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This paper studies the existence, and multiplicity of positive solutions of a singular boundary
value problem for second-order differential systems with impulse effects. By using the upper and
lower solutions method and fixed point index arguments, criteria of the multiplicity, existence and
nonexistence of positive solutions with respect to parameters given in the system are established.

1. Introduction

In this paper, we consider systems of impulsive differential equations of the form

u′′(t) + λh1(t)f(u(t), v(t)) = 0, t ∈ (0, 1), t /= t1,

v′′(t) + μh2(t)g(u(t), v(t)) = 0, t ∈ (0, 1), t /= t1,

Δu|t=t1 = Iu(u(t1)), Δv|t=t1 = Iv(v(t1)),

Δu′∣∣
t=t1

= Nu(u(t1)), Δv′∣∣
t=t1

= Nv(v(t1)),

u(0) = a ≥ 0, v(0) = b ≥ 0, u(1) = c ≥ 0, v(1) = d ≥ 0,

(P)

where λ, μ are positive real parameters, Δu|t=t1 = u(t+1 ) − u(t1), and Δu′|t=t1 = u′(t+1 ) − u′(t−1 ).
Throughout this paper, we assume f, g ∈ C(R2

+,R+) with f(0, 0) = 0 = g(0, 0) and f(u, v) >
0, g(u, v) > 0 for all (u, v)/= (0, 0), Iu, Iv ∈ C(R+,R) satisfying Iu(0) = 0 = Iv(0),Nu,Nv ∈
C(R+, (−∞, 0]), and hi ∈ C((0, 1), (0,∞)), i = 1, 2. Here we denote R+ = [0,∞). We note that
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hi may be singular at t = 0 and/or 1. Let J = [0, 1], J ′ = [0, 1] \ {0, 1, t1}, PC[0, 1] = {u |
u : [0, 1] → R be continuous at t /= t1, left continuous at t = t1, and its right-hand limit at
t = t1 exists } and X = PC[0, 1] × PC[0, 1]. Then PC[0, 1] and X are Banach spaces with norm
‖u‖ = supt∈[0,1]|u(t)| and ‖(u, v)‖ = ‖u‖+‖v‖, respectively. The solution of problem (P)means
(u, v) ∈ X ∩ (C2(J ′) × C2(J ′))which satisfies (P).

Recently, several works have been devoted to the study of second-order impulsive
differential systems. See, for example [1–6], and references therein. In Particular, E.K. Lee
and Y.H. Lee [3] studied problem (P) when f and g satisfy f(0, 0) > 0 and g(0, 0) > 0. More
precisely, let us consider the following assumptions.

(D1)
∫1
0 s(1 − s)hi(s)ds < ∞, for i = 1, 2.

(D2) t1Nu(u) ≤ Iu(u) ≤ −(1 − t1)Nu(u) and t1Nv(v) ≤ Iv(v) ≤ −(1 − t1)Nv(v).

(D3) u + Iu(u) and v + Iv(v) are nondecreasing.

(D4) Nu,∞ = limu→∞|Nu(u)|/u < 1 and Nv,∞ = limv→∞|Nv(v)|/v < 1.

(D5) f∞ = limu+v→∞f(u, v)/u + v = ∞ and g∞ = limu+v→∞g(u, v)/u + v = ∞.

(D6) f and g are nondecreasing on R
2
+, that is, f(u1, v1) ≤ f(u2, v2) and g(u1, v1) ≤

g(u2, v2) whenever (u1, v1) ≤ (u2, v2), where inequality on R
2
+ can be understood

componentwise.

Under the above assumptions, they proved that there exists a continuous curve Γ splitting
R

2
+ \ {(0, 0)} into two disjoint subsets O1 and O2 such that problem (3.20) has at least two

positive solutions for (λ, μ) ∈ O1, at least one positive solution for (λ, μ) ∈ Γ, and no solution
for (λ, μ) ∈ O2.

The aim of this paper is to study generalized Emden-Fowler-type problem for (P),
that is, f and g satisfy f(0, 0) = 0 and g(0, 0) = 0, respectively. In this case, we obtain two
interesting results. First, for Dirichlet boundary condition, that is, a = b = c = d = 0, assuming
(D1), (D2) and

(D′
4) Nu,0 = limu→ 0|Nu(u)|/u < 1/2 and Nv,0 = limv→ 0|Nv(v)|/v < 1/2,

(D′
5) f∞ = ∞, g∞ = ∞ and f0 = limu+v→ 0f(u, v)/u+v = 0, g0 = limu+v→ 0g(u, v)/u+v = 0,

we prove that problem (P) has at least one positive solution for all (λ, μ) ∈ R
2
+\{(0, 0)}.On the

other hand, for two-point boundary condition, that is, c > a and d > b, assuming (D1) ∼ (D6),
we prove that there exists a continuous curve Γ0 splittingR

2
+\{(0, 0)} into two disjoint subsets

O0,1 andO0,2 and there exists a subset O ⊂ O0,1 such that problem (P) has at least two positive
solutions for (λ, μ) ∈ O, at least one positive solution for (λ, μ) ∈ (O0,1 \ O) ∪ Γ0, and no
solution for (λ, μ) ∈ O0,2.

Our technique of proofs is mainly employed by the upper and lower solutions method
and several fixed point index theorems.

The paper is organized as follows: in Section 2, we introduce and prove two types of
upper and lower solutions and related theorems, one for singular systems with no impulse
effect and the other for singular impulsive systems and then introduce several fixed point
index theorems for later use. In Section 3, we prove an existence result for Dirichlet boundary
value problems and existence and nonexistence part of the result for two-point boundary
value problems. In Section 4, we prove the existence of the second positive solution for
two point boundary value problems. Finally, in Section 5, we apply main results to prove
some theorems of existence, nonexistence, and multiplicity of positive radial solutions for
impulsive semilinear elliptic problems.
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2. Preliminary

In this section, we introduce two types of fundamental theorems of upper and lower solutions
method for a singular system with no impulse effect and an impulsive system and then
introduce several well-known fixed point index theorems. We first give definition s of
somewhat general type of upper and lower solutions for the following singular system:

u′′(t) + F(t, u(t), v(t)) = 0, t ∈ (0, 1),

v′′(t) +G(t, u(t), v(t)) = 0, t ∈ (0, 1),

u(0) = A, u(1) = C, v(0) = B, v(1) = D,

(H)

where F,G : (0, 1) × R × R → R are continuous.

Definition 2.1. We say that (αu, αv) ∈ C[0, 1] ×C[0, 1] is a G-lower solution of (H) if (αu, αv) ∈
C2(0, 1) × C2(0, 1) except at finite points τ1, . . . , τn with 0 < τ1 < . . . < τn < 1 such that

(L1) at each τi, there exist (α′
u (τi−), α′

v (τi−)), (α′
u (τi+), α′

v(τi
+)) such that α′

u (τi−) ≤
α′
u(τi

+), α′
v(τi

−) ≤ α′
v(τi

+), and

(L2)

α′′
u(t) + F(t, αu(t), αv(t)) ≥ 0,

α′′
v(t) +G(t, αu(t), αv(t)) ≥ 0, t ∈ (0, 1)

{τ1, . . . , τn} ,

αu(0) ≤ A, αu(1) ≤ C,

αv(0) ≤ B, αv(1) ≤ D.

(2.1)

We also say that (βu, βv) ∈ C[0, 1] × C[0, 1] is a G-upper solution of the problem (H) if
(βu, βv) ∈ C2(0, 1) × C2(0, 1) except at finite points σ1, . . . , σm with 0 < σ1 < · · · < σm < 1
such that

(U1) at each σi, there exist (β′u(σj
−), β′v(σj

−)), (β′u(σj
+), β′v(σj

+)) such that β′u(σj
−) ≥

β′u (σj
+), β′v(σj

−) ≥ β′v(σj
+), and

(U2)

β′′u(t) + F
(

t, βu(t), βv(t)
) ≤ 0,

β′′v(t) +G
(

t, βu(t), βv(t)
) ≤ 0, t ∈ (0, 1)

{σ1, . . . , σn} ,

βu(0) ≥ A, βu(1) ≥ C,

βv(0) ≥ B, βv(1) ≥ D.

(2.2)

For the proof of the fundamental theorem on G-upper and G-lower solutions for
problem (H), we need the following lemma. One may refer to [7] for the proof.
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Lemma 2.2. Let F,G : D → R be continuous functions andD ⊂ (0, 1) ×R ×R. Assume that there
exist hF, hG ∈ C((0, 1),R+) such that

|F(t, u, v)| ≤ hF(t), |G(t, u, v)| ≤ hG(t), (2.3)

for all (t, u, v) ∈ (0, 1) × R × R, and

∫1

0
s(1 − s)hF(s)ds +

∫1

0
s(1 − s)hG(s)ds < ∞. (2.4)

Then problem (H) has a solution.

Let D
β
α = {(t, u, v) | (αu(t), αv(t)) ≤ (u, v) ≤ (βu(t), βv(t)), t ∈ [0, 1]}. Then the

fundamental theorem of G-upper and G-lower solutions for singular problem (H) is given
as follows.

Theorem 2.3. Let (αu, αv) and (βu, βv) be a G-lower solution and a G-upper solution of problem
(H), respectively, such that

(a1) (αu(t), αv(t)) ≤ (βu(t), βv(t)) for all t ∈ [0, 1].

Assume also that there exist hF, hG ∈ C((0, 1),R+) such that

(a2) |F(t, u, v)| ≤ hF(t) and |G(t, u, v)| ≤ hG(t) for all (t, u, v) ∈ D
β
α;

(a3)
∫1
0 s(1 − s)hF(s)ds +

∫1
0 s(1 − s)hG(s)ds < ∞;

(a4) F(t, u, v1) ≤ F(t, u, v2), whenever v1 ≤ v2 and G(t, u1, v) ≤ G(t, u2, v), whenever u1 ≤
u2.

Then problem (H) has at least one solution (u, v) such that

(αu(t), αv(t)) ≤ (u(t), v(t)) ≤ (

βu(t), βv(t)
)

, ∀ t ∈ [0, 1]. (2.5)

Proof. Define a modified function of F as follows:

F∗(t, u, v) =

⎧

⎪⎪⎪⎪⎪
⎨

⎪⎪⎪⎪⎪
⎩

F
(

t, βu(t), v
) − u − βu(t)

1
+ u2 if u > βu(t),

F(t, u, v) if αu(t) ≤ u ≤ βu(t),

F(t, αu(t), v) − u − αu(t)
1

+ u2 if u < αu(t),
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F∗(t, u, v) =

⎧

⎪⎪⎪
⎨

⎪⎪⎪
⎩

F∗
(

t, u, βv(t)
)

if v > βv(t),

F∗(t, u, v) if αv(t) ≤ v ≤ βv(t),

F∗(t, u, αv(t)) if v < αv(t),

G∗(t, u, v) =

⎧

⎪⎪⎪
⎨

⎪⎪⎪
⎩

G
(

t, βu(t), v
)

if u > βu(t),

G(t, u, v) if αu(t) ≤ u ≤ βu(t),

G(t, αu(t), v) if u < αu(t),

(2.6)

G∗(t, u, v) =

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

G∗
(

t, u, βv(t),
) − v − βv(t)

1
+ v2 if v > βv(t),

G∗(t, u, v) if αv(t) ≤ v ≤ βv(t),

G∗(t, u, αv(t)) − v − αv(t)
1

+ v2 if v < αv(t).

(2.7)

Then F∗, G∗ : (0, 1) × R × R → R are continuous and

|F∗(t, u, v)| ≤ m
(

αu, βu
)

+ hF(t),

|G∗(t, u, v)| ≤ m
(

αv, βv
)

+ hG(t),
(2.8)

for all (t, u, v) ∈ (0, 1) × R × R, where m(α, β) = ‖α‖ + ‖β‖ + 1. For the problem

u′′(t) + F∗(t, u(t), v(t)) = 0,

v′′(t) +G∗(t, u(t), v(t)) = 0, t ∈ (0, 1)

u(0) = A, u(1) = C, v(0) = B, v(1) = D,

(M)

Lemma 2.2 guarantees the existence of solutions of problem (M) and thus it is enough to
prove that any solution (u, v) of problem (M) satisfies

(αu(t), αv(t)) ≤ (u(t), v(t)) ≤ (

βu(t), βv(t)
)

, ∀t ∈ [0, 1]. (2.9)

Suppose, on the contrary, (αu, αv) /≤ (u, v), so we consider the case αu /≤ u. Let (αu − u)(t0) =
maxt∈[0,1](αu − u)(t) > 0. If t0 ∈ (0, 1) \ {τ1, . . . , τn}, then (αu − u)′′(t0) ≤ 0. We consider two
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cases. First, if αv(t0) ≤ v(t0), then by αu(t0) > u(t0) and condition (a4),

0 ≥ (αu − u)′′(t0) = α′′
u(t0) + F∗(t0, u(t0), v(t0))

= α′′
u(t0) + F(t0, αu(t0), v(t0)) − u(t0) − αu(t0)

1 + u2(t0)

≥ α′′
u(t0) + F(t0, αu(t0), αv(t0)) − u(t0) − αu(t0)

1 + u2(t0)

≥ αu(t0) − u(t0)
1 + u2(t0)

> 0,

(2.10)

which is a contradiction. Next, if αv(t0) > v(t0), then by the definition of F∗,

0 ≥ (αu − u)′′(t0) = α′′
u(t0) + F∗(t0, u(t0), v(t0))

= α′′
u(t0) + F(t0, αu(t0), αv(t0)) − u(t0) − αu(t0)

1 + u2(t0)
> 0,

(2.11)

which is also a contradiction. If t0 = τi for some i = 1, . . . , n, then since αu−u attains its positive
maximum at τi,

(αu − u)′
(

τi
−) ≥ 0, (αu − u)′(τi+) ≤ 0. (2.12)

If (αu − u)′(τi−) > 0, then

0 < (αu − u)′
(

τi
−) − (αu − u)′(τi+) = α′

u

(

τi
−) − αu′(τi+). (2.13)

This leads a contradiction to the definition of G-lower solution. If (αu−u)′(τi−) = 0, then there
exists δ > 0 such that for all t ∈ (τi − δ, τi),

(αu − u)(t) > 0, (αu − u)′(t) ≥ 0, (αu − u)′′(t) ≤ 0. (2.14)

For t ∈ (τi − δ, τi), if αv(t) ≤ v(t), then by αu(t) > u(t) and condition (a4),

0 ≥ (αu − u)′′(t) = α′′
u(t) + F∗(t, u(t), v(t))

= α′′
u(t) + F(t, αu(t), v(t)) − u(t) − αu(t)

1 + u2(t)

≥ α′′
u(t) + F(t, αu(t), αv(t)) − u(t) − αu(t)

1 + u2(t)

≥ αu(t) − u(t)
1 + u2(t)

> 0,

(2.15)
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which is a contradiction. If αv(t) > v(t), then by definition of F∗,

0 ≥ (αu − u)′′(t) = α′′
u(t) + F∗(t, u(t), v(t))

= α′′
u(t) + F(t, αu(t), αv(t)) − u(t) − αu(t)

1 + u2(t)
> 0,

(2.16)

which is a contradiction. If t0 = 0 or 1, then

0 < (αu − u)(0) = αu(0) −A ≤ 0,

0 < (αu − u)(1) = αu(1) − C ≤ 0,
(2.17)

which is a contradiction. Similarly, we get contradictions for the case αv /≤ v. The proof for
(u, v) ≤ (βu, βv) can be done by similar fashion.

Now we introduce definition and fundamental theorem of upper and lower solutions
for impulsive differential systems of the form

u′′(t) + F(t, u(t), v(t)) = 0, t /= t1, t ∈ (0, 1),

u′′(t) +G(t, u(t), v(t)) = 0, t /= t1, t ∈ (0, 1),

Δu|t=t1 = Iu(u(t1)), Δv|t=t1 = Iv(v(t1)),

Δu′∣∣
t=t1

= Nu(u(t1)), Δv′∣∣
t=t1

= Nv(v(t1)),

u(0) = a, v(0) = b, u(1) = c, v(1) = d,

(S)

where F,G ∈ C((0, 1) × R × R,R), Iu, Iv ∈ C(R+,R) satisfying Iu(0) = 0 = Iv(0) and Nu,Nv ∈
C(R+, (−∞, 0]).

Definition 2.4. (αu, αv) ∈ X ∩ (C2(J ′) × C2(J ′)) is called a lower solution of problem (S) if

α′′
u(t) + F(t, αu(t), αv(t)) ≥ 0, t /= t1,

α′′
v(t) +G(t, αu(t), αv(t)) ≥ 0, t /= t1,

Δαu|t=t1 = Iu(αu(t1)), Δαv|t=t1 = Iv(αv(t1)),

Δα′
u

∣
∣
t=t1

≥ Nu(αu(t1)), Δα′
v

∣
∣
t=t1

≥ Nv(αv(t1)),

αu(0) ≤ a, αv(0) ≤ b, αu(1) ≤ c, αv(1) ≤ d.

(2.18)

We also define an upper solution (βu, βv) ∈ X∩(C2(J ′)×C2(J ′)) if (βu, βv) satisfies the reverses
of the above inequalities.

The following existence theorem for upper and lower solutions method is proved in
[3].
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Theorem 2.5. Let (αu, αv) and (βu, βv) be lower and upper solutions of problem (S), respectively,
satisfying (a1). Moreover, we assume (a2) ∼ (a4) and (D3). Then problem (S) has at least one solution
(u, v) such that

(αu(t), αv(t)) ≤ (u(t), v(t)) ≤ (

βu(t), βv(t)
)

, ∀ t ∈ [0, 1]. (2.19)

The following theorems are well known cone theoretic fixed point theorems. See
Lakshmikantham ([8]) for proofs and details.

Theorem 2.6. LetX be a Banach space andK a cone inX. Assume thatΩ1 andΩ2 are bounded open
subsets in X with 0 ∈ Ω1 and Ω1 ⊂ Ω2. Let T : K ∩ (Ω2 \ Ω1) → K be a completely continuous
such that either

(i) ‖Tu‖ ≤ ‖u‖ for u ∈ K ∩ ∂Ω1 and ‖Tu‖ ≥ ‖u‖ for u ∈ K ∩ ∂Ω2 or

(ii) ‖Tu‖ ≥ ‖u‖ for u ∈ K ∩ ∂Ω1 and ‖Tu‖ ≤ ‖u‖ for u ∈ K ∩ ∂Ω2.

Then T has a fixed point inK∩ (Ω2 \Ω1).

Theorem 2.7. Let X be a Banach space, K a cone in X and Ω bounded open in X. Let 0 ∈ Ω and
T : K∩Ω → K be condensing. Suppose that Tx /= νx, for all x ∈ K ∩ ∂Ω and all ν ≥ 1. Then

i(T,K∩Ω,K) = 1. (2.20)

3. Existence

In this section, we prove an existence theorem of positive solutions for problem (P) with
Dirichlet boundary condition and the existence and nonexistence part of the result for
problem (P)with two-point boundary condition. Let us consider the following second-order
impulsive differential systems.

u′′(t) + λh1(t)f(u(t), v(t)) = 0, t ∈ (0, 1), t /= t1,

v′′(t) + μh2(t)g(u(t), v(t)) = 0, t ∈ (0, 1), t /= t1,

Δu|t=t1 = Iu(u(t1)), Δv|t=t1 = Iv(v(t1))

Δu′∣∣
t=t1

= Nu(u(t1)), Δv′∣∣
t=t1

= Nv(v(t1)),

u(0) = a ≥ 0, v(0) = b ≥ 0, u(1) = c ≥ 0, v(1) = d ≥ 0,

(P)

where λ, μ are positive real parameters, f, g ∈ C(R2
+, [0,∞)) with f(0, 0) = 0, g(0, 0) = 0,

and f(u, v) > 0, g(u, v) > 0 for all (u, v)/= (0, 0), Iu, Iv ∈ C(R+,R) satisfying Iu(0) = 0 =
Iv(0),Nu,Nv ∈ C(R+, (−∞, 0]), and h1, h2 ∈ C((0, 1), (0,∞)) may be singular at t = 0 and/or
1.
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We first set up an equivalent operator equatio for problem (P). Let us defineAλ : X →
PC[0, 1] and Bμ : X → PC[0, 1] by taking

Aλ(u, v)(t) � a + (c − a)t + λ

∫1

0
K(t, s)h1(s)f(u(s), v(s))ds +Wu(t, u),

Bμ(u, v)(t) � b + (d − b)t + μ

∫1

0
K(t, s)h2(s)g(u(s), v(s))ds +Wv(t, v),

(3.1)

where

K(t, s) =

⎧

⎨

⎩

t(−Iv(v(t1)) − (1 − t1)Nv(v(t1))), 0 ≤ t ≤ t1,

(1 − t)(Iv(v(t1)) − t1Nv(v(t1))), t1 < t ≤ 1.

Wu(t, u)(t) =

⎧

⎨

⎩

t(−Iu(u(t1)) − (1 − t1)Nu(u(t1))), 0 ≤ t ≤ t1,

(1 − t)(Iu(u(t1)) − t1Nu(u(t1))), t1 < t ≤ 1,

Wv(t, u)(t) =

⎧

⎨

⎩

t(−Iv(v(t1)) − (1 − t1)Nv(v(t1))), 0 ≤ t ≤ t1,

(1 − t)(Iv(v(t1)) − t1Nv(v(t1))), t1 < t ≤ 1.

(3.2)

Also define

Tλ,μ(u, v) �
(

Aλ(u, v), Bμ(u, v)
)

. (3.3)

Then Tλ,μ : X → X is well defined on X and problem (P) is equivalent to the fixed-point
equation

Tλ,μ(u, v) = (u, v) in X. (3.4)

Mainly due to (D1), Tλ,μ is completely continuous (see [3] for the proof). Let ‖u‖0 =
supt∈[0,t1]|u(t)|, ‖u‖1 = supt∈[t1,1]|u(t)|, S0 = [t1/4, 3t1/4], S1 = [3t1 + 1/4, t1 + 3/4],P = {(u, v) ∈
X | u, v ≥ 0}, and K = {(u, v) ∈ P | mint∈S0(u(t) + v(t)) ≥ t1/4(‖u‖0 + ‖v‖0),mint∈S1(u(t) +
v(t)) ≥ 1 − t1/4(‖u‖1 + ‖v‖1)}. Then ‖u‖ = max{‖u‖0, ‖u‖1} and P,K are cones in X. By using
concavity of Tλ,μ(u)with u ∈ P, we can easily show that Tλ,μ(P) ⊂ K.
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We now prove the existence theorem of positive solutions for Dirichlet boundary value
problem

u′′(t) + λh1(t)f(u(t), v(t)) = 0, t ∈ (0, 1), t /= t1,

v′′(t) + μh2(t)g(u(t), v(t)) = 0, t ∈ (0, 1) t /= t1,

Δu|t=t1 = Iu(u(t1)), Δv|t=t1 = Iv(v(t1)),

Δu′∣∣
t=t1

= Nu(u(t1)), Δv′∣∣
t=t1

= Nv(v(t1)),

u(0) = 0, v(0) = 0, u(1) = 0, v(1) = 0.

(PD)

Theorem 3.1. Assume (D1), (D2), (D′
4), and (D′

5). Then problem (PD) has at least one positive
solution for all (λ, μ) ∈ R

2
+ \ {(0, 0)}.

Proof. First, we consider case λ > 0 and μ > 0. By the fact Nu,0 < 1/2 and Nv,0 < 1/2, we
may choose c1, m1 > 0 such that max{Nu,0,Nv,0} < c1 < 1/2, |Nu(u) |≤ c1u for u ≤ m1 and
|Nv(v)| ≤ c1v for v ≤ m1. Also choose ηλ and ημ satisfying 0 < ηλ < (1 − 2c1)/2λ

∫1
0 s(1 −

s)h1(s)ds and 0 < ημ < (1 − 2c1)/2μ
∫1
0 s(1 − s)h2(s)ds. Since f0 = 0 and g0 = 0, there exist

m2, m3 > 0 such that f(u, v) ≤ ηλ(u + v) for u + v ≤ m2 and g(u, v) ≤ ημ(u + v) for u + v ≤ m3.
Let Ω1 = BM1 = {(u, v) ∈ X | ‖(u, v)‖ < M1} with M1 = min{m1, m2, m3}. Then for (u, v) ∈
K ∩ ∂Ω1,we obtain by using (D2)

Aλ(u, v)(t) = λ

∫1

0
K(t, s)h1(s)f(u(s), v(s))ds +Wu(t, u)

≤ ληλ

∫1

0
s(1 − s)h1(s)(u(s) + v(s))ds + |Nu(u(t1))|

≤
(

ληλ

∫1

0
s(1 − s)h1(s)ds + c1

)

‖(u, v)‖

≤ 1
2
‖u, v‖,

(3.5)

for all t ∈ [0, 1]. Similarly, we obtain

Bμ(u, v)(t) ≤ 1
2‖(u, v)‖ (3.6)

for all t ∈ [0, 1]. Thus

∥
∥Tλ, μ(u, v)

∥
∥ = ‖Aλ(u, v)‖ +

∥
∥Bμ(u, v)

∥
∥ ≤ ‖(u, v)‖. (3.7)
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On the other hand, let us choose η1 and η2 such that

1
η2

< μmin

⎧

⎪
⎨

⎪
⎩

t1
8
min
t∈S0

∫

S0

K(t, s)h2(s)ds,
1 − t1
8

min
t∈S1

∫

S1

K(t, s)h2(s)ds

⎫

⎪
⎬

⎪
⎭

.

1
η2

< μmin

⎧

⎪
⎨

⎪
⎩

t1
8
min
t∈S0

∫

S0

K(t, s)h2(s)ds,
1 − t1
8

min
t∈S1

∫

S1

K(t, s)h2(s)ds

⎫

⎪
⎬

⎪
⎭

.

(3.8)

Also by (D′
5), we may choose Rf and Rg such that f(u, v) ≥ η1(u + v) for u + v ≥ Rf and

g(u, v) ≥ η2(u + v) for u + v ≥ Rg. Let Ω2 = {(u,v) ∈ X | ‖(u, v)‖ < M2}, where M2 =
max{8Rf/t1, 8Rf/(1 − t1), 8Rg/t1, 8Rg/(1 − t1),M1 + 1}. Then Ω1 ⊂ Ω2. Let (u, v) ∈ K ∩ ∂Ω2,
then we have the following four cases: ‖u‖ ≥ ‖v‖ and ‖u‖ = ‖u‖0, ‖u‖ ≥ ‖v‖ and ‖u‖ =
‖u‖1, ‖u‖ ≤ ‖v‖ and ‖v‖ = ‖v‖0, and ‖u‖ ≤ ‖v‖ and ‖v‖ = ‖v‖1. We consider the first case,
the rest of them can be considered in a similar way. So let ‖u‖ ≥ ‖v‖ and ‖u‖ = ‖u‖0; then for
t ∈ S0,we have

u(t) + v(t) ≥ u(t) ≥ t1
8
(2‖u‖0) ≥

t1
8
(‖u‖ + ‖v‖) = t1

8
‖(u, v)‖ ≥ Rf . (3.9)

Thus f(u(t), v(t)) ≥ η1(u(t) + v(t)) for t ∈ S0. Since Wu(t, u) ≥ 0, we get for t ∈ S0,

Aλ(u, v)(t) = λ

∫1

0
K(t, s)h1(s)f(u(s), v(s))ds +Wu(t, u)

≥ λ

∫

S0

K(t, s)h1(s)f(u(s), v(s))ds

≥ λη1

∫

S0

K(t, s)h1(s)(u(s) + v(s))ds

≥ λη1
t1
8

∫

S0

K(t, s)h1(s)ds(2‖u‖0 + 2‖v‖0)

≥ λη1
t1
8
min
t∈S0

∫

S0

K(t, s)h1(s)ds‖(u, v)‖ > ‖(u, v)‖.

(3.10)

Therefore,

∥
∥Tλ,μ(u, v)

∥
∥ ≥ ‖Aλ(u, v)‖ > ‖(u, v)‖, (3.11)

and by Theorem 2.6, Tλ,μ has a fixed point in K∩ (Ω2 \Ω1).
Second, consider case λ > 0 and μ = 0. Taking c1, ηλ,m1, and m2 as above and using

the same computation, we may show

‖Aλ(u, v)‖ ≤ 1
2
‖(u, v)‖, (3.12)
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for all (u, v) ∈ K ∩ ∂Ω1,where Ω1 = BM1 withM1 = min{m1, m2}. Since μ = 0,

Bμ(u, v)(t) = Wv(t, v) ≤ |Nv(v(t1))| ≤ c1‖(u, v)‖ ≤ 1
2
‖(u, v)‖, (3.13)

for all t ∈ [0, 1]. Thus

∥
∥Tλ,μ(u, v)

∥
∥ ≤ ‖Aλ(u, v)‖ +

∥
∥Bμ(u, v)

∥
∥ ≤ ‖(u, v)‖, (3.14)

for (u, v) ∈ K ∩ ∂Ω1. Now, let us choose η1 and Rf as above and let Ω2 = {(u, v) ∈ X |
‖(u, v)‖ < M2}, where M2 = max{8Rf/t1, 8Rf/1 − t1,M1 + 1}. Then Ω1 ⊂ Ω2 and we can
show by the same computation as above,

∥
∥Tλ,μ(u, v)

∥
∥ ≥ ‖Aλ(u, v)‖ > ‖(u, v)‖, (3.15)

for (u, v) ∈ K ∩ ∂Ω2 and thus Tλ,μ has a fixed point in K∩ (Ω2 \Ω1).
Finally, consider case λ = 0 and μ > 0. Taking c1,ημ,m1, and m3 as the first case, we

may show by similar argument,

∥
∥Bμ(u, v)

∥
∥ ≤ 1

2
‖(u, v)‖, ‖Aλ(u, v)‖ ≤ 1

2
‖(u, v)‖, (3.16)

for all (u, v) ∈ K ∩ ∂Ω1,where Ω1 = BM1 withM1 = min{m1, m3} . Thus

∥
∥Tλ,μ(u, v)

∥
∥ ≤ ‖(u, v)‖, (3.17)

for (u, v) ∈ K ∩ ∂Ω1. Now, let us choose η2 and Rg as the first case and let Ω2 = {(u, v) ∈ X |
‖(u, v)‖ < M2}, where M2 = max{8Rg/t1, 8Rg/1 − t1,M1 + 1}. Then Ω1 ⊂ Ω2 and we also
show similarly, as before,

∥
∥Tλ,μ(u, v)

∥
∥ ≥ ∥

∥Bμ(u, v)
∥
∥ > ‖(u, v)‖, (3.18)

for (u, v) ∈ K∩ ∂Ω2. Therefore, Tλ,μ has a fixed point inK∩ (Ω2 \Ω1) and this completes the
proof.

Now let us consider two point boundary value problems given as follows:

u′′(t) + λh1(t)f(u(t), v(t)) = 0, t ∈ (0, 1), t/= t1,

v′′(t) + μh2(t)g(u(t), v(t)) = 0, t ∈ (0, 1), t /= t1,

Δu|t=t1 = Iu(u(t1)), Δv|t=t1 = Iv(v(t1)),

Δu′∣∣
t=t1

= Nu(u(t1)), Δv′Δv
∣
∣
t=t1

= Nv(v(t1)),

u(0) = a ≥ 0, v(0) = b ≥ 0, u(1) = c > a, v(1) = d > b.

(PT )
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Lemma 3.2. Assume (D5). Let R be a compact subset of R2
+ \ {(0, 0)}. Then there exists a constant

bR > 0 such that for all (λ, μ) ∈ R for possible positive solutions (u, v) of problem (3.20) at (λ, μ),
one has ‖(u, v)‖ < bR.

Proof. Suppose on the contrary that there is a sequence (un, vn) of positive solutions of (3.20)
at (λn, μn) such that (λn, μn) ∈ R for all n and ‖(un, vn)‖ → ∞. Since (0, 0)/∈R, there is a
subsequence, say again {(λn, μn)}, such that α � min{λn} > 0 or β � min{μn} > 0. First, we
assume α > 0. From ‖(un, vn)‖ → ∞, we know ‖un‖0 + ‖vn‖0 → ∞ or ‖un‖1 + ‖vn‖1 → ∞.
Suppose ‖un‖0 + ‖vn‖0 → ∞. Then by the concavity of un and vn, we have

un(t) + vn(t) ≥ t1
4
(‖un‖0 + ‖vn‖0), (3.19)

for t ∈ S0. Let us choose η1 > (2π)2/t21αh1,where h1 = mint∈S0h1(t). Then by (D5), there exists
Rf > 0 such that

f(u, v) ≥ η1(u + v) ∀u + v ≥ Rf . (3.20)

Since ‖un‖0 + ‖vn‖0 > (4/t1)Rf for sufficiently large n, (3.19) implies un(t) + vn(t) > Rf for
t ∈ S0. Thus for t ∈ S0,

f(un(t), vn(t)) > η1(un(t) + vn(t)) ≥ η1un(t). (3.21)

Hence we have for t ∈ S0,

0 = u′′
n(t) + λnh1(t)f(un(t), vn(t)) > u′′

n(t) + αh1η1un(t). (3.22)

If wemultiply by φ(t) = sin(2π/t1)(t−(t1/4)) both sides in the above inequality and integrate
on S0, then by the facts φ′(t1/4) > 0, φ′(3t1/4) < 0 and integration by part, we obtain

0 >

∫3t1/4

t1/4
u′′
n(t)φ(t)dt + αh1η1

∫3t1/4

t1/4
un(t)φ(t)dt

≥ −
(
2π
t1

)2 ∫3t1/4

t1/4
un(t)φ(t)dt + αh1η1

∫3t1/4

t1/4
un(t)φ(t)dt.

(3.23)

Thus (2π/t1)
2/αh1 ≥ η1 which is a contradiction to the choice of η1. Suppose ‖un‖1+‖vn‖1 →

∞, then we also get a contradiction by a similar calculation with η2 > (2π)2/(1 − t1)
2 αh̃1,

where h̃1 = mint∈S1h1(t). Finally, the case β > 0 can also be proved by similar way using the
condition g∞ = ∞.

Lemma 3.3. Assume (D1), (D3), and

(Q) f(u, v1) ≤ f(u, v2), whenever v1 ≤ v2, g(u1, v) ≤ g(u2, v), whenever u1 ≤ u2.
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If problem (3.20) has a positive solution at (λ, μ). Then the problem also has a positive solution at
(λ, μ) for all (λ, μ) ≤ (λ, μ).

Proof. Let (u, v) be a positive solution of problem (3.20) at (λ, μ) and let (λ, μ) ∈ R
2
+ \ {(0, 0)}

with (λ, μ) ≤ (λ, μ). Then (u, v) is an upper solution of (3.20) at (λ, μ). Define (αu, αv) by

αu(t) =

⎧

⎪
⎨

⎪
⎩

0, t ∈ [0, t1],
c

1 − t1
(t − t1), t ∈ (t1, 1],

αv(t) =

⎧

⎪
⎨

⎪
⎩

0, t ∈ [0, t1],

d

1 − t1
(t − t1), t ∈ (t1, 1].

(3.24)

Then (αu, αv) is a lower solution of problem (3.20) at (λ, μ). By the concavity of (u, v), (u, v) ≥
(αu, αv). Therefore, Theorem 2.5 implies that problem (3.20) has a positive solution at (λ, μ).

Lemma 3.4. Assume (D1) ∼ (D4) and (Q). Then there exists (λ∗, μ∗) > (0, 0) such that problem
(3.20) has a positive solution for all (λ, μ) ≤ (λ∗, μ∗).

Proof. It is not hard to see that the following problem:

u′′(t) + h1(t) = 0, t ∈ (0, 1), t /= t1,

v′′(t) + h2(t) = 0, t ∈ (0, 1), t /= t1,

Δu|t=t1 = Iu(u(t1)), Δv|t=t1 = Iv(v(t1)),

Δu′∣∣
t=t1

= Nu(u(t1)), Δv′∣∣
t=t1

= Nv(v(t1)),

u(0) = a ≥ 0, v(0) = b ≥ 0, u(1) = c > a, v(1) = d > b

(3.25)

has a positive solution so let (βu, βv) be a positive solution. Let Mf = supt∈[0,1]f(βu(t), βv(t))
and Mg = supt∈[0,1] g(βu(t), βv(t)). Then Mf,Mg > 0 and for (λ∗, μ∗) = (1/Mf, 1/Mg), we
get

β′′u + λ∗h1(t)f
(

βu(t), βv(t)
)

= h1(t)
(

λ∗f
(

βu(t), βv(t)
) − 1

) ≤ 0,

β′′v + μ∗h2(t)g
(

βu(t), βv(t)
)

= h2(t)
(

μ∗g
(

βu(t), βv(t)
) − 1

) ≤ 0.
(3.26)

This shows that (βu, βv) is an upper solution of (3.20) at (λ∗, μ∗). On the other hand,
(αu, αv) given in Lemma 3.3 is obviously a lower solution and (αu, αv) ≤ (βu, βv). Thus by
Theorem 2.5, (3.20) has a positive solution at (λ∗, μ∗) and the proof is done by Lemma 3.3.

We introduce a known existence result for a singular boundary value problem with no
impulse effect.
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Lemma 3.5 (see[9]). Consider, (D1), (D5) and (Q). For problem

u′′(t) + λh1(t)f(u(t), v(t)) = 0,

v′′(t) + μh2(t)g(u(t), v(t)) = 0, t ∈ (0, 1),

u(0) = a ≥ 0, u(1) = c > a,

v(0) = b ≥ 0, v(1) = d > b,

(UT )

let AT = {(λ, μ) ∈ R
2
+ \ {(0, 0)} | (3.27) has a positive solution at (λ, μ)}. Then (AT ,≤) is bounded

above.
Define A = {(λ, μ) ∈ R

2
+ \ {(0, 0)} | (3.20) has a positive solution at (λ, μ)}. Then A /= ∅ by

Lemma 3.4 and (A,≤) is a partially ordered set.

Lemma 3.6. Assume (D1) ∼ (D6). Then (A,≤) is bounded above.

Proof. Suppose on the contrary that there exists a sequence (λn, μn) ∈ A such that |(λn, μn)| →
∞. Let (un, vn) be a positive solution of problem (3.20) at (λn, μn). By condition (D2),we may
choose sequences (sn), (tn) in [0, t1) ∪ (t1, 1] such that if Iu(un(t1)) > 0, then tn ∈ (t1, 1] and

Iu(un(t1)) + (tn − t1)Nu(un(t1)) = 0,

Iu(un(t1)) + (t − t1)Nu(un(t1)) > 0, on [t1, tn),

Iu(un(t1)) + (t − t1)Nu(un(t1)) < 0, on (tn, 1];

(3.27)

if Iu(un(t1)) < 0, then tn ∈ [0, t1) and

Iu(un(t1)) + (tn − t1)Nu(un(t1)) = 0,

Iu(un(t1)) + (t − t1)Nu(un(t1)) > 0, on [0, tn),

Iu(un(t1)) + (t − t1)Nu(un(t1)) < 0, on (tn, t1];

(3.28)

if Iv(vn(t1)) > 0, then sn ∈ (t1, 1] and

Iv(vn(t1)) + (sn − t1)Nv(vn(t1)) = 0,

Iv(vn(t1)) + (t − t1)Nv(vn(t1)) > 0, on [t1, sn),

Iv(vn(t1)) + (t − t1)Nv(vn(t1)) < 0, on (sn, 1];

(3.29)

if Iv(vn(t1)) < 0, then sn ∈ [0, t1) and

Iv(vn(t1)) + (sn − t1)Nv(vn(t1)) = 0,

Iv(vn(t1)) + (t − t1)Nv(vn(t1)) > 0, on [0, sn),

Iv(vn(t1)) + (t − t1)Nv(vn(t1)) < 0, on (sn, t1].

(3.30)
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If Iu(un(t1)) > 0, define

ũn(t) =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

un(t), on [0, t1],

un(t) − (Iu(un(t1)) + (t − t1)Nu(un(t1))), on (t1, tn),

un(t), on [tn, 1],

(3.31)

and if Iu(un(t1)) < 0, define

ũn(t) =

⎧

⎪⎪⎪
⎨

⎪⎪⎪
⎩

un(t), on [0, tn],

un(t) + (Iu(un(t1)) + (t − t1)Nu(un(t1))), on (tn, t1],

un(t), on (t1, 1].

(3.32)

Moreover, if Iv(vn(t1)) > 0, define

ṽn(t) =

⎧

⎪⎪⎪
⎨

⎪⎪⎪
⎩

vn(t), on [0, t1],

vn(t) − (Iv(vn(t1)) + (t − t1)Nv(vn(t1))), on (t1, sn),

vn(t), on [sn, 1],

(3.33)

and if Iv(vn(t1)) < 0, define

ṽn(t) =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

vn(t), on [0, sn],

vn(t) + (Iv(vn(t1)) + (t − t1)Nv(vn(t1))), on (sn, t1],

vn(t), on (t1, 1].

(3.34)

Then we can easily see that (ũn, ṽn) ∈ (C[0, 1] × C[0, 1]) ∩ (C2(0, 1) × C2(0, 1)) except
t1, tn, sn. Furthermore, (ũ′

n(t
−
1 ), ṽ

′
n(t

−
1 )) = (ũ′

n(t
+
1 ), ṽ

′
n(t

+
1 )), (ũ

′
n(t

−
n), ṽ

′
n(t

−
n)) ≥ (ũ′

n(t
+
n), ṽ

′
n(t

+
n)) and

(ũ′
n(s

−
n), ṽ

′
n(s

−
n)) ≥ (ũ′

n(s
+
n), ṽ

′
n(s

+
n)). We also see (un(t), vn(t)) ≥ (ũn(t), ṽn(t)) on [0, 1]. Thus by

(D6), we get

ũ′′
n(t) + λnh1(t)f(ũn(t), ṽn(t)) = u′′

n(t) + λnh1(t)f(ũn(t), ṽn(t))

= λnh1(t)
(

f(ũn(t), ṽn(t)) − f(un(t), vn(t))
) ≤ 0,

ṽ′′
n(t) + μnh2(t)g(ũn(t), ṽn(t)) = v′′

n(t) + μnh2(t)g(ũn(t), ṽn(t))

= μnh2(t)
(

g(ũn(t), ṽn(t)) − g(un(t), vn(t))
) ≤ 0.

(3.35)

We also get ũn(0) = un(0) = a, ũn(1) = un(1) = c, ṽn(0) = vn(0) = b, and ṽn(1) = vn(1) = d.
Thus (ũn, ṽn) is aG-upper solution of problem (UT ) at (λn, μn). If Iu(un(t1)) = 0 or Iv(vn(t1)) =
0, then we consider ũn = un or ṽn = vn as a G-upper solution. Let (α̃u(t), α̃v(t)) = ((c −
a)t + a, (d − b)t + b), then (α̃u, α̃v) is the G-lower solution of (3.27) at (λn, μn). Therefore,
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by Theorem 2.3, problem (3.27) has a positive solution for all (λn, μn). This contradicts to
Lemma 3.5 and the proof is done.

Lemma 3.7. Assume (D1) ∼ (D6). Then every nonempty chain inA has a unique supremum in A.

Proof. Let C be a chain in A. Without loss of generality, we may choose a distinct sequence
{(λn, μn)} ⊂ C such that (λn, μn) ≤ (λn+1, μn+1). By Lemma 3.6, there exists (λC, μC) such
that (λn, μn) → (λC, μC). If we show (λC, μC) ∈ A, then the proof is done. Since {(λn, μn)}
is bounded, Lemma 3.2 implies that there is a constant B such that ‖(un, vn)‖ < B, where
(un, vn) is a solution corresponding to (λn, μn). By the compactness of Tλ,μ, {(un, vn)} has a
convergent subsequence converging to say, (uC, vC). By Lebesgue Convergence theorem, we
see that (uC, vC) is a solution of (3.20) at (λC, μC). Thus (λC, μC) ∈ A.

Theorem 3.8. Assume (D1) ∼ (D6.) Then there exists a continuous curve Γ splitting R
2
+ \ {(0, 0)}

into two disjoint subsets O1 and O2 such that problem (PT ) has at least one positive solution for
(λ, μ) ∈ O1 ∪ Γ and no solution for (λ, μ) ∈ O2.

Proof. (λ∗, μ∗) is given in Lemma 3.4. We know from Lemma 3.4 that (3.20) has a positive
solution at (0, s) for all 0 < s ≤ μ∗. Thus {(0, s) | s > 0} ∩ A is a nonempty chain in A and
by Lemma 3.7, it has unique supremum of the form (0, s∗) in A. This implies that (3.20) has
a positive solution at (0, s) for all 0 < s ≤ s∗ and no solution at (0, s) for all s > s∗. Similarly,
there is r∗ ≥ λ∗ such that (3.20) has a positive solution at (r, 0) for all 0 < r ≤ r∗ and no
solution at (r, 0) for all r > r∗. Define L : R → R

2 by taking L(t) = {(r, s) | s = r + t}. Then
for t ∈ [−r∗, s∗], L(t) ∩ A is a nonempty chain in A. Define Γ(t) as the unique supremum
of L(t) ∩ A. Then Γ is well defined on [−r∗, s∗] and as a consequence of Lemma 3.3, we see
that Γ is continuous on [−r∗, s∗], Γ(−r∗) = (r∗, 0), and Γ(s∗) = (0, s∗). Therefore, the curve
Γ = Γ[−r∗, s∗] separates R2

+ \{(0, 0)} into two disjoint subsetsO1 andO2, whereO1 is bounded
and O2 is unbounded and we get the conclusion of this theorem for Γ,O1, and O2.

4. Multiplicity

In this section, we study existence of the second positive solution for two point boundary
value problem (3.20) with (λ, μ) in certain region of O1 appeared in Theorem 3.8. For the
computation of fixed point index, we need to consider problems of the form

u′′(t) + λh1(t)f(u(t), v(t)) = 0, t ∈ (0, 1), t /= t1,

v′′(t) + μh2(t)g(u(t), v(t)) = 0, t ∈ (0, 1), t /= t1,

Δu|t=t1 = Iu(u(t1)), Δv|t=t1 = Iv(v(t1)),

Δu′∣∣
t=t1

= Nu(u(t1)), Δv′∣∣
t=t1

= Nv(v(t1)),

u(0) = a + ε, u(1) = c + ε,

v(0) = b + ε, v(1) = d + ε,

(Pε
T )

where ε > 0, c > a ≥ 0 and d > b ≥ 0. Theorem 3.8 implies that there exists a continuous curve
Γε splitting R

2
+ \ {(0, 0)} into two disjoint subsets Oε,1 and Oε,2 such that the problem (4.1) has

at least one positive solution for (λ, μ) ∈ Oε,1∪Γε and no solution for (λ, μ) ∈ Oε,2.Using upper
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and lower solutions argument, we can easily show that if 0 < ε < ε, then Oε,1 ∪ Γε ⊂ Oε,1 ∪ Γε.
Let O = ∪ε>0(Oε,1 ∪ Γε), then O ⊂ O0,1. We state the main theorem for two point boundary
value problem (3.20) as follows.

Theorem 4.1. Assume (D1) ∼ (D6). Then there exists a continuous curve Γ0 splitting R
2
+ \ {(0, 0)}

into two disjoint subsetsO0,1 and,O0,2 and there exists a subsetO ⊂ O0,1 such that problem (3.20) has
at least two positive solutions for (λ, μ) ∈ O, at least one positive solution for (λ, μ) ∈ (O0,1 \O)∪Γ0,
and no solution for (λ, μ) ∈ O0,2.

Proof. Let O = ∪ε>0(Oε,1 ∪ Γε) and let (λ, μ) ∈ O. It is enough to prove that problem (3.20) has
the second solution at (λ, μ). By the definition ofO, there exists ε > 0 such that (λ, μ) ∈ Oε,1∪Γε.
That is (4.1) has a positive solution at (λ, μ). So let (uε, vε) be a positive solution of problem
(4.1) at (λ, μ) and let Ω = {(u, v) ∈ X | −ε < u(t) < uε(t),−ε < v(t) < vε(t) for t ∈ [0, 1], u(t+1 ) <
uε(t+1 ), v(t

+
1 ) < vε(t+1 )}. Then Ω is bounded open in X, 0 ∈ Ω. Furthermore, Tλ,μ : K ∩ Ω →

K is condensing, since it is completely continuous. We show that Tλ,μ(u, v)/= ν(u, v) for all
(u, v) ∈ K ∩ ∂Ω and all ν ≥ 1. If it is not true, then there exist (u, v) ∈ K ∩ ∂Ω and ν0 ≥ 1 such
that Tλ,μ(u, v) = ν0(u, v). Thus (u, v) is a positive solution of the following equation

ν0u
′′(t) + λh1(t)f(u(t), v(t)) = 0, t ∈ (0, 1), t /= t1,

ν0v
′′(t) + μh2(t)g(u(t), v(t)) = 0, t ∈ (0, 1), t /= t1,

ν0Δu|t=t1 = Iu(u(t1)), ν0Δv|t=t1 = Iv(v(t1)),

ν0Δu′∣∣
t=t1

= Nu(u(t1)), ν0Δv′∣∣
t=t1

= Nv(v(t1)),

ν0u(0) = a, ν0v(0) = b, ν0u(1) = c, ν0v(1) = d,

(4.1)

and we can consider the following two cases. The first case is u(t0) = uε(t0) or v(t0) = vε(t0)
for some t0 ∈ (0, 1). The second case is u(t+1 ) = uε(t+1 ) or v(t

+
1 ) = vε(t+1 ). First, let us consider

case u(t0) = uε(t0) for some t0 ∈ (0, 1). One may prove similarly for case v(t0) = vε(t0).
If t0 ∈ J ′, that is, t0 /= t1, let m(t) = (u − uε)(t), then m′′(t) ≥ 0 on J ′, m(0) < 0, m(1) < 0,
and m(t1) ≤ 0. Thus on one of intervals (0, t1) or (t1, 1) containing t0, maximum principle
implies m ≡ 0 and this contradicts to the facts of m(0) < 0 and m(1) < 0. If t0 = t1, then
u(t1) = uε(t1), u(t) ≤ uε(t) and v(t) ≤ vε(t) on [0, 1]. Thus by (D6) and (D2), we get the
following contradiction:

u(t1) =
1
ν0

Aλ(u, v)(t1) =
a + (b − a)t1

ν0
+

λ

ν0

∫1

0
K(t1, s)h1(s)f(u(s), v(s))ds

+
−t1(Iu(u(t1)) + (1 − t1)Nu(u(t1)))

ν0

< a + ε + (b − a)t1 + λ

∫1

0
K(t1, s)h1(s)f(uε(s), vε(s))ds

− t1(Iu(uε(t1)) + (1 − t1)Nu(uε(t1)))

= uε(t1) = u(t1).

(4.2)
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Second, let us consider u(t+1 ) = uε(t+1 ). Since u(t) ≤ uε(t) and v(t) ≤ vε(t), we get

u
(

t+1
)

=
1
ν0

Aλ(u, v)
(

t+1
)

=
a + (b − a)t1

ν0
+

λ

ν0

∫1

0
K(t1, s)h1(s)f(u(s), v(s))ds

+
(1 − t1)(Iu(u(t1)) − t1Nu(u(t1)))

ν0

< a + ε + (b − a)t1 + λ

∫1

0
K(t1, s)h1(s)f(uε(s), vε(s))ds

+ (1 − t1)(Iu(uε(t1)) − t1Nu(uε(t1)))

= uε

(

t+1
)

= u
(

t+1
)

.

(4.3)

One may show the contradiction similarly for case v(t+1 ) = vε(t+1 ). This contradiction shows
Tλ,μ(u, v)/= ν(u, v) for all (u, v) ∈ K ∩ ∂Ω and ν ≥ 1. Therefore, by Theorem 2.7, we obtain

i
(

Tλ,μ,K∩Ω,K)

= 1. (4.4)

On the other hand, by Lemma 3.6, we know that there is (λ1, μ1) such that (3.20) has no
positive solution at (λ1, μ1).Thus for any open set U in X, we get

i
(

Tλ1,μ1 ,K∩U,K)

= 0. (4.5)

Let R be a compact rectangle containing (λ, μ) and (λ1, μ1). By Lemma 3.2, for all (λ, μ) ∈ R,
there exists bR > 0 such that all possible solutions (u, v) of (PT ) at (λ, μ) satisfy ‖(u, v)‖ < bR
and Ω ⊂ BbR . Define h : [0, 1] × (BbR ∩ K) → K by

h(τ, (u, v)) = Tτλ1+(1−τ)λ,τμ1+(1−τ)μ(u, v). (4.6)

Then h(0, (u, v)) = Tλ,μ(u, v), h(1, (u, v)) = Tλ1,μ1(u, v), h is completely continuous on [0, 1] ×
K, and h(τ, (u, v))/= (u, v) for all (τ, (u, v)) ∈ [0, 1]× (∂BbR ∩K). By the property of homotopy
invariance and (4.5), we have

i
(

Tλ,μ, BbR ∩ K,K)

= i
(

Tλ1,μ1 , BbR ∩ K,K)

= 0. (4.7)

By the additive property and (4.4), (4.7), we have

i

(

Tλ,μ,

(
BbR

Ω

)

∩K,K
)

= −1. (4.8)

Therefore, (3.20) has another positive solution in (BbR \Ω)∩K at (λ, μ) ∈ O and this completes
the proof.
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5. Applications

In this section, we apply the results in previous sections to study the existence and
multiplicity theorems of positive radial solutions for impulsive semilinear elliptic problems.

5.1. On an Annular Domain

Let us consider

Δu + λk1(|x|)f(u, v) = 0,

Δv + μk2(|x|)g(u, v) = 0, in Ω(l1, l2), |x|/= r1,

Δu||x|=r1 = Iu
(

u||x|=r1
)

, Δv||x|=r1 = Iv
(

u||x|=r1
)

,

Δ∂u

∂r

∣
∣
∣
∣
|x|=r1

= −
r1−n1 Nu

(

u||x|=r1
)

m
,

Δ∂v

∂r

∣
∣
∣
∣
|x|=r1

= −
r1−n1 Nv

(

v||x|=r1
)

m
,

u(x) = a ≥ 0, v(x) = b ≥ 0 if |x| = l1,

u(x) = c > a, v(x) = d > b if |x| = l2,

(PA)

where f(0, 0) = 0, g(0, 0) = 0,Δ is the Laplacian of u, 0 < l1 < r1 < l2, and Ω(l1, l2) = {x ∈
Rn| l1 < |x| < l2} with n > 2. ∂u/∂r denotes the differentiation in the radial direction,
Δu||x|=r1 = u(r+1 ) − u(r1),Δ(∂u/∂r)||x|=r1 = (∂u/∂r)(r+1 ) − (∂u/∂r)(r−1 ) and m = − ∫ l2

l1
t1−ndt.

Applying consecutive changes of variables, r = |x|, s = − ∫ l2
r t1−ndt and t = m − s/m, we may

transform problem (5.1) into problem (3.20), where t1 = (r2−n1 − l2−n1 )/(l2−n2 − l2−n1 ) and hi can
be written as

hi(t) = m2[r(m(1 − t))]2(n−1)ki(r(m(1 − t))). (5.1)

If ki : [l1, l2] → (0,∞) are continuous, then hi : [0, 1] → (0,∞) are also continuous and
satisfies (D1). We may apply Theorem 4.1 to obtain the following result.

Corollary 5.1. Assume (D2) ∼ (D6). Let ki ∈ C([l1, l2], (0,∞)), i = 1, 2. Then there exists a
continuous curve Γ0 splitting R

2
+ \ {(0, 0)} into two disjoint subsets O0,1 and O0,2 and there exists a

subset O ⊂ O0,1 such that problem (5.1) has at least two positive solutions for (λ, μ) ∈ O, at least one
positive solution for (λ, μ) ∈ (O0,1 \ O) ∪ Γ0, and no solution for (λ, μ) ∈ O0,2.

If ki : (l1, l2) → (0,∞) are continuous and singular at r = l1 and/or l2, then hi are also
singular at t = 0 and/or 1. In this case, we assume

∫ l2

l1

(

r(2−n) − l
(2−n)
1

)(

l
(2−n)
2 − r(2−n)

)

ki(r)dr < ∞, (5.2)

then we can easily check that both hi satisfy (D1) and apply Theorem 4.1 to obtain the following
corollary.
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Corollary 5.2. Assume (D2) ∼ (D6). If both ki ∈ C((l1, l2), (0,∞)) satisfy

∫ l2

l1

(

r2−n − l2−n1

)(

l2−n2 − r2−n
)

ki(r)dr < ∞. (5.3)

Then the conclusion of Corollary 5.1 is valid.

5.2. On an Exterior Domain

Let us consider

Δu + λk1(|x|)f(u, v) = 0,

Δv + μk2(|x|)g(u, v) = 0, |x| > r0, |x|/= r1,

Δu||x|=r1 = Iu
(

u||x|=r1
)

, Δv||x|=r1 = Iv
(

v||x|=r1
)

,

Δ∂u

∂r

∣
∣
∣
∣
|x|=r1

=
n − 2
r0

(
r1
r0

)1−n
Nu

(

u||x|=r1
)

,

Δ∂v

∂r

∣
∣
∣
∣
|x|=r1

=
n − 2
r0

(
r1
r0

)1−n
Nv

(

v||x|=r1
)

,

u(x) = a ≥ 0, v(x) = b ≥ 0, if |x| = r0,

u(x) → c > a, v(x) → d > b, as |x| → ∞,

(PE)

where f(0, 0) = 0, g(0, 0) = 0, 0 < r0 < r1, and n > 2. Assume that both ki : [r0,∞) → (0,∞)
are continuous. Applying changes of variables, r = |x| and t = 1−(r/r0)2−n,wemay transform
problem (5.4) into problem (3.20), where t1 = 1 − (r0/r1)

n−2 and hi are written as

hi(t) =
r
2(n−1)
0

(n − 2)2
(1 − t)−2(n−1)/(n−2)ki

(

r0(1 − t)−1/(n−2)
)

. (5.4)

We know that hi are singular at t = 1 and can easily check that hi satisfy (D1) if ki satisfy∫∞
r0
rki(r)dr < ∞ for i = 1, 2. Thus by Theorem 4.1, we obtain the following result.

Corollary 5.3. Assume (D2) ∼ (D6). If both ki ∈ C([r0,∞), (0,∞)) satisfy

∫∞

r0

rki(r)dr < ∞, (5.5)

then the conclusion of Corollary 5.1 is valid for problem (5.4).
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