28)
and (4.32) imply I(v+

n) ≥ S∞ + o(1), contradicting (4.31). In the same way, if limn→∞I(−v−
n) <

S∞, we can also prove limn→∞‖v−
n‖2 = 0. Hence we have limn→∞‖v+

n‖2 = 0 or limn→∞‖v−
n‖2 =

0; that is, u2 = u+ − u− ∈ N−
1 or u2 = u+ − u− ∈ N−

2 . By assumptions β1 ≥ c1 and β2 ≥ c2, we
conclude that I(u2) ≥ c1.

If we write un = u2 +wn with wn ⇀ 0 weakly in H1
0(Ω), we have

‖wn‖2 −
∫

a(x)|wn|p = o(1),

lim
n→∞

I(un) − I(u2) = lim
n→∞

(
1
2
‖wn‖2 − 1

p

∫
a(x)|wn|p

)

= lim
n→∞

(
1
2
− 1
p

)
‖wn‖2.

(4.33)

Furthermore, by Lemma 4.2, we have

lim
n→∞

I(un) − I(u2) = c2 − I(u2) ≤ c2 − c1 < S∞. (4.34)
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We claim that limn→∞‖wn‖2 = 0. Indeed, we assume {wn} is bounded below, as above, (4.33)
imply I(wn) ≥ S∞ +o(1), contradicting (4.34). Consequently, un → u2 strongly inH1

0(Ω) and
I(u2) = c2.

The Proof of Theorems 1.2–1.4

The conclusion of Theorem 1.2 follows immediately from Theorem 1.2 and Propositions 4.1
and 4.3. With the same argument, we also have that Theorems 1.3 and 1.4 hold for Ω = R

N .
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[11] F. Cı̂rstea and V. Rădulescu, “Multiple solutions of degenerate perturbed elliptic problems involving
a subcritical Sobolev exponent,” Topological Methods in Nonlinear Analysis, vol. 15, no. 2, pp. 283–300,
2000.
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