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1. Introduction

In recent years, the theory of ordinary differential equations in Banach space has become a
new important branch of investigation (see, e.g., [1–4] and references therein). By employing
a fixed point theorem due to Sadovskii, Liu [5] investigated the existence of solutions for
the following second-order two-point boundary value problems (BVP for short) on infinite
intervals in a Banach space E:

x′′(t) = f
(
t, x(t), x′(t)

)
, t ∈ J,

x(0) = x0, x′(∞) = y∞,
(1.1)

where f ∈ C[J×E×E, E], J = [0,+∞), x′(∞) = limt→∞x′(t).On the other hand, themultipoint
boundary value problems arising naturally from applied mathematics and physics have been
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studied so extensively in scalar case that there are many excellent results about the existence
of positive solutions (see, i.e., [6–12] and references therein). However, to the best of our
knowledge, only a few authors [5, 13, 14] have studied multipoint boundary value problems
in Banach spaces and results for systems of second-order differential equation are rarely seen.
Motivated by above papers, we consider the following singular m-point boundary value
problem on an infinite interval in a Banach space E

x′′(t) + f
(
t, x(t), x′(t), y(t), y′(t)

)
= 0,

y′′(t) + g
(
t, x(t), x′(t), y(t), y′(t)

)
= 0, t ∈ J+,

x(0) =
m−2∑

i=1

αix(ξi), x′(∞) = x∞,

y(0) =
m−2∑

i=1

βiy(ξi), y′(∞) = y∞,

(1.2)

where J = [0,∞), J+ = (0,∞), αi, βi ∈ [0,+∞) and ξi ∈ (0,+∞) with 0 < ξ1 < ξ2 < · · · <
ξm−2 < +∞, 0 <

∑m−2
i=1 αi < 1, 0 <

∑m−2
i=1 βi < 1,

∑m−2
i=1 αiξi/(1 − ∑m−2

i=1 αi) > 1,
∑m−2

i=1 βiξi/(1 −∑m−2
i=1 βi) > 1. In this paper, nonlinear terms f and g may be singular at t = 0, x, y = θ, and/or

x′, y′ = θ, where θ denotes the zero element of Banach space E. By singularity, we mean that
‖f(t, x0, x1, y0, y1)‖ → ∞ as t → 0+ or xi, yi → θ (i = 0, 1).

Very recently, by using Shauder fixed point theorem, Guo [15] obtained the existence
of positive solutions for a class of nth-order nonlinear impulsive singular integro-differential
equations in a Banach space. Motivated by Guo’s work, in this paper, we will use the cone
theory and the Mönch fixed point theorem combined with a monotone iterative technique to
investigate the positive solutions of BVP (1.2). The main features of the present paper are as
follows. Firstly, compared with [5], the problem we discussed here is systems of multipoint
boundary value problem and nonlinear term permits singularity not only at t = 0 but also
at x, y, x′, y′ = θ. Secondly, compared with [15], the relative compact conditions we used
are weaker. Furthermore, an iterative sequence for the solution under some normal type
conditions is established which makes it very important and convenient in applications.

The rest of the paper is organized as follows. In Section 2, we give some preliminaries
and establish several lemmas. The main theorems are formulated and proved in Section 3.
Then, in Section 4, an example is worked out to illustrate the main results.

2. Preliminaries and Several Lemmas

Let

FC[J, E] =

{

x ∈ C[J, E] : sup
t∈J

‖x(t)‖
t + 1

< ∞
}

,

DC1[J, E] =

{

x ∈ C1[J, E] : sup
t∈J

‖x(t)‖
t + 1

< ∞, sup
t∈J

‖x′(t)‖ < ∞
}

.

(2.1)
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Evidently, C1[J, E] ⊂ C[J, E], DC1[J, E] ⊂ FC[J, E]. It is easy to see that FC[J, E] is a Banach
space with norm

‖x‖F = sup
t∈J

‖x(t)‖
t + 1

, (2.2)

and DC1[J, E] is also a Banach space with norm

‖x‖D = max
{‖x‖F, ‖x′‖C

}
, (2.3)

where

‖x′‖C = sup
t∈J

‖x′(t)‖. (2.4)

Let X = DC1[J, E] ×DC1[J, E]with norm

‖(x, y)‖X = max
{‖x‖D, ‖y‖D

}
, ∀(x, y) ∈ X. (2.5)

Then (X, ‖·, ·‖X) is also a Banach space. The basic space using in this paper is (X, ‖·, ·‖X).
Let P be a normal cone in E with normal constant N which defines a partial ordering

in E by x ≤ y. If x ≤ y and x /=y, we write x < y. Let P+ = P \ {θ}. So, x ∈ P+ if and only if
x > θ. For details on cone theory, see [4].

In what follows, we always assume that x∞ ≥ x∗
0, y∞ ≥ y∗

0, x
∗
0, y

∗
0 ∈ P+. Let P0λ = {x ∈

P : x ≥ λx∗
0}, P1λ = {y ∈ P : y ≥ λy∗

0} (λ > 0). Obviously, P0λ, P1λ ⊂ P+ for any λ > 0. When
λ = 1, we write P0 = P01, P1 = P11, that is, P0 = {x ∈ P : x ≥ x∗

0}, P 1 = {y ∈ P : y ≥ y∗
0}.

Let P(F) = {x ∈ FC[J, E] : x(t) ≥ θ, ∀t ∈ J}, and P(D) = {x ∈ DC1[J, E] : x(t) ≥ θ, x′(t) ≥
θ, ∀t ∈ J}. It is clear, P(F), P(D) are cones in FC[J, E] and DC1[J, E], respectively. A map
(x, y) ∈ DC1[J, E]∩C2[J ′+, E] is called a positive solution of BVP (1.2) if (x, y) ∈ P(D)×P(D)
and (x(t), y(t)) satisfies (1.2).

Let α, αF, αD, αX denote the Kuratowski measure of noncompactness in
E, FC[J, E], DC1[J, E] and X, respectively. For details on the definition and properties
of the measure of noncompactness, the reader is referred to [1–4]. Let L[J+, J] be all Lebesgue
measurable functions from J+ to J . Denote

D0 =
1

1 −∑m−2
i=1 αi

m−2∑

i=1

αiξi, D1 =
1

1 −∑m−2
i=1 βi

m−2∑

i=1

βiξi. (2.6)
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Let us list some conditions for convenience.

(H1) f, g ∈ C[J+ × P0λ × P0λ × P1λ × P1λ, P] for any λ > 0 and there exist ai, bi, ci ∈ L[J+, J]
and hi ∈ C[J+ × J+, J] (i = 0, 1) such that

‖f(t, x0, x1, y0, y1
)‖ ≤ a0(t) + b0(t)h0

(‖x0‖, ‖x1‖, ‖y0‖, ‖y1‖
)
,

∀t ∈ J+, xi ∈ P0, yi ∈ P1 (i = 0, 1),

‖g(t, x0, x1, y0, y1
)‖ ≤ a1(t) + b1(t)h1

(‖x0‖, ‖x1‖, ‖y0‖, ‖y1‖
)
,

∀t ∈ J+, xi ∈ P0, yi ∈ P1 (i = 0, 1),

‖f(t, x0, x1, y0, y1
)‖

c0(t)
(‖x0‖ + ‖x1‖ + ‖y0‖ + ‖y1‖

) −→ 0,
‖g(t, x0, x1, y0, y1

)‖
c1(t)

(‖x0‖ + ‖x1‖ + ‖y0‖ + ‖y1‖
) −→ 0

as xi ∈ P0, yi ∈ P1 (i = 0, 1), ‖x0‖ + ‖x1‖ + ‖y0‖ + ‖y1‖ −→ ∞,

(2.7)

uniformly for t ∈ J+, and

∫∞

0
ai(t)dt = a∗

i < ∞,

∫∞

0
bi(t)dt = b∗i < ∞,

∫∞

0
ci(t)(1 + t)dt = c∗i < ∞ (i = 0, 1). (2.8)

(H2) For any t ∈ J+, R > 0 and countable bounded set Vi ⊂ DC1[J, P ∗
0R], Wi ⊂

DC1[J, P ∗
1R] (i = 0, 1), there exist Lij(t), Kij(t) ∈ L[J, J] (i, j = 0, 1) such that

α
(
f(t, V0(t), V1(t),W0(t),W1(t))

) ≤
1∑

i=0

L0i(t)α(Vi(t)) +K0i(t)α(Wi(t)),

α
(
g(t, V0(t), V1(t),W0(t),W1(t))

) ≤
1∑

i=0

L1i(t)α(Vi(t)) +K1i(t)α(Wi(t)),

(2.9)

with

(Di + 1)
∫+∞

0
[(Li0(s) +Ki0(s))(1 + s) + Li1(s) +Ki1(s)]ds <

1
2

(i = 0, 1), (2.10)

where P ∗
0R = {x ∈ P, x ≥ x∗

0, ‖x‖ ≤ R}, P ∗
1R = {y ∈ P, y ≥ y∗

0, ‖y‖ ≤ R}.
(H3) t ∈ J+, x

∗
0 ≤ xi ≤ xi, y

∗
0 ≤ yi ≤ yi (i = 0, 1) imply

f
(
t, x0, x1, y0, y1

) ≤ f
(
t, x0, x1, y0, y1

)
,

g
(
t, x0, x1, y0, y1

) ≤ g
(
t, x0, x1, y0, y1

)
.

(2.11)

In what follows, we write Q1 = {x ∈ DC1[J, P] : x(i)(t) ≥ x∗
0, ∀t ∈ J, i = 0, 1}, Q2 = {y ∈

DC1[J, P] : y(i)(t) ≥ y∗
0, ∀t ∈ J, i = 0, 1}, and Q = Q1 ×Q2. Evidently, Q1, Q2, and Q are closed

convex sets in DC1[J, E] and X, respectively.
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We will reduce BVP (1.2) to a system of integral equations in E. To this end, we first
consider operator A defined by

A
(
x, y

)
(t) =

(
A1

(
x, y

)
(t), A2

(
x, y

)
(t)

)
, (2.12)

where

A1
(
x, y

)
(t) =

1

1 −∑m−2
i=1 αi

[(
m−2∑

i=1

αiξi

)

x∞ +
m−2∑

i=1

αi

∫ ξi

0

∫+∞

s

f
(
τ, x(τ), x′(τ), y(τ), y′(τ)

)
dτ ds

]

+
∫ t

0

∫+∞

s

f
(
τ, x(τ), x′(τ), y(τ), y′(τ)

)
dτ ds + tx∞,

(2.13)

A2
(
x, y

)
(t) =

1

1 −∑m−2
i=1 βi

[(
m−2∑

i=1

βiξi

)

y∞ +
m−2∑

i=1

βi

∫ ξi

0

∫+∞

s

g
(
τ, x(τ), x′(τ), y(τ), y′(τ)

)
dτ ds

]

+
∫ t

0

∫+∞

s

g
(
τ, x(τ), x′(τ), y(τ), y′(τ)

)
dτ ds + ty∞.

(2.14)

Lemma 2.1. If condition (H1) is satisfied, then operator A defined by (2.12) is a continuous operator
from Q into Q.

Proof. Let

ε0 = min

⎧
⎨

⎩
1

8c∗0
(
1 +

∑m−2
i=1 αiξm−2/

(
1 −∑m−2

i=1 αi

)) ,
1

8c∗1
(
1 +

∑m−2
i=1 βiξm−2/

(
1 −∑m−2

i=1 βi
))

⎫
⎬

⎭
,

(2.15)

r = min

{‖x∗
0‖

N
,
‖y∗

0‖
N

}

> 0. (2.16)

By virtue of condition (H1), there exists an R > r such that

∥∥f
(
t, x0, x1, y0, y1

)∥∥ ≤ ε0c0(t)
(‖x0‖ + ‖x1‖ +

∥∥y0
∥∥ +

∥∥y1
∥∥), ∀t ∈ J+, xi ∈ P0, yi ∈ P1 (i = 0, 1),

‖x0‖ + ‖x1‖ +
∥∥y0

∥∥ +
∥∥y1

∥∥ > R,
∥∥f

(
t, x0, x1, y0, y1

)∥∥ ≤ a0(t) +M0b0(t), ∀t ∈ J+, xi ∈ P0, yi ∈ P1 (i = 0, 1),

‖x0‖ + ‖x1‖ +
∥∥y0

∥∥ +
∥∥y1

∥∥ ≤ R,

(2.17)
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where

M0 = max{h0(u0, u1, v0, v1) : r ≤ ui, vi ≤ R (i = 0, 1)}. (2.18)

Hence

‖f(t, x0, x1, y0, y1
)‖ ≤ ε0c0(t)

(‖x0‖ + ‖x1‖ + ‖y0‖ + ‖y1‖
)
+ a0(t) +M0b0(t),

∀t ∈ J+, xi ∈ P0, yi ∈ P1 (i = 0, 1).
(2.19)

Let (x, y) ∈ Q, we have, by (2.19)

‖f(t, x(t), x′(t), y(t), y′(t)
)‖

≤ ε0c0(t)(1 + t)
(‖x(t)‖

t + 1
+
‖x′(t)‖
t + 1

+
‖y(t)‖
t + 1

+
‖y′(t)‖
t + 1

)
+ a0(t) +M0b0(t)

≤ ε0c0(t)(1 + t)
(‖x‖F + ‖x′‖C + ‖y‖F + ‖y′‖C

)
+ a0(t) +M0b0(t)

≤ 2ε0c0(t)(1 + t)
(‖x‖D + ‖y‖D

)
+ a0(t) +M0b0(t)

≤ 4ε0c0(t)(1 + t)‖(x, y)‖X + a0(t) +M0b0(t), ∀t ∈ J+,

(2.20)

which together with condition (H2) implies the convergence of the infinite integral

∫∞

0
‖f(s, x(s), x′(s), y(s), y′(s)

)‖ds. (2.21)

Thus, we have

∥∥∥∥∥

∫ t

0

∫+∞

s

f
(
τ, x(τ), x′(τ), y(τ), y′(τ)

)
dτ ds

∥∥∥∥∥
≤
∫ t

0

∫+∞

s

‖f(τ, x(τ), x′(τ), y(τ), y′(τ)
)‖dτ ds

≤
∫+∞

0

∫ t

0
‖f(τ, x(τ), x′(τ), y(τ), y′(τ)

)‖dsdτ

≤ t

∫∞

0
‖f(s, x(s), x′(s), y(s), y′(s)

)‖ds, ∀t ∈ J+,

(2.22)
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which together with (2.13) and (H1) implies that

‖A1
(
x, y

)
(t)‖ ≤

∫ t

0

∫+∞

s

‖f(τ, x(τ), x′(τ), y(τ), y′(τ)
)‖dτ ds + t‖x∞‖ +

∑m−2
i=1 αiξi

1 −∑m−2
i=1 αi

‖x∞‖

+
1

1 −∑m−2
i=1 αi

m−2∑

i=1

αi

∫ ξm−2

0

∫+∞

s

‖f(τ, x(τ), x′(τ), y(τ), y′(τ)
)‖dτ ds

≤ t

(∫+∞

0
‖f(τ, x(τ), x′(τ), y(τ), y′(τ)

)‖dτ + ‖x∞‖
)
+

∑m−2
i=1 αiξi

1 −∑m−2
i=1 αi

‖x∞‖

+
1

1 −∑m−2
i=1 αi

m−2∑

i=1

αiξm−2

(∫+∞

0
‖f(τ, x(τ), x′(τ), y(τ), y′(τ)

)‖dτ
)
.

(2.23)

Therefore, by (2.15) and (2.20), we get

‖A1
(
x, y

)
(t)‖

1 + t
≤
∫+∞

0
‖f(τ, x(τ), x′(τ), y(τ), y′(τ)

)‖dτ + ‖x∞‖ +
∑m−2

i=1 αiξi

1 −∑m−2
i=1 αi

‖x∞‖

+
1

1 −∑m−2
i=1 αi

m−2∑

i=1

αiξm−2

(∫+∞

0
‖f(τ, x(τ), x′(τ), y(τ), y′(τ)

)‖dτ
)

≤
(

1 +
1

1 −∑m−2
i=1 αi

m−2∑

i=1

αiξm−2

)
[
4ε0c∗0‖

(
x, y

)‖X + a∗
0 +Mb∗0

]

+

(

1 +
∑m−2

i=1 αiξi

1 −∑m−2
i=1 αi

)

‖x∞‖

≤ 1
2
‖(x, y)‖X +

(

1 +
1

1 −∑m−2
i=1 αi

m−2∑

i=1

αiξm−2

)
(
a∗
0 +Mb∗0

)

+

(

1 +
∑m−2

i=1 αiξi

1 −∑m−2
i=1 αi

)

‖x∞‖.

(2.24)

Differentiating (2.13), we obtain

A′
1

(
x, y

)
(t) =

∫+∞

t

f
(
s, x(s), x′(s), y(s), y′(s)

)
ds + x∞. (2.25)
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Hence,

∥
∥A′

1

(
x, y

)
(t)

∥
∥ ≤

∫+∞

0
‖f(s, x(s), x′(s), y(s), y′(s)

)‖ds + ‖x∞‖

≤ 4ε0c∗0‖(x, y)‖X + a∗
0 +M0b

∗
0 + ‖x∞‖

≤ 1
2
‖(x, y)‖X + a∗

0 +M0b
∗
0 + ‖x∞‖, ∀t ∈ J.

(2.26)

It follows from (2.24) and (2.25) that

‖A1(x, y)‖D ≤ 1
2
‖(x, y)‖X +

(

1 +
∑m−2

i=1 αiξm−2
1 −∑m−2

i=1 αi

)
(
a∗
0 +M0b

∗
0
)
+

(

1 +
∑m−2

i=1 αiξi

1 −∑m−2
i=1 αi

)

‖x∞‖.

(2.27)

So, A1(x, y) ∈ DC1[J, E]. On the other hand, it can be easily seen that

A1
(
x, y

)
(t) ≥

∑m−2
i=1 αiξi

1 −∑m−2
i=1 αi

x∞ ≥ x∞ ≥ x∗
0, ∀t ∈ J,

A′
1

(
x, y

)
(t) ≥ x∞ ≥ x∗

0, ∀t ∈ J.

(2.28)

So, A1(x, y) ∈ Q1. In the same way, we can easily get that

‖A2(x, y)‖D ≤ 1
2
‖(x, y)‖X +

(

1 +
∑m−2

i=1 βiξm−2
1 −∑m−2

i=1 βi

)
(
a∗
1 +M1b

∗
1

)
+

(

1 +
∑m−2

i=1 βiξi

1 −∑m−2
i=1 βi

)

‖y∞‖,

A2
(
x, y

)
(t) ≥

∑m−2
i=1 βiξi

1 −∑m−2
i=1 βi

y∞ ≥ y∞ ≥ y∗
0, ∀t ∈ J,

A′
2
(
x, y

)
(t) ≥ y∞ ≥ y∗

0, ∀t ∈ J,

(2.29)

where M1 = max{h1(u0, u1, v0, v1) : r ≤ ui, vi ≤ R (i = 0, 1)}. Thus, A maps Q into Q and we
get

‖A(x, y)‖X ≤ 1
2
‖(x, y)‖X + γ, (2.30)

where

γ = max

{(

1 +
∑m−2

i=1 αiξm−2
1 −∑m−2

i=1 αi

)
(
a∗
0 +Mb∗0

)
+

(

1 +
∑m−2

i=1 αiξi

1 −∑m−2
i=1 αi

)

‖x∞‖,

(

1 +
∑m−2

i=1 βiξm−2
1 −∑m−2

i=1 βi

)
(
a∗
1 +M1b

∗
1

)
+

(

1 +
∑m−2

i=1 βiξi

1 −∑m−2
i=1 βi

)
∥∥y∞

∥∥
}

.

(2.31)
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Finally, we show thatA is continuous. Let (xm, ym), (x, y) ∈ Q, ‖(xm, ym)− (x, y)‖X →
0 (m → ∞). Then {(xm, ym)} is a bounded subset of Q. Thus, there exists r > 0 such that
supm‖(xm, ym)‖X < r for m ≥ 1 and ‖(x, y)‖X ≤ r + 1. Similar to (2.24) and (2.26), it is easy to
have

‖A1(xm, ym) −A1(x, y)‖X

≤
∫+∞

0

∥
∥
∥f

(
s, xm(s), x′

m(s), ym(s), y′
m(s)

) − f
(
s, x(s), x′(s), y(s), y′(s)

)∥∥
∥ds

+
∑m−2

i=1 αiξm−2
1 −∑m−2

i=1 αi

∫+∞

0

∥
∥f

(
s, xm(s), x′

m(s), ym(s), y′
m(s)

) − f
(
s, x(s), x′(s), y(s), y′(s)

)∥∥ds.

(2.32)

It is clear,

f
(
t, xm(t), x′

m(t), ym(t), y′
m(t)

) −→ f
(
t, x(t), x′(t), y(t), y′(t)

)
as m −→ ∞, ∀t ∈ J+, (2.33)

and by (2.20),

∥∥f
(
t, xm(t), x′

m(t), ym(t), y′
m(t)

) − f
(
t, x(t), x′(t), y(t), y′(t)

)∥∥

≤ 8ε0c0(t)(1 + t)r + 2a0(t) + 2M0b0(t)

= σ0(t) ∈ L[J, J], m = 1, 2, 3, . . . , ∀t ∈ J+.

(2.34)

It follows from (2.33) and (2.34) and the dominated convergence theorem that

lim
m→∞

∫∞

0

∥∥f
(
s, xm(s), x′

m(s), ym(s), y′
m(s)

) − f
(
s, x(s), x′(s), y(s), y′(s)

)∥∥ds = 0. (2.35)

It follows from (2.32) and (2.35) that ‖A1(xm, ym) −A1(x, y)‖D → 0 as m → ∞. By the same
method, we have ‖A2(xm, ym)−A2(x, y)‖D → 0 asm → ∞. Therefore, the continuity ofA is
proved.

Lemma 2.2. If condition (H1) is satisfied, then (x, y) ∈ Q ∩ (C2[J+, E] × C2[J+, E]) is a solution of
BVP (1.2) if and only if (x, y) ∈ Q is a fixed point of operator A.

Proof. Suppose that x ∈ Q ∩ (C2[J+, E] × C2[J+, E]) is a solution of BVP (1.2). For t ∈ J,
integrating (1.2) from t to +∞, we have

x′(t) = x∞ +
∫+∞

t

f
(
s, x(s), x′(s), y(s), y′(s)

)
ds,

y′(t) = y∞ +
∫+∞

t

g
(
s, x(s), x′(s), y(s), y′(s)

)
ds.

(2.36)
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Integrating (2.36) from 0 to t, we get

x(t) = x(0) + tx∞ +
∫ t

0

∫+∞

s

f
(
τ, x(τ), x′(τ), y(τ), y′(τ)

)
dτ ds, (2.37)

y(t) = y(0) + ty∞ +
∫ t

0

∫+∞

s

g
(
τ, x(τ), x′(τ), y(τ), y′(τ)

)
dτ ds. (2.38)

Thus, we obtain

x(ξi) = x(0) + ξix∞ +
∫ ξi

0

∫+∞

s

f
(
τ, x(τ), x′(τ), y(τ), y′(τ)

)
dτ ds,

y(ξi) = y(0) + ξiy∞ +
∫ ξi

0

∫+∞

s

g
(
τ, x(τ), x′(τ), y(τ), y′(τ)

)
dτ ds,

(2.39)

which together with the boundary value conditions imply that

x(0) =
1

1 −∑m−2
i=1 αi

[(
m−2∑

i=1

αiξi

)

x∞ +
m−2∑

i=1

αi

∫ ξ

0

∫+∞

s

f
(
τ, x(τ), x′(τ), y(τ), y′(τ)

)
dτ ds

]

, (2.40)

y(0) =
1

1 −∑m−2
i=1 βi

[(
m−2∑

i=1

βiξi

)

y∞ +
m−2∑

i=1

βi

∫ ξ

0

∫+∞

s

g
(
τ, x(τ), x′(τ), y(τ), y′(τ)

)
dτ ds

]

. (2.41)

Substituting (2.40) and (2.41) into (2.37) and (2.38), respectively, we have

x(t) =
1

1 −∑m−2
i=1 αi

[(
m−2∑

i=1

αiξi

)

x∞ +
m−2∑

i=1

αi

∫ ξi

0

∫+∞

s

f
(
τ, x(τ), x′(τ), y(τ), y′(τ)

)
dτ ds

]

+
∫ t

0

∫+∞

s

f
(
τ, x(τ), x′(τ), y(τ), y′(τ)

)
dτ ds + tx∞,

y(t) =
1

1 −∑m−2
i=1 βi

[(
m−2∑

i=1

βiξi

)

y∞ +
m−2∑

i=1

βi

∫ ξi

0

∫+∞

s

g
(
τ, x(τ), x′(τ), y(τ), y′(τ)

)
dτ ds

]

+
∫ t

0

∫+∞

s

g
(
τ, x(τ), x′(τ), y(τ), y′(τ)

)
dτ ds + ty∞.

(2.42)

It follows from Lemma 2.1 that the integral
∫ t
0

∫+∞
s f(τ, x(τ), x′(τ), y(τ), y′(τ))dτ ds and the

integral
∫ t
0

∫+∞
s g(τ, x(τ), x′(τ), y(τ), y′(τ))dτ ds are convergent. Thus, (x, y) is a fixed point of

operator A.



Boundary Value Problems 11

Conversely, if (x, y) is fixed point of operator A, then direct differentiation gives the
proof.

Lemma 2.3. Let (H1) be satisfied, V ⊂ Q is a bounded set. Then (AiV )(t)/(1 + t) and (A′
iV )(t) are

equicontinuous on any finite subinterval of J and for any ε > 0, there existsNi > 0 such that

∥
∥
∥
∥
∥
Ai

(
x, y

)
(t1)

1 + t1
− Ai

(
x, y

)
(t2)

1 + t2

∥
∥
∥
∥
∥
< ε,

∥
∥A′

i

(
x, y

)
(t1) −A′

i

(
x, y

)
(t2)

∥
∥ < ε (2.43)

uniformly with respect to (x, y) ∈ V as t1, t2 ≥ Ni (i = 1, 2).

Proof. We only give the proof for operator A1, the proof for operator A2 can be given in a
similar way. By (2.13), we have

A1
(
x, y

)
(t) =

1

1 −∑m−2
i=1 αi

[(
m−2∑

i=1

αiξi

)

x∞ +
m−2∑

i=1

αi

∫ ξi

0

∫+∞

s

f
(
τ, x(τ), x′(τ), y(τ), y′(τ)

)
dτ ds

]

+
∫ t

0

∫+∞

s

f
(
τ, x(τ), x′(τ), y(τ), y′(τ)

)
dτ ds + tx∞

=
1

1 −∑m−2
i=1 αi

[(
m−2∑

i=1

αiξi

)

x∞ +
m−2∑

i=1

αi

∫ ξi

0

∫+∞

s

f
(
τ, x(τ), x′(τ), y(τ), y′(τ)

)
dτ ds

]

+ tx∞ + t

∫+∞

t

f
(
s, x(s), x′(s), y(s), y′(s)

)
ds +

∫ t

0
sf

(
s, x(s), x′(s), y(s), y′(s)

)
ds.

(2.44)

For (x, y) ∈ V, t2 > t1,we obtain by (2.44)

∥∥∥∥∥
A1

(
x, y

)
(t1)

1 + t1
− A1

(
x, y

)
(t2)

1 + t2

∥∥∥∥∥

≤
∣∣∣∣

1
1 + t1

− 1
1 + t2

∣∣∣∣ ·
1

1 −∑m−2
i=1 αi

×
[(

m−2∑

i=1

αiξi

)

‖x∞‖ +
m−2∑

i=1

αi

∫ ξi

0

∫+∞

s

f
(
τ, x(τ), x′(τ), y(τ), y′(τ)

)
dτ ds

]

+
∣∣∣∣

t1
1 + t1

− t2
1 + t2

∣∣∣∣ · ‖x∞‖

+

∥∥∥∥∥
t1

1 + t1

∫+∞

t1

f
(
s, x(s), x′(s), y(s), y′(s)

)
ds − t2

1 + t2

∫+∞

t2

f
(
s, x(s), x′(s), y(s), y′(s)

)
ds

∥∥∥∥∥
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+

∥
∥
∥
∥
∥

∫ t1

0

s

1 + t1
f
(
s, x(s), x′(s), y(s), y′(s)

)
ds −

∫ t2

0

s

1 + t2
f
(
s, x(s), x′(s), y(s), y′(s)

)
ds

∥
∥
∥
∥
∥

≤
∣
∣
∣
∣

1
1 + t1

− 1
1 + t2

∣
∣
∣
∣ ·

1

1 −∑m−2
i=1 αi

×
[(

m−2∑

i=1

αiξi

)

‖x∞‖ +
m−2∑

i=1

αi

∫ ξi

0

∫+∞

s

f
(
τ, x(τ), x′(τ), y(τ), y′(τ)

)
dτ ds

]

+
∣
∣
∣
∣

t1
1 + t1

− t2
1 + t2

∣
∣
∣
∣ · ‖x∞‖ +

∣
∣
∣
∣

t1
1 + t1

− t2
1 + t2

∣
∣
∣
∣ ·

∥
∥
∥
∥

∫+∞

0
f
(
s, x(s), x′(s), y(s), y′(s)

)
ds

∥
∥
∥
∥

+
∣
∣
∣
∣

t1
1 + t1

− t2
1 + t2

∣
∣
∣
∣ ·

∥
∥
∥
∥
∥

∫ t1

0
f
(
s, x(s), x′(s), y(s), y′(s)

)
ds

∥
∥
∥
∥
∥

+
t2

1 + t2

∥∥∥∥∥

∫ t2

t1

f
(
s, x(s), x′(s), y(s), y′(s)

)
ds

∥∥∥∥∥

+
∣∣∣∣

1
1 + t1

− 1
1 + t2

∣∣∣∣ ·
∥∥∥∥∥

∫ t1

0
sf

(
s, x(s), x′(s), y(s), y′(s)

)
ds

∥∥∥∥∥

+

∥∥∥∥∥

∫ t2

t1

sf
(
s, x(s), x′(s), y(s), y′(s)

)
ds

∥∥∥∥∥
.

(2.45)

Then, it is easy to see by (2.45) and (H1) that {A1V (t)/(1+ t)} is equicontinuous on any finite
subinterval of J .

Since V ⊂ Q is bounded, there exists r > 0 such that for any (x, y) ∈ V, ‖(x, y)‖X ≤ r.
By (2.25), we get

∥∥A′
1

(
x, y

)
(t1) −A′

1

(
x, y

)
(t2)

∥∥ =

∥∥∥
∥∥

∫ t2

t1

f
(
s, x(s), x′(s), y(s), y′(s)

)
ds

∥∥∥
∥∥

≤
∫ t2

t1

[4ε0rc(s)(1 + s) + a0(s) +M0b0(s)]ds.

(2.46)

It follows from (2.46) and (H1) and the absolute continuity of Lebesgue integral that {A′
1V (t)}

is equicontinuous on any finite subinterval of J .
In the following, we are in position to show that for any ε > 0, there existsN1 > 0 such

that

∥∥∥∥∥
A1

(
x, y

)
(t1)

1 + t1
− A1

(
x, y

)
(t2)

1 + t2

∥∥∥∥∥
< ε,

∥∥A′
1

(
x, y

)
(t1) −A′

1

(
x, y

)
(t2)

∥∥ < ε (2.47)

uniformly with respect to x ∈ V as t1, t2 ≥ N.
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Combining with (2.45), we need only to show that for any ε > 0, there exists
sufficiently large N > 0 such that

∥
∥
∥
∥
∥

∫ t1

0

s

1 + t1
f
(
s, x(s), x′(s), y(s), y′(s)

)
ds −

∫ t2

0

s

1 + t2
f
(
s, x(s), x′(s), y(s), y′(s)

)
ds

∥
∥
∥
∥
∥
< ε (2.48)

for all x ∈ V as t1, t2 ≥ N. The rest part of the proof is very similar to Lemma 2.3 in [5], we
omit the details.

Lemma 2.4. Let V be a bounded set in DC1[J, E] ×DC1[J, E]. Assume that (H1) holds. Then

αD(AiV ) = max

{

sup
t∈J

α

(
(AiV )(t)
1 + t

)
, sup

t∈J
α
(
(AiV )′(t)

)
}

. (2.49)

Proof. The proof is similar to that of Lemma 2.4 in [5], we omit it.

Lemma 2.5 (see [1, 2]). Mönch Fixed-Point Theorem. Let Q be a closed convex set of E and u ∈ Q.
Assume that the continuous operator F : Q → Q has the following property: V ⊂ Q countable,
V ⊂ co({u} ∪ F(V )) ⇒ V is relatively compact. Then F has a fixed point in Q.

Lemma 2.6. If (H3) is satisfied, then for x, y ∈ Q, x(i) ≤ y(i), t ∈ J (i = 0, 1) imply that (Ax)(i) ≤
(Ay)(i), t ∈ J (i = 0, 1).

Proof. It is easy to see that this lemma follows from (2.13), (2.25), and condition (H3). The
proof is obvious.

Lemma 2.7 (see [16]). Let E and F are bounded sets in E, then

α̃(D × F) = max{α(D), α(F)}, (2.50)

where α̃ and α denote the Kuratowski measure of noncompactness in E × E and E, respectively.

Lemma 2.8 (see [16]). Let P be normal (fully regular) in E, P̃ = P × P, then P̃ is normal (fully
regular) in E × E.

3. Main Results

Theorem 3.1. If conditions (H1) and (H2) are satisfied, then BVP (1.2) has a positive solution
(x, y) ∈ (DC1[J, E] ∩C2[J ′+, E]) × (DC1[J, E] ∩C2[J ′+, E]) satisfying (x)

(i)(t) ≥ x∗
0, (y)

(i)(t) ≥ y∗
0

for t ∈ J (i = 0, 1).

Proof. By Lemma 2.1, operator A defined by (2.13) is a continuous operator from Q into Q,
and, by Lemma 2.2, we need only to show thatA has a fixed point (x, y) inQ. Choose R > 2γ
and let Q∗ = {(x, y) ∈ Q : ‖(x, y)‖X ≤ R}. Obviously, Q∗ is a bounded closed convex set in
spaceDC1[J, E]×DC1[J, E]. It is easy to see thatQ∗ is not empty since ((1+ t)x∞, (1+ t)y∞) ∈
Q∗. It follows from (2.27) and (3.6) that (x, y) ∈ Q∗ implies A(x, y) ∈ Q∗, that is, A maps Q∗
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into Q∗. Let V = {(xm, ym) : m = 1, 2, . . .} ⊂ Q∗ satisfying V ⊂ co{{(u0, v0)} ∪ AV } for some
(u0, v0) ∈ Q∗. Then ‖(xm, ym)‖X ≤ R. We have, by (2.13) and (2.25),

A1
(
xm, ym

)
(t)

=
1

1 −∑m−2
i=1 αi

[(
m−2∑

i=1

αiξi

)

x∞ +
m−2∑

i=1

αi

∫ ξi

0

∫+∞

s

f
(
τ, xm(τ), x′

m(τ), ym(τ), y′
m(τ)

)
dτ ds

]

+
∫ t

0

∫+∞

s

f
(
τ, xm(τ), x′

m(τ), ym(τ), y′
m(τ)

)
dτ ds + tx∞,

A′
1

(
xm, ym

)
(t) =

∫+∞

t

f
(
s, xm(s), x′

m(s), ym(s), y′
m(s)

)
ds + x∞.

(3.1)

By Lemma 2.4, we have

αD(A1V ) = max

{

sup
t∈J

α
(
(A1V )′(t)

)
, sup

t∈J
α

(
(A1V )(t)

1 + t

)}

, (3.2)

where A1V (t) = {A1(xm, ym)(t) : m = 1, 2, 3, . . .}, and (A1V )′(t) = {A′
1(xm, ym)(t) : m =

1, 2, 3, . . .}.
By (2.21), we know that the infinite integral

∫+∞
0 ‖f(t, x(t), x′(t), y(t), y′(t))‖dt is

convergent uniformly for m = 1, 2, 3, . . . . So, for any ε > 0, we can choose a sufficiently large
T > 0 such that

∫+∞

T

‖f(t, x(t), x′(t), y(t), y′(t)
)‖dt < ε. (3.3)

Then, by [1, Theorem 1.2.3], (2.44), (3.1), (3.3), (H2), and Lemma 2.7, we obtain

α

(
(A1V )(t)

1 + t

)
≤ 2

D0

1 + t

∫T

0
α
({

f
(
s, xm(s), x′

m(s), ym(s), y′
m(s)

)
:
(
xm, ym

) ∈ V
})

ds + 2ε

+ 2
∫T

0

t

1 + t
α
({

f
(
s, xm(s), x′

m(s), ym(s), y′
m(s)

)
:
(
xm, ym

) ∈ V
})

ds + 2ε

≤ 2D0

∫T

0
α
({

f
(
s, xm(s), x′

m(s), ym(s), y′
m(s)

)
:
(
xm, ym

) ∈ V
})

ds

+ 2
∫T

0
α
({

f
(
s, xm(s), x′

m(s), ym(s), y′
m(s)

)
:
(
xm, ym

) ∈ V
})

ds + 4ε

≤ (2D0 + 2)
∫+∞

0
α
({

f
(
s, xm(s), x′

m(s), ym(s), y′
m(s)

)
:
(
xm, ym

) ∈ V
})

ds + 4ε

≤ (2D0 + 2)αX(V )
∫+∞

0
(L00(s) +K00(s))(1 + s) + (L01(s) +K01(s))ds + 4ε,
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α
((
A′

1V
)
(t)

) ≤ 2
∫+∞

0
α
({

f
(
s, xm(s), x′

m(s), ym(s), y′
m(s)

)
:
(
xm, ym

) ∈ V
})

ds + 2ε

≤ 2αX(V )
∫+∞

0
(L00(s) +K00(s))(1 + s) + (L01(s) +K01(s))ds + 2ε.

(3.4)

It follows from (3.2) and (3.4) that

αD(A1V ) ≤ (2D0 + 2)αX(V )
∫+∞

0
(L00(s) +K00(s))(1 + s) + (L01(s) +K01(s))ds. (3.5)

In the same way, we get

αD(A2V ) ≤ (2D1 + 2)αX(V )
∫+∞

0
(L10(s) +K10(s))(1 + s) + (L11(s) +K11(s))ds. (3.6)

On the other hand, αX(V ) ≤ αX{co({u} ∪ (AV ))} = αX(AV ). Then, (3.5), (3.6), (H2), and
Lemma 2.7 imply αX(V ) = 0, that is, V is relatively compact in DC1[J, E] × DC1[J, E].
Hence, the Mönch fixed point theorem guarantees thatA has a fixed point (x, y) inQ∗. Thus,
Theorem 3.1 is proved.

Theorem 3.2. Let cone P be normal and conditions (H1)–(H3) be satisfied. Then BVP (1.2) has a
positive solution (x, y) ∈ Q ∩ (C2[J ′+, E] × C2[J ′+, E]) which is minimal in the sense that u(i)(t) ≥
x(i)(t), v(i)(t) ≥ y(i)(t), t ∈ J (i = 0, 1) for any positive solution (u, v) ∈ Q∩ (C2[J ′+, E]×C2[J ′+, E])
of BVP (1.2). Moreover, ‖((x, y))‖X ≤ 2γ+‖(u0, v0)‖X, and there exists a monotone iterative sequence
{(un(t), vn(t))} such that u(i)

n (t) → x(i)(t), v(i)
n (t) → y(i)(t) as n → ∞ (i = 0, 1) uniformly on J

and u′′
n(t) → x′′(t), v′′

n(t) → y′′(t) as n → ∞ for any t ∈ J+, where

u0(t) =
1

1 −∑m−2
i=1 αi

[(
m−2∑

i=1

αiξi

)

x∞ +
m−2∑

i=1

αi

∫ ξi

0

∫+∞

s

f
(
τ, x∗

0, x
∗
0, y

∗
0, y

∗
0
)
dτ ds

]

+
∫ t

0

∫+∞

s

f
(
τ, x∗

0, x
∗
0, y

∗
0, y

∗
0
)
dτ ds + tx∞,

(3.7)

v0(t) =
1

1 −∑m−2
i=1 βi

[(
m−2∑

i=1

βiξi

)

y∞ +
m−2∑

i=1

βi

∫ ξi

0

∫+∞

s

g
(
τ, x∗

0, x
∗
0, y

∗
0, y

∗
0
)
dτ ds

]

+
∫ t

0

∫+∞

s

g
(
τ, x∗

0, x
∗
0, y

∗
0, y

∗
0
)
dτ ds + ty∞,

(3.8)
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un(t) =
1

1 −∑m−2
i=1 αi

×
[(

m−2∑

i=1

αiξi

)

x∞ +
m−2∑

i=1

αi

∫ ξi

0

∫+∞

s

f
(
τ, un−1(τ), u′

n−1(τ), vn−1(τ), v′
n−1(τ)

)
dτ ds

]

+
∫ t

0

∫+∞

s

f
(
τ, un−1(τ), u′

n−1(τ), vn−1(τ), v′
n−1(τ)

)
dτ ds + tx∞, ∀t ∈ J (n = 1, 2, 3, . . .),

(3.9)

vn(t) =
1

1 −∑m−2
i=1 βi

×
[(

m−2∑

i=1

βiξi

)

y∞ +
m−2∑

i=1

βi

∫ ξi

0

∫+∞

s

g
(
τ, un−1(τ), u′

n−1(τ), vn−1(τ), v′
n−1(τ)

)
dτ ds

]

+
∫ t

0

∫+∞

s

g
(
τ, un−1(τ), u′

n−1(τ), vn−1(τ), v′
n−1(τ)

)
dτ ds + ty∞, ∀t ∈ J (n = 1, 2, 3, . . .).

(3.10)

Proof. From (3.7), one can see that (u0, v0) ∈ C[J, E] × C[J, E] and

u′
0(t) =

∫+∞

t

f
(
s, x∗

0, x
∗
0, y

∗
0, y

∗
0
)
ds + x∞. (3.11)

By (3.7) and (3.11), we have that u(i)
0 ≥ x∞ ≥ x∗

0 (i = 0, 1) and

‖u0(t)‖ ≤
∫ t

0

∫+∞

s

‖f(τ, x∗
0, x

∗
0, y

∗
0, y

∗
0
)‖dτ ds + t‖x∞‖ +

∑m−2
i=1 αiξi

1 −∑m−2
i=1 αi

‖x∞‖

+
1

1 −∑m−2
i=1 αi

m−2∑

i=1

αi

∫ ξm−2

0

∫+∞

s

‖f(τ, x∗
0, x

∗
0, y

∗
0, y

∗
0
)‖dτ ds

≤ t

(∫+∞

0
‖f(τ, x∗

0, x
∗
0, y

∗
0, y

∗
0
)‖dτ + ‖x∞‖

)
+

∑m−2
i=1 αiξi

1 −∑m−2
i=1 αi

‖x∞‖

+
1

1 −∑m−2
i=1 αi

m−2∑

i=1

αiξm−2

(∫+∞

0
‖f(τ, x∗

0, x
∗
0, y

∗
0, y

∗
0
)‖dτ

)

≤ t

[∫+∞

0
a0(s) + b0(s)h0

(‖x∗
0‖, ‖x∗

0‖, ‖y∗
0‖, ‖y∗

0‖
)
ds + ‖x∞‖

]
+

∑m−2
i=1 αiξi

1 −∑m−2
i=1 αi

‖x∞‖

+
1

1 −∑m−2
i=1 αi

m−2∑

i=1

αiξm−2

(∫+∞

0
a0(s) + b0(s)h0

(‖x∗
0‖, ‖x∗

0‖, ‖y∗
0‖, ‖y∗

0‖
)
ds

)
,
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‖u′
0(t)‖ ≤

∫+∞

t

‖f(τ, x∗
0, x

∗
0, y

∗
0, y

∗
0
)‖dτ + ‖x∞‖

≤
∫+∞

0
a0(s) + b0(s)h0

(‖x∗
0‖, ‖x∗

0‖, ‖y∗
0‖, ‖y∗

0‖
)
ds + ‖x∞‖,

(3.12)

which imply that ‖u0‖D < ∞. Similarly, we have ‖v0‖D < ∞. Thus, (u0, v0) ∈ DC1[J, E] ×
DC1[J, E]. It follows from (2.13) and (3.9) that

(un, vn)(t) = A(un−1, vn−1)(t), ∀t ∈ J, n = 1, 2, 3, . . . . (3.13)

By Lemma 2.1, we get (un, vn) ∈ Q and

‖(un, vn)‖X = ‖A(un−1, vn−1)‖X ≤ 1
2
‖(un−1, vn−1)‖X + γ. (3.14)

By Lemma 2.6 and (3.13), we have

(
x∗
0, y

∗
0
) ≤

(
u
(i)
0 (t), v(i)

0 (t)
)
≤
(
u
(i)
1 (t), v(i)

1 (t)
)
≤ · · · ≤

(
u
(i)
n (t), v(i)

n (t)
)
≤ · · · , ∀t ∈ J (i = 0, 1).

(3.15)

It follows from (3.14), by induction, that

‖(un, vn)‖X ≤ γ +
(
1
2

)
γ + · · · +

(
1
2

)n−1
γ +

(
1
2

)n

‖(u0, v0)‖X

≤ γ
(
1 − (1/2)n

)

1 − 1/2
+ ‖(u0, v0)‖X

≤ 2γ + ‖(u0, v0)‖X (n = 1, 2, 3, . . .).

(3.16)

Let K = {(x, y) ∈ Q : ‖(x, y)‖X ≤ 2γ + ‖(u0, v0)‖X}. Then, K is a bounded closed convex
set in space DC1[J, E] × DC1[J, E] and operator A maps K into K. Clearly, K is not empty
since (u0, v0) ∈ K. Let W = {(un, vn) : n = 0, 1, 2, . . .}, AW = {A(un, vn) : n = 0, 1, 2, . . .}.
Obviously,W ⊂ K andW = {(u0, v0)}∪A(W). Similar to above proof of Theorem 3.1, we can
obtain αX(AW) = 0, that is,W is relatively compact in DC1[J, E] ×DC1[J, E]. So, there exists
an (x, y) ∈ DC1[J, E] × DC1[J, E] and a subsequence {(unj , vnj ) : j = 1, 2, 3, . . .} ⊂ W such
that {(unj , vnj )(t) : j = 1, 2, 3, . . .} converges to (x(i)(t), y(i)(t)) uniformly on J (i = 0, 1). Since

that P is normal and {(u(i)
n (t), v(i)

n (t)) : n = 1, 2, 3, . . .} is nondecreasing, it is easy to see that
the entire sequence {(u(i)

n (t), v(i)
n (t)) : n = 1, 2, 3, . . .} converges to (x(i)(t), y(i)(t)) uniformly on

J (i = 0, 1). Since (un, vn) ∈ K and K are closed convex sets in space DC1[J, E] × DC1[J, E],
we have (x, y) ∈ K. It is clear,

f
(
s, un(s), u′

n(s), vn(s), v′
n(s)

) −→ f
(
s, x(s), x′(s), y(s), y′(s)

)
, as n −→ ∞, ∀s ∈ J+. (3.17)
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By (H1) and (3.16), we have

‖f(s, un(s), u′
n(s), vn(s), v′

n(s)
) − f

(
s, x(s), x′(s), y(s), y′(s)

)‖
≤ 8ε0c(s)(1 + s)‖(un, vn)‖X + 2a0(s) + 2M0b0(s)

≤ 8ε0c(s)(1 + s)
(
2γ + ‖(u0, v0)‖X

)
+ 2a0(s) + 2M0b0(s).

(3.18)

Noticing (3.17) and (3.18) and taking limit as n → ∞ in (3.9), we obtain

x(t) =
1

1 −∑m−2
i=1 αi

[(
m−2∑

i=1

αiξi

)

x∞ +
m−2∑

i=1

αi

∫ ξi

0

∫+∞

s

f
(
τ, x(τ), x′(τ), y(τ), y′(τ)

)
dτ ds

]

+
∫ t

0

∫+∞

s

f
(
τ, x(τ), x′(τ), y(τ), y′(τ)

)
dτ ds + tx∞.

(3.19)

In the same way, taking limit as n → ∞ in (3.10), we get

y(t) =
1

1 −∑m−2
i=1 βi

[(
m−2∑

i=1

βiξi

)

y∞ +
m−2∑

i=1

βi

∫ ξi

0

∫+∞

s

g
(
τ, x(τ), x′(τ), y(τ), y′(τ)

)
dτ ds

]

+
∫ t

0

∫+∞

s

g
(
τ, x(τ), x′(τ), y(τ), y′(τ)

)
dτ ds + ty∞,

(3.20)

which together with (3.19) and Lemma 2.2 implies that (x, y) ∈ K ∩C2[J+, E] ×C2[J+, E] and
(x(t), y(t)) is a positive solution of BVP (1.2). Differentiating (3.9) twice, we get

u′′
n(t) = −f(t, un−1(t), u′

n−1(t), vn−1(t), v′
n−1(t)

)
, ∀t ∈ J ′+, n = 1, 2, 3, . . . . (3.21)

Hence, by (3.17), we obtain

lim
n→∞

u′′
n(t) = −f(t, x(t), x′(t), y(t), y′(t)

)
= x′′(t), ∀t ∈ J ′+. (3.22)

Similarly, we have

lim
n→∞

v′′
n(t) = −g(t, x(t), x′(t), y(t), y′(t)

)
= y′′(t), ∀t ∈ J ′+. (3.23)

Let (p(t), q(t)) be any positive solution of BVP (1.2). By Lemma 2.2, we have (p, q) ∈ Q
and (p(t), q(t)) = (A(p, q))(t), for t ∈ J. It is clear that p(i)(t) ≥ x∗

0 > θ, q(i)(t) ≥ y∗
0 > θ for any
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t ∈ J (i = 0, 1). So, by Lemma 2.6, we have p(i)(t) ≥ u
(i)
0 (t), q(i)(t) ≥ v

(i)
0 (t) for any t ∈ J (i =

0, 1). Assume that p(i)(t) ≥ u
(i)
n−1(t), q

(i)(t) ≥ v
(i)
n−1(t) for t ∈ J, n ≥ 1 (i = 0, 1). Then, it follows

from Lemma 2.6 that (A(i)
1 (p, q)(t), A(i)

2 (p, q)(t)) ≥ (A(i)
1 (un−1, vn−1))(t), A

(i)
2 (un−1, vn−1))(t)) for

t ∈ J (i = 0, 1), that is, (p(i)(t), q(i)(t)) ≥ (u(i)
n (t), v(i)

n (t)) for t ∈ J (i = 0, 1). Hence, by induction,
we get

p(i)(t) ≥ x(i)
n (t), q(i)(t) ≥ y(i)

n (t) ∀t ∈ J (i = 0, 1; m = 0, 1, 2, . . .). (3.24)

Now, taking limits in (3.24), we get p(i)(t) ≥ x(i)(t), q(i)(t) ≥ y(i)(t) for t ∈ J (i = 0, 1), and the
theorem is proved.

Theorem 3.3. Let cone P be fully regular and conditions (H1) and (H3) be satisfied. Then the
conclusion of Theorem 3.2 holds.

Proof. The proof is almost the same as that of Theorem 3.2. The only difference is that, instead
of using condition (H2), the conclusion αX(W) = 0 is implied directly by (3.15) and (3.16),
the full regularity of P and Lemma 2.4.

4. An Example

Consider the infinite system of scalar singular second order three-point boundary value
problems:

−x′′
n(t) =

1

3n2
√
t(1 + t)

(

2 + xn(t) + yn(t) + x′
2n(t) + y′

3n(t) +
1

2n2xn(t)
+

1
8n3x′

2n(t)

)1/3

+
1

3e2t(1 + t)
ln(1 + xn(t)),

−y′′
n(t) =

1

6n3
√
t2(1 + t)

(

1 + x3n(t) + x′
4n(t) +

1
3n2y3n(t)

+
1

4n3y′
2n(t)

)1/5

+
1

6e3t2(1 + t)
ln
(
1 + y′

2n(t)
)
,

xn(0) =
2
3
xn(1), x′

n(∞) =
1
n
, yn(0) =

3
4
yn(1), y′

n(∞) =
1
2n

(n = 1, 2, . . .).

(4.1)

Proposition 4.1. Infinite system (4.1) has a minimal positive solution (xn(t), yn(t)) satisfying
xn(t), x′

n(t) ≥ 1/n, yn(t), y′
n(t) ≥ 1/2n for 0 ≤ t < +∞ (n = 1, 2, 3, . . .).

Proof. Let E = c0 = {x = (x1, . . . , xn, . . .) : xn → 0} with the norm ‖x‖ = supn|xn|. Obviously,
(E, ‖ · ‖) is a real Banach space. Choose P = {x = (xn) ∈ c0 : xn ≥ 0, n = 1, 2, 3, . . .}. It is
easy to verify that P is a normal cone in E with normal constants 1. Now we consider infinite
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system (4.1), which can be regarded as a BVP of form (1.2) in E with α1 = 2/3, β1 = 3/4, ξ1 =
1, x∞ = (1, 1/2, 1/3, . . .), y∞ = (1/2, 1/4, 1/6, . . .). In this situation, x = (x1, . . . , xn, . . .), u =
(u1, . . . , un, . . .), y = (y1, . . . , yn, . . .), v = (v1, . . . , vn, . . .), f = (f1, . . . , fn, . . .), in which

fn
(
t, x, u, y, v

)
=

1

3n2
√
t(1 + t)

(
2 + xn + yn + u2n + v3n +

1
2n2xn

+
1

8n3u2n

)1/3

+
1

3e2t(1 + t)
ln(1 + xn),

gn
(
t, x, u, y, v

)
=

1

6n3 3
√
t2(1 + t)

(
1 + x3n + u4n +

1
3n2y3n

+
1

4n3v2n

)1/5

+
1

6e3t(1 + t)
ln(1 + v2n).

(4.2)

Let x∗
0 = x∞ = (1, 1/2, 1/3, . . .), y∗

0 = y∞ = (1/2, 1/4, 1/6, . . .). Then P0λ = {x =
(x1, x2, . . . , xn, . . .) : xn ≥ λ/n, n = 1, 2, 3, . . .}, P1λ = {y = (y1, y2, . . . , yn, . . .) : yn ≥ λ/2n, n =
1, 2, 3, . . .}, for λ > 0. It is clear, f, g ∈ C[J+ × P0λ × P0λ × P1λ × P1λ, P] for any λ > 0. Notice that
e3t >

3
√
t2, e2t >

√
t for t > 0, by (4.2), we get

‖f(t, x, u, y, v)‖ ≤ 1

3
√
t

[(
11
4

+ ‖x‖ + ‖u‖ + ‖v‖ + ‖y‖
)1/3

+ ln(1 + ‖x‖)
]

,

‖g(t, x, u, y, v)‖ ≤ 1

6 3
√
t2

[
(4 + ‖x‖ + ‖u‖)1/5 + ln(1 + ‖v‖)

]
,

(4.3)

which imply (H1) is satisfied for a0(t) = 0, b0(t) = c0(t) = 1/3
√
t, a1(t) = 0, b1(t) = c1(t) =

1/6 3
√
t2 and

h0(u0, u1, u2, u3) =
(
11
4

+ u0 + u1 + u2 + u3

)1/3

+ ln(1 + u0),

h1(u0, u1, u2, u3) = (4 + u0 + u1)1/5 + ln(1 + u3).

(4.4)

Let f1 = {f1
1 , f

1
2 , . . . , f

1
n, . . .}, f2 = {f2

1 , f
2
2 , . . . , f

2
n, . . .}, and g1 = {g1

1 , g
1
2 , . . . , g

1
n, . . .}, g2 =

{g2
1 , g

2
2 , . . . , g

2
n, . . .}, where

f1
n

(
t, x, u, y, v

)
=

1

3n2
√
t(1 + t)

(
2 + xn + yn + u2n + v3n +

1
2n2xn

+
1

8n3u2n

)1/3

, (4.5)

f2
n

(
t, x, u, y, v

)
=

1
3e2t(1 + t)

ln(1 + xn), (4.6)

g1
n

(
t, x, u, y, v

)
=

1

6n3 3
√
t2(1 + t)

(
1 + x3n + u4n +

1
3n2y3n

+
1

4n3v2n

)1/5

, (4.7)

g2
n

(
t, x, u, y, v

)
=

1
6e3t(1 + t)

ln(1 + v2n). (4.8)
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Let t ∈ J+, R > 0 be given, and {z(m)} be any sequence in f1(t, P ∗
0R, P

∗
0R, P

∗
1R, P

∗
1R), where z(m) =

(z(m)
1 , . . . , z

(m)
n , . . .). By (4.5), we have

0 ≤ z
(m)
n ≤ 1

3n2
√
t

(
11
4

+ 4R
)1/3

(n,m = 1, 2, 3, . . .). (4.9)

So, {z(m)
n } is bounded and by the diagonal method together with the method of constructing

subsequence, we can choose a subsequence {mi} ⊂ {m} such that

{
z
(m)
n

}
−→ zn as i −→ ∞ (n = 1, 2, 3, . . .), (4.10)

which implies by virtue of (4.9)

0 ≤ zn ≤ 1

3n2
√
t

(
11
4

+ 4R
)1/3

(n = 1, 2, 3, . . .). (4.11)

Hence z = (z1, . . . , zn, . . .) ∈ c0. It is easy to see from (4.9)–(4.11) that

∥∥∥z(mi) − z
∥∥∥ = sup

n

∣∣∣z(mi)
n − zn

∣∣∣ −→ 0 as i −→ ∞. (4.12)

Thus, we have proved that f1(t, P ∗
0R, P

∗
0R, P

∗
1R, P

∗
1R) is relatively compact in c0.

For any t ∈ J+, R > 0, x, y, x, y ∈ D ⊂ P ∗
0R, we have by (4.6)

∣∣∣f2
n

(
t, x, u, y, v

) − f2
n

(
t, x, u, y, v

)∣∣∣ =
1

3e2t(1 + t)
|ln(1 + xn) − ln(1 + xn)|

≤ 1
3e2t(1 + t)

|xn − xn|
1 + ξn

,

(4.13)

where ξn is between xn and xn. By (4.13), we get

∥∥∥f2(t, x, u, y, v
) − f2(t, x, u, y, v

)∥∥∥ ≤ 1
3e2t(1 + t)

‖x − x‖, x, y, x, y ∈ D. (4.14)

In the same way, we can prove that g1(t, P ∗
0R, P

∗
0R, P

∗
1R, P

∗
1R) is relatively compact in c0, and we

can also get

∥∥∥g2(t, x, u, y, v
) − g2(t, x, u, y, v

)∥∥∥ ≤ 1
6e3t(1 + t)

‖v − v‖, x, y, x, y ∈ D. (4.15)

Thus, by (4.14) and (4.15), it is easy to see that (H2) holds for L00(t) = 1/3e2t(1 + t), K11(t) =
1/6e3t(1 + t). Thus, our conclusion follows from Theorem 3.1. This completes the proof.
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