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1. Introduction

Consider the following fourth order m-point boundary value problem (BVP, for short)

u(4)(t) = f
(
u(t), u′′(t)

)
, t ∈ (0, 1)

u′(0) = 0, u(1) =
m−2∑

i=1

αiu
(
ηi
)

u′′′(0) = 0, u′′(1) =
m−2∑

i=1

αiu
′′(ηi

)
,

(1.1)

where f : R × R → R is a given sign-changing continuous function, m ≥ 3, ηi ∈ (0, 1), and
αi > 0 for i = 1, . . . , m − 2 with

m−2∑

i=1

αi < 1. (1.2)
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Multi-point boundary value problems for ordinary differential equations arise in
different areas of applied mathematics and physics. The existence of solutions of the second
order multi-point boundary value problems has been studied by many authors and the
methods used are the nonlinear alternative of Leray-Schauder, coincidence degree theory,
fixed point theorems in cones and global bifurcation techniques (see [1–9], and the references
therein). In [5], Ma investigated the existence and multiplicity of nodal solutions for

u
′′
(t) + f(u(t)) = 0, t ∈ (0, 1);

u′(0) = 0, u(1) =
m−2∑

i=1

αiu
(
ηi
) (1.3)

when

ηi ∈ Q(i = 1, 2, . . . , m − 2) with 0 < η1 < η2 < · · · < ηm−2 < 1, (1.4)

and αi > 0 for i = 1, . . . , m − 2 satisfying (1.2). He obtained some results on the spectrum of
the linear operator corresponding to (1.1). It should be pointed out that the main tool used in
[5] is results on bifurcation coming from the trivial solutions and we note no use was made
of global results on bifurcation from infinity.

Recently [10] Wei and Pang studied the existence and multiplicity of nontrivial
solutions for the fourth order m-point boundary value problems:

u(4)(t) = f
(
u(t), u

′′
(t)

)
, t ∈ (0, 1)

u(0) = 0, u(1) =
m−2∑

i=1

αiu
(
ηi
)

u
′′
(0) = 0, u

′′
(1) =

m−2∑

i=1

αiu
′′(
ηi
)
,

(1.5)

where f : R × R → R is a given sign-changing continuous function, m ≥ 3, ηi ∈ (0, 1), and
αi > 0 for i = 1, . . . , m − 2 satisfies (1.2).

Motivated by [5, 10], in this paper we consider the existence and multiplicity of nodal
solutions for BVP (1.1). The method used here is Rabinowitz’s global bifurcation theorem. To
the best of our best knowledge, only [10] seems to have considered the existence of nontrivial
or positive solutions of the nonlinear multi-point boundary value problems for fourth order
differential equations. As in [5, 10]we suppose (1.2) is satisfied throughout.

The paper is organized as follows. Section 2 gives some preliminaries. Section 3 is
devoted to the existence of multiple solutions for BVP (1.1). To conclude this section we give
some notation and state three lemmas, which will be used in Section 3. Following the notation
of Rabinowitz, let E be a real Banach space and L : E → E be a compact linear map. If there
exists μ ∈ R = [0,+∞) and 0/=v ∈ E such that v = μLv, μ is said to be a real characteristic
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value of L. The set of real characteristic values of L will be denoted by σ(L). The multiplicity
of μ ∈ σ(L) is

dim
∞⋃

j=1

N
(
(I − μL)j

)
, (1.6)

where N(A) denotes the null space of A. Suppose that H : R × E → E is compact and
H(λ, u) = o(‖u‖) at u = 0 uniformly on bounded λ intervals. Then

u = λLu +H(λ, u) (1.7)

possesses the line of trivial solutions Θ = {(λ, 0) | λ ∈ R}. It is well known that if μ ∈ R, a
necessary condition for (μ, 0) to be a bifurcation point of (1.7) with respect to Θ is that μ ∈
σ(L). If μ is a simple characteristic value of L, let v denote the eigenvector of L corresponding
to μ normalized so ‖v‖ = 1. By Σ we denote the closure of the set of nontrivial solutions of
(1.7). A component of Σ is a maximal closed connected subset. It was shown in (Rabinowitz
[11, Theorems 1.3, 1.25, 1.27]), the following.

Lemma 1.1. If μ ∈ σ(L) is simple, then Σ contains a component Cμ which can be decomposed into
two subcontinua C+

μ, C
−
μ such that for some neighborhood B of (μ, 0),

(λ, u) ∈ C+
μ

(
C−

μ

)
∩ B, (λ, u)/=

(
μ, 0

)
(1.8)

implies (λ, u) = (λ, αv +w) where α > 0(α < 0) and |λ − μ| = o(1), ‖w‖ = o(|α|) at α = 0.
Moreover, each of C+

μ, C
−
μ either

(i) meets infinity in Σ, or
(ii) meets (μ̂, 0) where μ/= μ̂ ∈ σ(L), or
(iii) contains a pair of points (λ, u), (λ,−u), u/= 0.

The following are global results for (1.7) on bifurcation from infinity (see, Rabinowitz
[9, Theorem 1.6 and Corollary 1.8]).

Lemma 1.2. Suppose L is compact and linear,H(λ, u) is continuous on R × E,H(λ, u) = o(‖u‖) at
u = ∞ uniformly on bounded λ intervals, and ‖u‖2H(λ, u/‖u‖2) is compact. If μ ∈ σ(L) is of odd
multiplicity, then Σ possesses an unbounded component Dμ which meets (μ,∞). Moreover if Λ ⊂ R

is an interval such that Λ ∩ σ(L) = {μ} and ℘ is a neighborhood of (μ,∞) whose projection on R lies
in Λ and whose projection on E is bounded away from 0, then either

(i)Dμ \ ℘ is bounded in R × E in which case Dμ \ ℘ meets Θ = {(λ, 0) | λ ∈ R} or
(ii)Dμ \ ℘ is unbounded.
If (ii) occurs and Dμ \ ℘ has a bounded projection on R, then Dμ \ ℘ meets (μ̂,∞) where

μ/= μ̂ ∈ σ(L).

Lemma 1.3. Suppose the assumptions of Lemma 1.2 hold. If μ ∈ σ(L) is simple, then Dμ can be
decomposed into two subcontinua D+

μ , D
−
μ and there exists a neighborhood I ⊂ ℘ of (μ,∞) such that

(λ, u) ∈ D+
μ(D

−
μ) ∩ I and (λ, u)/= (μ,∞) implies (λ, u) = (λ, αv + w) where α > 0(α < 0) and

|λ − μ| = o(1), ‖w‖ = o(|α|) at |α| = ∞.



4 Boundary Value Problems

2. Preliminaries

Let X = C[0, 1] with the norm ‖u‖ = maxt∈[0,1]|u(t)|, Y = {u ∈ C1[0, 1] : u′(0) = 0, u(1) =∑m−2
i=1 αiu(ηi)} with the norm ‖u‖1 = max{‖u‖, ‖u′‖}, Z = {u ∈ C2[0, 1] : u′(0) = 0, u(1) =∑m−2
i=1 αiu(ηi)} with the norm ‖u‖2 = max{‖u‖, ‖u′‖, ‖u′′ ‖}. Then X, Y , and Z are Banach

spaces.
For any C1 function u, if u(t0) = 0, then t0 is a simple zero of u if u′(t0)/= 0. For any

integer k ∈ N and any ν ∈ {±}, as in [6], define sets Tν
k ⊂ Z consisting of the set of functions

u ∈ Z satisfying the following conditions:

(i) u′(0) = 0, νu(0) > 0 and u′(1)/= 0;

(ii) u′ has only simple zeros in (0, 1), and has exactly k − 1 such zeros;

(iii) u has a zero strictly between each two consecutive zeros of u′.

Note T−
k = −T+

k and let Tk = T−
k ∪ T+

k . It is easy to see that the sets T−
k and T+

k are disjoint
and open in Z. Moreover, if u ∈ Tν

k
, then u has at least k − 2 zeros in (0, 1), and at most k − 1

zeros in (0, 1].
LetE = R×Y under the product topology. As in [12], we add the points {(λ,∞) : λ ∈ R}

to the space E. Let Φ+
k
= R × T+

k
, Φ−

k
= R × T−

k
, and Φk = R × Tk.

We first convert BVP (1.1) into another form. Suppose u(t) is a solution of BVP (1.1).
Let v(t) = −u′′

(t). Notice that

u′′(t) + v(t) = 0, t ∈ I;

u′(0) = 0, u(1) =
m−2∑

i=1

αiu
(
ηi
)
.

(2.1)

Thus u(t) can be written as

u(t) = Lv(t), (2.2)

where the operator L is defined by

Lv(t) :=
∫1

0
H(t, s)v(s)ds, ∀v ∈ Y, (2.3)

where

H(t, s) = G(t, s) +
∑m−2

i=1 αiG
(
ηi, s

)

1 −∑m−2
i=1 αiηi

,

G(t, s) =

⎧
⎨

⎩

1 − t, 0 ≤ s ≤ t ≤ 1;

1 − s, 0 ≤ t ≤ s ≤ 1.

(2.4)
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Therefore we obtain the following equivalent form of (1.1)

v′′(t) + f((Lv)(t),−v(t)) = 0, t ∈ (0, 1);

v′(0) = 0, v(1) =
m−2∑

i=1

αiv
(
ηi
)
.

(2.5)

For the rest of this paper we always suppose that the initial value problem

v′′(t) + f((Lv)(t),−v(t)) = 0, t ∈ (0, 1);

v(t0) = v′(t0) = 0
(2.6)

has the unique trivial solution v ≡ 0 on [0, 1] for any t0 ∈ [0, 1]; in fact some suitable
conditions such as a Lipschitz assumption or f ∈ C1 guarantee this.

Define two operators on Y by

(Av)(t) := (LFv)(t), (Fv)(t) := f((Lv)(t),−v(t)), t ∈ I, v ∈ Y. (2.7)

Then it is easy to see the following lemma holds.

Lemma 2.1. The linear operator L and operator A are both completely continuous from Y to Y and

‖Lv‖1 ≤ M‖v‖ ≤ M‖v‖1, ∀v ∈ Y, (2.8)

whereM = max{1, (1/8)(1 +∑m−2
i=1 αi/(1 −

∑m−2
i=1 αiηi))}.

Moreover, u ∈ C4[0, 1] is a solution of BVP (1.1) if and only if v = −u′′
is a solution of the

operator equation v = Av.

Let the function Γ(s) be defined by

Γ(s) = cos s −
m−2∑

i=1

αi cosηis, s ∈ R. (2.9)

Then we have the following lemma.

Lemma 2.2. (i) For each k ≥ 1, Γ(s) has exactly one zero sk ∈ Ik := ((k − 1)π, kπ), so

s1 < s2 < · · · < sk −→ +∞ (k −→ +∞); (2.10)

(ii) the characteristic value of L is exactly given by μk = s2
k
, k = 1, 2, . . ., and the eigenfunction

φk corresponding to μk is φk(t) = cos skt;
(iii) the algebraic multiplicity of each characteristic value μk of L is 1;
(iv)φk ∈ T+

k
for k = 1, 2, 3, . . ., and φ1 is strictly positive on (0, 1).
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Proof. From [5] and by a similar analysis as in the proof of [6, Lemma 3.3] we obtain (i) and
(ii).

Now we assert (iii) holds. Suppose, on the contrary, there exists y ∈ Y such that (I −
μkL)y = μ−1

k φk. Then y ∈ Z and

−y′′ − s2ky = cos skt. (2.11)

From y′(0) = 0 we know the general solution of this differential equation is

y = C cos skt − 1
2sk

t sin skt. (2.12)

From (i) and (ii) of this lemma, C cos skt satisfies the boundary condition. Thus

cos sk =
m−2∑

i=1

αi cosηisk, sin sk =
m−2∑

i=1

αiηi sinηisk. (2.13)

Then, by (1.2),

1 =

(
m−2∑

i=1

αi cosηisk

)2

+

(
m−2∑

i=1

αiηi sinηisk

)2

≤
m−2∑

i,j=1

αiαj

(∣∣cosηisk cosηjsk
∣∣ +

∣∣sinηisk sinηjsk
∣∣)

≤
(

m−2∑

i=1

αi

)2

< 1,

(2.14)

a contradiction. Thus the algebraic multiplicity of each characteristic value μk of L is 1.
Finally, from sk ∈ ((k − 1)π, kπ) and s1 ∈ (0, π/2), it is easy to see that (iv) holds.

Lemma 2.3. For d = (d1, d2) ∈ R
+ × R

+ \ {(0, 0)}, define a linear operator

Ldv(t) =
(
d1L

2 + d2L
)
v(t), ∀t ∈ I, v ∈ Y, (2.15)

where L is defined as in (2.3). Then the generalized eigenvalues of Ld are simple and are given by

0 < λ1(Ld) < λ2(Ld) < · · · < λk(Ld) −→ +∞ (k −→ +∞), (2.16)

where

λk(Ld) =
μ2
k

d1 + d2μk
. (2.17)
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The generalized eigenfunction corresponding to λk(Ld) is

φk(t) = cos skt, (2.18)

where μk, sk, φk are as in Lemma 2.2.

Proof. Suppose there exist λ and v /= 0 such that v = λLdv. Set u(t) = Lv(t). Then from (2.2)–
(2.7) and (2.15) it is easy to see that u/= 0 and

u(4)(t) = λ
(
d1u(t) − d2u

′′
(t)

)
, t ∈ (0, 1);

u′(0) = 0, u(1) =
m−2∑

i=1

αiu
(
ηi
)
;

u”’(0) = 0, u
′′
(1) =

m−2∑

i=1

αiu
′′(
ηi
)
.

(2.19)

Denote L−1u = −u′′
for u ∈ Z. Then there exist two complex numbers r1 and r2 such

that

u(4)(t) − λ
(
d1u(t) − d2u

′′
(t)

)
=
(
L−1 − r2I

)(
L−1 − r1I

)
u(t) = 0. (2.20)

Now if there exists some ri(i = 1, 2) such that

(
L−1 − riI

)
u(t) = 0, (2.21)

then by Lemma 2.2 we know ri = s2k = μk for some k ∈ N, and consequently

u(t) = cos skt (2.22)

is a nontrivial solution. Substituting (2.22) into (2.19), we have

λ =
μ2
k

d1 + d2μk
. (2.23)

On the other hand, suppose, for example,

(
L−1 − r1I

)
u(t)/= 0,

(
L−1 − r2I

)(
L−1 − r1I

)
u(t) = 0. (2.24)
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Let w(t) := (L−1 − r1I)u(t). Then (L−1 − r2I)w(t) = 0. Reasoning as previously
mentioned, we have r2 = s2

k
for some k ∈ N, and consequently w(t) = a cos skt(a/= 0) is a

nontrivial solution. Therefore,

(
L−1 − r1I

)
u(t) = a cos skt. (2.25)

If r1 = s2k, then the general solution of the differential equation (2.25), satisfying u′(0) =
0, is

u(t) = C cos skt − a

2sk
t sin skt, (2.26)

which is similar to (2.12). Reasoning as in the proof of Lemma 2.2 we can get a contradiction.
Thus r1 /= s2k and the general solution of (2.25), satisfying u′(0) = 0, is

u(t) = ũ(t) +
a cos skt
s2
k
− r1

, (2.27)

where ũ(t) is the general solution of homogeneous differential equation corresponding to
(2.25)

(
L−1 − r1I

)
u(t) = 0. (2.28)

Notice the term a cos skt/(s2k − r1) in (2.27) satisfies the boundary condition of (1.1) at
t = 1, so ũ(t) also satisfies

ũ′(0) = 0, ũ(1) =
m−2∑

i=1

αiũ
(
ηi
)
. (2.29)

Therefore, by Lemma 2.2 we know ũ(t) = C cos sjt for some j ∈ N, and consequently

r1 = s2j /= s2k, u(t) = C cos sjt +
a cos skt
s2k − s2j

. (2.30)

By substituting this into (2.19), we have

aλ
(
d1 + d2μk

)
= aμ2

k, Cλ
(
d1 + d2μj

)
= Cμ2

j . (2.31)

Since μj /=μk, if there exists some λ such that (2.31) holds, then

d1 + d2μk

d1 + d2μj
=

μ2
k

μ2
j

, (2.32)
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which implies

d1d2 /= 0, d1

(
1
μk

+
1
μj

)

= −d2, (2.33)

a contradiction with d1 > 0 and d2 > 0.
Consequently, (2.24) does not hold. This together with (2.20)–(2.23) and Lemma 2.2

guarantee that the generalized eigenvalues of Ld are given by

0 < λ1(Ld) < λ2(Ld) < · · · < λk(Ld) −→ +∞ (k −→ +∞), (2.34)

where λk(Ld) = μ2
k/(d1 + d2μk). The generalized eigenfunction corresponding to λk(Ld) is

φk(t) = cos skt.
Now we are in a position to show the generalized eigenvalues of Ld are simple.
Clearly, from abovewe know for λk := λk(Ld), (I−λkLd)φk = 0 and dimN(I−λkLd) = 1.

Suppose there exists an v ∈ C2 such that

(I − λkLd)v =
1
μk

φk(t). (2.35)

This together with (2.3) and (2.15) guarantee that v ∈ Y . If we let u(t) = (Lv)(t) as above,
then we have

u(4)(t) − λk
(
d1u(t) − d2u

′′
(t)

)
= cos skt, t ∈ (0, 1), (2.36)

u′(0) = 0, u(1) =
m−2∑

i=1

αiu
(
ηi
)
; u”’(0) = 0, u

′′
(1) =

m−2∑

i=1

αiu
′′(
ηi
)
. (2.37)

Consider the following homogeneous equation corresponding to (2.36):

u(4)(t) − μ2
k

d1 + d2μk

(
d1u(t) − d2u

′′
(t)

)
= 0. (2.38)

The characteristic equation associated with (2.38) is

λ4 − μ2
k

d1 + d2μk

(
d1 − d2λ

2
)
= 0. (2.39)

Then there exists a real number η such that

(
λ2 + μk

)(
λ2 − η

)
= λ4 − μ2

k

d1 + d2μk

(
d1 − d2λ

2
)
= 0. (2.40)

Notice that −ημk = −d1μ
2
k
/(d1 + d2μk) < 0 if d1 > 0. So η > 0 if d1 > 0, and η = 0 if d1 = 0.
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First we consider the case d1 > 0. In this case the general solution of (2.38) is

c1e
√
ηt + c2e

−√ηt + c3 cos skt + c4 sin skt. (2.41)

After computation we obtain that the general solution of (2.36) is

u(t) = c1e
√
ηt + c2e

−√ηt + c3 cos skt + c4 sin skt + at sin skt, (2.42)

where a = −(d1 + d2μk)/2sk(2d1μk + d2μ
2
k
). From boundary condition u′(0) = u”’(0) = 0 in

(2.37) it follows that

√
η(c1 − c2)skc4 = 0;

η
√
η(c1 − c2) − s3kc4 = 0.

(2.43)

By η > 0 and μk > 0, we know c1 − c2 = 0 and c4 = 0. Then (2.42) can be rewritten as

u(t) = c1
[
e
√
ηt + e−

√
ηt] + c3 cos skt + at sin skt. (2.44)

Notice that the term c3 cos skt satisfies (2.37). From the boundary condition

u(1) =
m−2∑

i=1

αiu
(
ηi
)
, u

′′
(1) =

m−2∑

i=1

αiu
′′(
ηi
)
,

(t sin skt)
′′
= 2sk cos skt − s2kt sin skt

(2.45)

we have

c1
[
e
√
η + e−

√
η] + a sin sk =

m−2∑

i=1

αi

[
c1
(
e
√
ηηi + e−

√
ηηi

)
+ aηi sin skηi

]
, (2.46)

c1η
[
e
√
η + e−

√
η] − as2k sin sk =

m−2∑

i=1

αi

[
c1η

(
e
√
ηηi + e−

√
ηηi

) − aηis
2
k sin skηi

]
. (2.47)

Multiply (2.46) by s2
k
and then add to (2.47) to obtain

c1
(
η + s2k

)[
e
√
η + e−

√
η] = c1

(
η + s2k

)m−2∑

i=1

αi

(
e
√
ηηi + e−

√
ηηi

)
. (2.48)

On the other hand, from (1.2) it can be seen that

e
√
η + e−

√
η >

m−2∑

i=1

αi

(
e
√
ηηi + e−

√
ηηi

)
. (2.49)



Boundary Value Problems 11

This together with (2.48) guarantee that c1 = 0. Therefore, (2.42) reduces to

u(t) = c3 cos skt + at sin skt. (2.50)

Similar to (2.12), a contradiction can be derived.
Next consider the case d1 = 0. Then η = 0 from above. In this case the general solution

of (2.38) is

c1 + c2t + c3 cos skt + c4 sin skt. (2.51)

By a similar process, one can easily get a contradiction.
To sum up, the generalized eigenvalues of Ld are simple, and the proof of this lemma

is complete.

3. Main Results

We now list the following hypotheses for convenience.

(H1) There exists a = (a1, a2) ∈ R
+ × R

+ \ {(0, 0)} such that

f
(
x, y

)
= a1x − a2y + o

(∣∣(x, y
)∣∣), as

∣∣(x, y
)∣∣ −→ 0, (3.1)

where (x, y) ∈ R × R, and |(x, y)| := max{|x|, |y|}.
(H2) There exists b = (b1, b2) ∈ R

+ × R
+ \ {(0, 0)} such that

f
(
x, y

)
= b1x − b2y + o

(∣∣(x, y
)∣∣), as

∣∣(x, y
)∣∣ −→ ∞. (3.2)

(H3) There exists R > 0 such that

∣
∣f
(
x, y

)∣∣ <
R

M
, for

(
x, y

) ∈ {(
x, y

)
: |x| ≤ MR,

∣
∣y

∣∣ ≤ R
}
, (3.3)

where M is defined as in Lemma 2.1.

(H4) There exist two constants r1 < 0 < r2 such that f(x,−r1) ≥ 0 and f(x,−r2) ≤ 0
for x ∈ [−Mr,Mr], and f(x,−y) satisfies a Lipschitz condition in y for (x, y) ∈
[−Mr,Mr] × [r1, r2], where r = max{|r1|, r2}.

Now we are ready to give our main results.

Theorem 3.1. Suppose (H1)-(H2) hold. Suppose there exists two integers i0 ≥ 0 and k > 0 such that
either

μ2
i0+k

a1 + a2μi0+k
< 1 <

μ2
i0+1

b1 + b2μi0+1
(3.4)
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or

μ2
i0+k

b1 + b2μi0+k
< 1 <

μ2
i0+1

a1 + a2μi0+1
(3.5)

holds. Then BVP (1.1) has at least 2k nontrivial solutions.

Theorem 3.2. Suppose (H1) and (H2) hold and one of (H3) and (H4) hold. Suppose there exists two
integers i0 and j0 such that

μ2
i0

a1 + a2μi0

< 1,
μ2
j0

b1 + b2μj0

< 1. (3.6)

Then BVP(1.1) has at least 2(i0 + j0) solutions.

To set it up we first consider global results for the equation

v = λAv, (3.1λ)

on Y , where λ ∈ R, and the operator A is defined as in (2.7). Under the condition (H1), (3.1λ)
can be rewritten as

v = λLav +Ha(λ, v), (3.7)

hereHa(λ, v) = λAv−λLav, La is defined as in (2.12) (replacing dwith a). Obviously, by (H1)
and Lemma 2.1–2.3, it can be seen thatHa(λ, v) is o(‖v‖1) for v near 0 uniformly on bounded
λ intervals and La is a compact linear map on Y . A solution of (3.1λ) is a pair (λ, v) ∈ E. By
(H1), the known curve of solutions {(λ, 0) | λ ∈ R}will henceforth be referred to as the trivial
solutions. The closure of the set on nontrivial solutions of (3.1λ) will be denoted by Σ as in
Lemma 1.1.

IfHa(λ, v) ≡ 0, then (3.7) becomes a linear system

v = λLav. (3.8)

By Lemma 2.3, (3.8) possesses an increasing sequence of simple eigenvalues

0 < λ1 < λ2 < · · · < λk < · · · , with λk =
μ2
k

a1 + a2μk
as k −→ +∞. (3.9)

Any eigenfunction φk = cos skt corresponding to λk is in T+
k .

A similar analysis as in [6, Proposition 4.1] yields the following results.

Lemma 3.3. Suppose that (λ, v) is a solution of (3.1λ) and v /≡ 0. Then v ∈ ∪∞
i=1Ti.
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Lemma 3.4. Assume that (H1) holds and λk is defined by (3.9). Then for each integer k > 0 and each
ν = +, or −, there exists a continua Cν

k
of solutions of (3.1λ) in Φν

k
∪ {(λk, 0)}, which meets {(λk, 0)}

and ∞ in Σ.

Proof. Consider (3.7) as a bifurcation problem from the trivial solution. From Lemma 1.1
and condition (H1) it follows that for each positive integer k ∈ N, Σ contains a component
Ck ⊆ E = R × Y which can be decomposed into two subcontinua C+

k
, C−

k
such that for some

neighborhood B of (λk, 0),

(λ, v) ∈ C+
k

(
C−

k

) ∩ B, (λ, v)/= (λk, 0) (3.10)

imply (λ, v) = (λ, αφk +w), where α > 0(α < 0) and |λ − λk| = o(1), ‖w‖1 = o(|α|) at α = 0.
By (3.7) and the continuity of the operator A : Y → Z, the set Cν

k
lies in R ×Z and the

injection Cν
k → R × Z is continuous. Thus, Cν

k is also a continuum in R × Z, and the above
properties hold in R × Z.

Since Tk is open in Z and φk ∈ T+
k
, we know

v

α
= φk +

w

α
∈ T+

k (3.11)

for 0/=α sufficiently small. Then there exists ε0 > 0 such that for ε ∈ (0, ε0), we have

(λ, v) ∈ Φk,

(
Ck

{(λk, 0)}
)
∩ Bε ⊂ Φk, (3.12)

where Bε is an open ball in R × Z of radius ε centered at (λk, 0). It follows from the proof of
[6, Proposition 4.1] that

(λ, v) ∈ Ck ∩ (R × ∂Tk) =⇒ u = 0, (3.13)

which means Ck \ {(λk, 0)} ∩ ∂Φk = ∅. Consequently, Ck lies in Φk ∪ {(λk, 0)}.
Similarly we have that Cν

k lies in Φν
k ∪ {(λk, 0)} (ν = + or −).

Next we show alternative (ii) of Lemma 1.1 is impossible. If not, without loss of
generality, assume that C+

k
meets (λi, 0) with λk /=λi ∈ σ(La). Then there exists a sequence

(ξm, zm) ∈ C+
k with ξm → λi and zm → 0 asm → +∞. Notice that

zm = ξmLazm +H(ξm, zm). (3.14)

Dividing this equation by ‖zm‖1 and using Lemma 2.1 and H(ξm, zm) = o(‖zm‖1) as m →
+∞, we may assume without loss of generality that zm/‖zm‖1 → z as m → +∞. Thus from
(3.14) it follows that

z = λiLaz. (3.15)

Since z/= 0, by Lemmas 2.2 and 2.3, z belongs to T+
i or T−

i . By (3.1λ) and the continuity of the
operator A : Y → Z, from ‖zm − z‖1 → 0 it follows that ‖zm − z‖2 → 0. Notice that T+

i and
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T−
i are open in Z. Therefore, zm ∈ T+

i or T−
i for m sufficiently large, which is a contradiction

with zm ∈ T+
k
(m ≥ 1), i /= k. Hence alternative (ii) of Lemma 1.1 is not possible.

Finally it remains to show alternative (iii) of Lemma 1.1 is impossible. In fact, notice
that T−

k = −T+
k , and T−

k ∩ T+
k = ∅. If u ∈ T+

k , then −u ∈ T−
k . This guarantees that C

ν
k does not

contain a pair of points (λ, v), (λ,−v), v /= 0.
Therefore alternative (i) of Lemma 1.1 holds. This implies that for each integer k ∈ N

and each ν = +, or −, there exists a continua Cν
k of solutions of (3.1λ) in Φν

k ∪ {(λk, 0)}, which
meets {(λk, 0)} and ∞ in Σ.

Under the condition (H2), (3.1λ) can be rewritten as

v = λLbv +Hb(λ, v), (3.16)

here Hb(λ, v) = λAv − λLbv, Lb is defined as in (2.12) (replacing d with b).
Let h(x, y) := f(x, y) − b1x + b2y. Then from (H2) it follows that lim|(x,y)|→∞h(x, y)/

|(x, y)| = 0. Define a function

ĥ(r) := max
{∣∣h

(
x, y

)∣∣ :
∣∣(x, y

)∣∣ ≤ r
}
. (3.17)

Then ĥ(r) is nondecreasing and

lim
r→∞

ĥ(r)
r

= 0. (3.18)

Obviously, by (3.18) and Lemma 2.1, it can be seen that Hb(λ, v) is o(‖v‖1) for v near ∞
uniformly on bounded λ intervals and Lb is a compact linear map on Y .

Similar to (3.8), by Lemma 2.3, Lb possesses an increasing sequence of simple
eigenvalues

0 < λ1 < λ2 < · · · < λk < · · · , with λk =
μ2
k

b1 + b2μk
as k −→ +∞. (3.19)

Note φk = cos skt is an eigenfunction corresponding to λk. Obviously, it is in T+
k
.

Lemma 3.5. Assume that (H1)-(H2) holds. Then for each integer k > 0 and each ν = +, or −, there
exists a continua Dν

k
of Σ in Φν

k
∪ {(λk,∞)} coming from {(λk,∞)}, which meets (λk, 0) or has an

unbounded projection on R.

Proof. From (2.7), (3.16), and (3.18) it follows that Hb(λ, v) is continuous on E, Hb(λ, v) =
o(‖v‖1) at v = ∞ uniformly on bounded λ intervals. Moreover, as in the proof of [12, Theorem
2.4], one can see that ‖v‖21Hb(λ, v/‖v‖21) is compact. From Lemma 2.3 we know λk is a simple
characteristic value of Lb for each integer k ∈ N. Thus by Lemmas 1.2 and 1.3, Σ contains a
componentDk which can be decomposed into two subcontinuaD+

k
,D−

k
whichmeet {(λk,∞)}.

Now we show that for a smaller neighborhood I ⊂ ℘ of (λk,∞), (λ, v) ∈ D+
k
(D−

k
) ∩ I

and (λ, v)/= (λk,∞) imply that v ∈ T+
k
(T−

k
). In fact, by Lemma 1.3 we already know that there
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exists a neighborhood I ⊂ ℘ of (λk,∞) satisfying (λ, v) ∈ D+
k(D

−
k) ∩ I and (λ, v)/= (λk,∞)

imply (λ, v) = (λ, αvk +w)where α > 0(α < 0) and |λ − λk| = o(1), ‖w‖1 = o(|α|) at |α| = ∞.
As in the proof of Lemma 3.4,Dν

k is also a continuum inR×Z, and the above properties
hold in R × Z. Since Tν

k
is open in Z and w/α is smaller compared to φk ∈ T+

k
near α = +∞,

φk +w/α and therefore v = αφk +w ∈ T+
k
for α near +∞. Here and in the following the same

argument works if + is replaced by −.
Therefore,D+

k∩I ⊂ (R×T+
k )∪(λk,∞). Nowwe have two cases to consider, that is,D+

k \I
is bounded or unbounded. First suppose D+

k
\ I is bounded. Then there exists (λ, v) ∈ ∂D+

k

with v ∈ ∂T+
k
. If v /= 0, by Lemma 3.3 we know v ∈ Tν

j for some positive integer j /= k and
ν ∈ {+,−}. As in the proof of Lemma 3.4, we get a contradiction, which means v = 0. Thus
there exists a sequence (ξm, zm) ∈ D+

k with zm → v ≡ 0 as m → +∞. This together with (H1)
guarantee that (ξm, zm) satisfies (3.14).

As in the proof of Lemma 3.4, we may assume without loss of generality that
zm/‖zm‖1 → z and ξm → ξ asm → +∞. Then we have

z = ξLaz. (3.20)

Since z/= 0, ξ /= 0 is an eigenvalue of operator La. From this, (3.9), and (3.19) it follows that
ξ = λj for some positive integer j. Then by Lemma 2.3, z belongs to T+

j or T−
j . Notice that

‖zm − z‖1 → 0 and so ‖zm − z‖2 → 0 as in the proof of Lemma 3.4. Thus zm ∈ T+
j or T−

j for
m sufficiently large since T+

j and T−
j are open. This together with zm ∈ T+

k
(m ≥ 1) guarantee

that k = j. This means D+
k
meets (λk, 0) if D+

k
\ I is bounded.

Next suppose D+
k
\ I is unbounded. In this case we show D+

k
\ I has an unbounded

projection on R. If not, then there exists a sequence (ζm, ym) ∈ D+
k
\ I with ζm → ζ and

‖ym‖1 → +∞ as m → +∞. Let xm := ym/‖ym‖1,m ≥ 1. From the fact that

ym = ζmLbym +Hb

(
ζm, ym

)
(3.21)

it follows that

xm = ζmLbxm +
Hb

(
ζm, ym

)

∥∥ym

∥∥
1

. (3.22)

Notice that Lb : Y → Y is completely continuous. We may assume that there exists w ∈ Y
with ‖w‖1 = 1 such that ‖xm −w‖1 → 0 asm → +∞.

Letting m → +∞ in (3.22) and noticing Hb(ζm, ym)/‖ym‖1 → 0 as m → +∞ one
obtains

w = ζLbw. (3.23)

Since w/= 0, ζ /= 0 is an eigenvalue of operator Lb, that is, ζ = λk0 for some positive integer
k0 /= k. Then by Lemma 2.3 w belongs to T+

k0
or T−

k0
. Notice the fact that ‖xm −w‖1 → 0 and

so ‖xm −w‖2 → 0 as in the proof of Lemma 3.4. Thus xm ∈ T+
k0
or T−

k0
for m sufficiently large

since T+
k0

and T−
k0

are open. This is a contradiction with xm ∈ T+
k
(m ≥ 1). Thus D+

k
\ I has an

unbounded projection on R.
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Proof of Theorem 3.1. Suppose first that

μ2
i0+k

a1 + a2μi0+k
< 1 <

μ2
i0+1

b1 + b2μi0+1
. (3.24)

Using the notation of (3.9) and (3.19), this means λi0+k < 1 < λi0+1 and so from Lemma 2.3 we
know

λi0+1 < λi0+2 < · · · < λi0+k < 1 < λi0+1 < λi0+2 < · · · < λi0+k. (3.25)

Consider (3.7) as a bifurcation problem from the trivial solution. We need only show
that

Cν
i0+j

⋂
({1} × Y )/= ∅, j = 1, 2, . . . , k; ν = +,−. (3.26)

Suppose, on the contrary and without loss of generality, that

C+
i0+i

⋂
({1} × Y ) = ∅, for some i, 1 ≤ i ≤ k. (3.27)

By Lemma 3.4 we know that C+
i0+i

joins (λi0+i, 0) to infinity in Σ and (λ, v) = (0, 0) is the unique
solution of (3.1λ) (in which λ = 0) in E. This together with λi0+i < 1 guarantee that there exists
a sequence {(ζm, ym)} ⊂ C+

i0+i
such that ζm ∈ (0, 1) and ‖ym‖1 → ∞ as m → +∞. We may

assume that ζm → ζ ∈ [0, 1] as m → +∞. Let xm := ym/‖ym‖1, m ≥ 1, then (3.22) holds.
Similarly, we may assume that there exists w ∈ Y with ‖w‖1 = 1 such that ‖xm −w‖1 → 0
as m → +∞ and (3.23) holds. From the proof of Lemma 3.5 one can see ζ = λi0+i, which
contradicts λi0+i > 1. Thus (3.27) is not true, which means (3.26) holds.

Next suppose that

μ2
i0+k

b1 + b2μi0+k
< 1 <

μ2
i0+1

a1 + a2μi0+1
. (3.28)

This means

λi0+1 < λi0+2 < · · · < λi0+k < 1 < λi0+1 < λi0+2 < · · · < λi0+k. (3.29)

Consider (3.16) as a bifurcation problem from infinity. As above we need only to prove
that

Dν
i0+j

⋂
({1} × Y )/= ∅, j = 1, 2, . . . , k; ν = +,−. (3.30)

From Lemma 3.5, we know thatDν
i0+j

comes from {(λi0+j ,∞)}, meets (λi0+j , 0) or has an
unbounded projection on R. If it meets (λi0+j , 0), then the connectedness of Dν

i0+j
and λi0+j > 1
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guarantees that (3.30) is satisfied. On the other hand, ifDν
i0+j

has an unbounded projection on
R, notice that (λ, v) = (0, 0) is the unique solution of (3.1λ) (in which λ = 0) in E, so (3.30)
also holds.

Proof of Theorem 3.2. First suppose that (H3) holds. Then there exists ε > 0 such that

(1 + ε)
∣
∣f
(
x, y

)∣∣ <
R

M
, for

(
x, y

) ∈ {(
x, y

)
: |x| ≤ MR,

∣
∣y

∣
∣ ≤ R

}
. (3.31)

Let (λ, v) be a solution of (3.1λ) such that 0 ≤ λ < 1 + ε and ‖v‖1 ≤ R. Then by (2.7),
(3.1λ), (3.31) and Lemma 2.1 it is easy to see

‖v‖1 = λ‖Av‖1 = λ‖LFv‖1 ≤ λM‖Fv‖ = Mmax
t∈[0,1]

∣
∣λf((Lv)(t),−v(t))∣∣ < M

R

M
= R. (3.32)

Therefore,

Σ ∩
(
[0, 1 + ε] × ∂BR

)
= ∅. (3.33)

This together with (3.32) and Lemmas 3.4 and 3.5 implies that

Cν
k ∩

(
[0, 1 + ε] × BR

)
⊂ [0, 1 + ε] × BR, k = 1, 2, . . . , i0; (3.34)

Dν
j ∩

(
[0, 1 + ε] × ∂BR

)
= ∅, j = 1, 2, . . . , j0; (3.35)

where BR = {v ∈ Y | ‖v‖1 < R} and BR = {v ∈ Y | ‖v‖1 ≤ R}, Cν
k and Dν

j are obtained from
Lemmas 3.4 and 3.5, respectively.

SinceCν
k
is a unbounded component of solutions of (3.1λ) joining (λk, 0) in E, it follows

from (3.33) and (3.34) that Cν
k
crosses the hyperplane {1} × Y with (1, vν) such that ‖vν‖1 < R

(ν = + or −, k = 1, 2, . . . , i0). This means BVP (2.5) has 2i0 nontrivial solutions {vν
i }i01 in which

v+
1 and v−

1 are positive and negative solutions, respectively.
On the other hand, by (3.33), (3.35), and Lemma 3.5 one can obtain

Dν
j ∩

(
{1} ×

(
Y \ BR

))
/= ∅, j = 1, 2, . . . , j0. (3.36)

This means BVP (2.5) has 2j0 nontrivial solutions {wν
i }

j0
1 in whichw+

1 andw−
1 are positive and

negative solutions, respectively.
Now it remains to show this theorem holds when the condition (H4) is satisfied.
From the above we need only to prove that

(i) for (λ, v) ∈ Cν
i (ν = + or −, i = 1, 2, . . . , i0),

r1 < v(t) < r2, t ∈ [0, 1]. (3.37)
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(ii) for (λ, v) ∈ Dν
j (ν = + or −, j = 1, 2, . . . , j0), we have that either

max
t∈[0,1]

v(t) > r2, t ∈ [0, 1] (3.38)

or

min
t∈[0,1]

v(t) < r1, t ∈ [0, 1]. (3.39)

In fact, like in [13], suppose on the contrary that there exists (λ, v) ∈ Cν
i

⋃
Dν

j such that
either

max{v(t) : t ∈ [0, 1]} = r2 (3.40)

or

min{v(t) : t ∈ [0, 1]} = r1 (3.41)

for some i, j.
First consider the case max{v(t) : t ∈ [0, 1]} = r2. Then there exists t ∈ [0, 1] such that

v(t) = r2. Let

τ0 =: inf
{
t ∈

[
0, t

]
: v(s) ≥ for s ∈

[
t, t

]}
,

τ1 =: sup
{
t ∈

[
t, 1

]
: v(s) ≥ 0 for s ∈

[
t, t

]}
.

(3.42)

Then

max{v(t) : t ∈ [τ0, τ1]} = r2, (3.43)

0 ≤ v(t) ≤ r2, t ∈ [τ0, τ1]. (3.44)

Therefore, v(t) is a solution of the following equation

−v′′(t) = λf((Lv)(t),−v(t)), t ∈ (τ0, τ1) (3.45)

with v(τ0) = v(τ1) = 0 if 0 < τ0 < τ1 < 1 and v′(τ0) = 0 if τ0 = 0.
By (H4), there exists M ≥ 0 such that f(x,−y) + My is strictly increasing in y for

(x, y) ∈ [r1, r2] × [−Mr,Mr], where r = max{|r1|, r2}. Then

−v′′ + λMv = λ
(
f((Lv)(t),−v(t)) +Mv

)
, t ∈ (τ0, τ1). (3.46)
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Using (H4) and Lemma 2.1 again, we can obtain

− (r2 − v(t))
′′
+ λM(r2 − v(t))

= −λ
[
f((Lv)(t),−v(t)) +Mv(t) −Mr2

]

= −λ
[
f((Lv)(t),−v(t)) +Mv(t) −

(
f((Lv)(t),−r2) +Mr2

)]
− λf((Lv)(t),−r2)

≥ 0, t ∈ (τ0, τ1)

(3.47)

and if τ1 = 1, by (1.2)we know v(1) < r2. Therefore,

r2 − v(τ0) > 0, r2 − v(τ1) > 0 if 0 < τ0 < τ1 < 1;

(r2 − v(τ0))′ = 0 if τ0 = 0;

r2 − v(τ1) > 0 if τ1 = 1.

(3.48)

This together with (3.47) and the maximum principle [14] imply that r2 − v(t) > 0 in
[τ0, τ1], which contradicts (3.43).

The proof in the case min{v(t) : t ∈ [0, 1]} = r1 is similar, so we omit it.
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