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We study the solvability of a system of second-order differential equations with Dirichlet boundary
conditions and non-local terms depending upon a parameter. The main tools used are a dual
variational method and the topological degree.

1. Introduction

In the past decade there has been a lot of interest on boundary value problems for elliptic
systems. For general systems of the form

−Δu = f(x, u, v,∇u,∇v), x ∈ Ω,

−Δv = g(x, u, v,∇u,∇v), x ∈ Ω,

u = v = 0, in ∂Ω,

(1.1)

where Ω is a domain in R
n, a survey was given by De Figueiredo in [1]. The specific case of

one-dimensional systems, motivated by the problem of finding radial solutions to an elliptic
system on an annulus of Rn, has been considered by Dunninger and Wang [2] and by Lee
[3], who have obtained conditions under which such a system may possess multiple positive
solutions.
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On the other hand, systems of two equations that include non-local terms have
also been considered recently. These are of importance because they appear in the applied
sciences, for example, as models for ignition of a compressible gas, or general physical
phenomena where temperature has a central role in triggering a reaction. In fact their interest
ranges from physics and engineering to population dynamics. See for instance [4]. The
related parabolic problems are also of great interest in reaction-diffusion theory; see [5–7]
where the approach to existence and blow-up for evolution systems with integral terms may
be found.

In this paper we are interested in a simple one-dimensional model: the two-point
boundary value problem for the system of second order differential equations with a linear
integral term

−u′′(t) + c

∫1

0
v(s)ds + g(v(t)) = 0, for a.e. t ∈ [0, 1],

−v′′(t) + c

∫1

0
u(s)ds + h(u(t)) = 0, for a.e. t ∈ [0, 1],

u(0) = u(1) = 0, v(0) = v(1) = 0,

(1.2)

where c ∈ R, c /= 0 and g, h : R → R. First we consider (1.2) as a perturbation of the nonlocal
system and prove that if g and h grow linearly, then (1.2) has a solution provided |c| is not
too large. Afterwards, assuming that g and h are monotone, we will give estimates on the
growth of these functions in terms of the parameter c to ensure solvability. This will be done
on the basis of some spectral analysis for the linear part and a dual variational setting.

2. Preliminaries

Let us introduce some notation: we define L2(0, 1) as the Hilbert space of the Lebesgue
measurable functions f such that

∫1
0 f

2(x)dx < ∞with the usual inner product

〈
f, g

〉
L2 =

∫1

0
f(x)g(x)dx. (2.1)

We also define

AC(I) =
{
f : [0, 1] −→ R : f is absolutely continuous on [0, 1]

}
,

H2
0(0, 1) :=

{
f ∈ C1[0, 1] : f ′ ∈ AC[0, 1], f ′′ ∈ L2(0, 1), f(0) = 0 = f(1)

}
,

(2.2)

with the inner product

〈
f, g

〉
H2

0
:=

〈
f, g

〉
L2 +

〈
f ′, g ′〉

L2 +
〈
f ′′, g ′′〉

L2 . (2.3)
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If (X, 〈·, ·〉X) and (Y, 〈·, ·〉Y ) are bothHilbert spaces, wewill consider the Hilbert product space
X × Y with the inner product

〈(
x1, y1

)
,
(
x2, y2

)〉
X×Y = 〈x1, x2〉X +

〈
y1, y2

〉
Y . (2.4)

We first study the invertibility of the linear part of (1.2).

Lemma 2.1. The linear operator L : H2
0(0, 1) ×H2

0(0, 1) → L2(0, 1) × L2(0, 1), defined by

Lc(u, v) =

(
−u′′ + c

∫1

0
v(s)ds, −v′′ + c

∫1

0
u(s)ds

)
, (2.5)

is invertible if and only if c /= ± 12.
Moreover, Lc and L−1

c are both continuous for c /= ± 12.

Proof. Let (x, y) ∈ L2(0, 1) × L2(0, 1). The equation Lc(u, v) = (x, y) is equivalent to

−u′′(t) = x(t) − c

∫1

0
v(s)ds, for a.e. t ∈ [0, 1],

−v′′(t) = y(t) − c

∫1

0
u(s)ds, for a.e. t ∈ [0, 1],

u(0) = u(1) = 0, v(0) = v(1) = 0.

(2.6)

We denote
∫1
0 v(s)ds = a,

∫1
0 u(s)ds = b, X(t) =

∫1
0 G(t, s)x(s)ds, and Y (t) =

∫1
0 G(t, s)y(s)ds,

where

G(t, s) =

⎧⎨
⎩
t(1 − s), if 0 ≤ t < s ≤ 1,

s(1 − t), if 0 ≤ s ≤ t ≤ 1
(2.7)

is the Green’s function associated to −u′′ = h(t), u(0) = 0 = u(1). Notice that X, Y ∈ H2
0(0, 1)

are the solutions of −u′′ = x(t), u(0) = 0 = u(1) and −u′′ = y(t), u(0) = 0 = u(1), respectively.
Now it is easy to see that (u, v) is a solution of (2.6) if and only if

u(t) = X(t) +
ca

2
t(t − 1), v(t) = Y (t) +

cb

2
t(t − 1), (2.8)

for some a, b ∈ R such that

a =
∫1

0
Y (s)ds − cb

12
,

b =
∫1

0
X(s)ds − ca

12
,

(2.9)
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Clearly this linear system is uniquely solvable for each pair of functions X, Y ∈ H2
0(0, 1) if

and only if c /= ± 12.
In order to prove the continuity of Lc it is easy to show that there exists k > 0 such that

‖Lc(u, v)‖L2×L2 ≤ k‖(u, v)‖H2
0×H2

0
∀(u, v) ∈ H2

0 ×H2
0 . (2.10)

By the open mapping theorem we deduce that L−1
c , c /= ± 12, is continuous too.

In view of the previous lemma we will assume

(C0) c ∈ R \ {−12, 0, 12}.

Lemma 2.2. Assume (C0).Then the operator Kc = U ◦ i ◦ L−1
c : L2(0, 1) × L2(0, 1) → L2(0, 1) ×

L2(0, 1) is compact and self-adjoint, where i : H2
0(0, 1) × H2

0(0, 1) ↪→ L2(0, 1) × L2(0, 1) is the
inclusion and U(x, y) = (y, x).

Proof. Since the inclusion i is compact (see [8, Theorem VIII.7]) and L−1
c andU are continuous

we obtain the compactness of Kc. On the other hand an easy computation shows that

〈Kcu, v〉L2×L2 = 〈u,Kcv〉L2×L2 , (2.11)

so Kc is a self-adjoint operator.

3. An Existence Result of Perturbative Type

Let us introduce the basic assumption

(H) g : R → R and h : R → R are continuous functions,

and set

l := lim sup
|v|→∞

∣∣∣∣g(v)v

∣∣∣∣, m := lim sup
|u|→∞

∣∣∣∣h(u)u

∣∣∣∣. (3.1)

Theorem 3.1. Assume (H), c /= 0, and |c| + (l +m)/2 < π2.
Then problem (1.2) has a solution.

Proof. Consider the homotopy I − λ(Kc ◦ N) for all λ ∈ [0, 1], where N is the Nemitskii
operator N : L2(0, 1) × L2(0, 1) → L2(0, 1) × L2(0, 1) given by

N(u, v) =
(−g(u(·)),−h(v(·))). (3.2)
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It is easy to check that [I−λ(Kc ◦N)](v, u) = (0, 0) if and only if (u, v) is a solution of problem

−u′′(t) + c

∫1

0
v(s)ds + λg(v(t)) = 0, for a.e. t ∈ [0, 1],

−v′′(t) + c

∫1

0
u(s)ds + λh(u(t)) = 0, for a.e. t ∈ [0, 1],

u(0) = u(1) = 0, v(0) = v(1) = 0.

(3.3)

We are going to prove that the possible solutions of [I − λ(Kc ◦ N)](u, v) = (0, 0) are
bounded independently of λ ∈ [0, 1]. By our assumptions, there exist l′ > 0,m′ > 0 and k such
that

|c| + l′ +m′

2
< π2,

∣∣g(u)∣∣ ≤ l′|u| + k ∀u ∈ R,|h(v)| ≤ m′|v| + k ∀v ∈ R. (3.4)

Multiplying the first equation of (3.3) by u, the second one by v, integrating between 0 and 1
and adding both equations we obtain

∫1

0

((
u′(s)2

)
+
(
v′(s)2ds

))
≤ 2|c|

∫1

0
|u(s)|ds

∫1

0
|v(s)|ds

+ λ

∫1

0

(∣∣g(v(s))∣∣|u(s)| + |h(u(s))||v(s)|)ds

≤ |c|
(∫1

0
u2(s)ds +

∫1

0
v2(s)ds

)
+
l′ +m′

2

∫1

0

(
u2(s) + v2(s)

)
ds

+ k

∫1

0
(|u(s)| + |v(s)|)ds

=
(
|c| + l′ +m′

2

)(∫1

0

(
u2(s) + v2(s)

)
ds

)

+ k

⎛
⎝

(∫1

0
u2(s)ds

)1/2

+

(∫1

0
v2(s)ds

)1/2
⎞
⎠.

(3.5)

On the other hand, by the Poincaré inequality (see [9, Chapter 2])

π2
∫1

0
u2(s) + v2(s)ds ≤

∫1

0
u′(s)2 + v′(s)2ds, (3.6)
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so we have

π2
∫1

0

(
u2(s) + v2(s)

)
ds ≤

(
|c| + l′ +m′

2

)(∫1

0

(
u2(s) + v2(s)

)
ds

)

+ k

⎛
⎝

(∫1

0
u2(s)ds

)1/2

+

(∫1

0
v2(s)ds

)1/2
⎞
⎠

(3.7)

and since |c|+(l′+m′)/2 < π2 we obtain that (
∫1
0 u

2(s)ds)
1/2

= ‖u‖L2 and (
∫1
0 v

2(s)ds)
1/2

= ‖v‖L2

are bounded.
Thus we may invoke the properties of the Leray-Schauder degree (see, e.g., [10]) to

deduce the existence of a solution for (3.3)with λ = 1 which is our problem (1.2).

Remark 3.2. Notice that when g(0) = h(0) = 0 the solution given by Theorem 3.1 may be the
trivial one (0, 0). However, under our assumptions if moreover g(0)/= 0 or h(0)/= 0 we obtain
a proper solution.

4. Monotone Nonlinearities

In the following lemma we give some estimates for the minimum eigenvalue of Kc.

Lemma 4.1. Assume (C0). If one denotes by μ(c) the minimum of the eigenvalues of Kc, one has
μ(c) = −λ20, where λ0 is the maximum value between 1/2π and the greater positive solution of the
equation

(
−1 − cλ2 + 2cλ3 tan

(
1
2λ

))(
−1 − cλ2 + 2cλ3 tanh

(
1
2λ

))
= 0. (4.1)

More precisely, if one denotes by

c0 = − π3

π − 2 tanh(π/2)
≈ −23.718,

c1 = − 4 π3

π − 2 tanhπ
≈ −57.811,

(4.2)

one obtains that

(i) |μ(c)| = 1/4π2 ifc ∈ (−∞, c1] ∪ (12,∞),

(ii) 1/4π2 < |μ(c)| < 1/π2 ifc ∈ (c1, c0) ∪ (−12, 0),
(iii) |μ(c)| = 1/π2 if c = c0,

(iv) 1/π2 < |μ(c)| if c ∈ (c0,−12) ∪ (0, 12).
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Proof. By Lemma 2.2 the operator Kc is compact, so its set of eigenvalues is bounded and
nonempty (see [8, Theorem VI.8]). Moreover we have that μ = −λ2 is a negative eigenvalue
of Kc if and only if there exists a pair (x, y) ∈ H2

0 ×H2
0 , (x, y)/= (0, 0), such that

−λ2x′′(t) + y(t) = −cλ2
∫1

0
y(s)ds,

−λ2y′′(t) + x(t) = −cλ2
∫1

0
x(s)ds,

x(0) = x(1) = 0, y(0) = y(1) = 0.

(D)

Differentiating twice on the first equation of (D) and replacing on the second one, we arrive
at the following equality:

−λ4x(4)(t) + x(t) = −cλ2
∫1

0
x(t)dt. (4.3)

In consequence

x(t) = a1 cos
(
t

λ

)
+ b1 sin

(
t

λ

)
+ c1e

t/λ + d1e
−t/λ + e1. (4.4)

Analogously, differentiating twice on the second equation of (D) and replacing on the first
one, we arrive at

y(t) = a2 cos
(
t

λ

)
+ b2 sin

(
t

λ

)
+ c2e

t/λ + d2e
−t/λ + e2. (4.5)

Now, by means of the expression

y′′(t) = λ2x(4)(t), (4.6)

we deduce that

a2 = −a1, b2 = −b1, c2 = c1, d2 = d1, (4.7)

and thus

y(t) = −a1 cos
(
t

λ

)
− b1 sin

(
t

λ

)
+ c1e

t/λ + d1e
−t/λ + e2. (4.8)
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So, we have that in the expression of the solutions of the two equations on system (D) six real
parameters are involved. Now, to fix the value of such parameters, we use the four boundary
value conditions imposed on problem(D) together with the fact that

e1 = −cλ2
∫1

0
x(t)dt, e2 = −cλ2

∫1

0
y(t)dt. (4.9)

Therefore, we arrive at the following six-dimensional homogeneous linear system:

a1 + c1 + d1 + e1 = 0,

a1 cos
(
1
λ

)
+ b1 sin

(
1
λ

)
+ c1e

1/λ + d1e
−1/λ + e1 = 0,

−a1 + c1 + d1 + e2 = 0,

−a1 cos
(
1
λ

)
− b1 sin

(
1
λ

)
+ c1e

1/λ + d1e
−1/λ + e2 = 0,

a1λ sin
(
1
λ

)
+ b1

(
1 − cos

(
1
λ

))
λ + c1

(
e1/λ − 1

)
λ + d1

(
1 − e−1/λ

)
λ + e1

(
1 +

1
cλ2

)
= 0,

a1λ sin
(
1
λ

)
+ b1

(
cos

(
1
λ

)
− 1

)
λ + c1

(
e1/λ − 1

)
λ + d1

(
1 − e−1/λ

)
λ + e2

(
1 +

1
cλ2

)
= 0.

(4.10)

In consequence, the values of λ > 0 for which there exist nontrivial solutions of system (D)
coincide with the zeroes of the determinant of the matrix

m =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 1 1 0

cos
(
1
λ

)
sin

(
1
λ

)
e1/λ e−1/λ 1 0

−1 0 1 1 0 1

− cos
(
1
λ

)
− sin

(
1
λ

)
e1/λ e−1/λ 0 1

cλ3 sin
(
1
λ

)
cλ3

(
1−cos

(
1
λ

))
c
(−1+e1/λ)λ3 cλ3

(
1−e−1/λ) cλ2+1 0

−cλ3 sin
(
1
λ

)
cλ3

(
cos

(
1
λ

)
−1

)
c
(−1+e1/λ)λ3 cλ3

(
1−e−1/λ) 0 cλ2+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(4.11)

that is

Det(m) = 4e−1/λ
(
−1 + e1/λ

)
d(c, λ) = 0, (4.12)
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where

d(c, λ) =
(
−c(2λ + 1)λ2 + e1/λ

(
cλ2(2λ − 1) − 1

)
− 1

)

×
(
2c
(
cos

(
1
λ

)
− 1

)
λ3 +

(
cλ2 + 1

)
sin

(
1
λ

))
.

(4.13)

We notice that for all n ∈ N we have

d

(
c,

1
2nπ

)
= 0, (4.14)

and for all λ/= 1/nπ , with n odd,

d(c, λ) =
(
−1 − e1/λ

)
sin

(
1
λ

)(
2cλ3 tan

(
1
2λ

)
− cλ2 − 1

)(
2cλ3 tanh

(
1
2λ

)
− cλ2 − 1

)
.

(4.15)

Hence, λ1 = 1/2 π is the greatest zero among the sequence 1/2nπ . On the other hand, since
c /= 0, λ = 1/π is solution of (4.15) if and only if c = c0 and the remaining solutions λ > 1/2π
are the zeroes of the last two factors on (4.15). A careful study shows that function

p(c, λ) = −1 − cλ2 + 2cλ3 tanh
(

1
2λ

)
(4.16)

is such that cp(c, λ) is strictly decreasing on (0,+∞). Moreover

lim
λ→∞

p(c, λ) = − 1
12

(c + 12), p

(
c,

1
π

)
= −πc − 2c tanh(π/2) + π3

π3
. (4.17)

In consequence, there is a (unique) solution greater than 1/π of the equation p(c, λ) = 0 if
and only if c ∈ (c0,−12). Moreover the greatest zero of function p(c, ·) belongs to the interval
(1/2 π, 1/π) if and only if c ∈ (c1, c0).

On the other hand, function

q(c, λ) = −1 − cλ2 + 2cλ3 tan
(

1
2λ

)
(4.18)

satisfies that cq(c, λ) is strictly decreasing on its domain {λ > 0 : λ/= 1/nπ with n odd}, and

lim
λ→ 1/π−

cq(c, λ) = −∞, lim
λ→ 1/π+

cq(c, λ) = +∞, lim
λ→∞

q(c, λ) =
1
12

(c − 12). (4.19)
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So, there is a (unique) solution greater than 1/π of the equation q(c, λ) = 0 if and only
if c ∈ (0, 12). Moreover, since

q

(
c,

1
2π

)
= − c

4π2
− 1, (4.20)

it has its greatest zero between 1/2π and 1/π if and only if −4π2 < c < 0.

Let H denote the class of strictly increasing homeomorphisms from R onto R. We
introduce the following assumption:

(H ′) g ∈ H and h ∈ H.

Let us define the functional Jc : L2(0, 1) × L2(0, 1) → R given by

Jc
(
x, y

)
:=

1
2
〈
Kc

(
x(s), y(s)

)
,
(
x(s), y(s)

)〉
L2×L2 +

∫1

0

[
G∗(x(s)) +H∗(y(s))]ds, (4.21)

where G∗(t) :=
∫ t
0 g

−1(r)dr and H∗(t) :=
∫ t
0 h

−1(r)dr for all t ∈ R.
Notice that G∗ andH∗ are the Fenchel transform of g and h (see [11]).

Theorem 4.2. Assume (H ′).Let c satisfy (C0) and in addition

lim sup
|x|→∞

∣∣∣∣g(x)x

∣∣∣∣ < 1∣∣μ(c)∣∣ , lim sup
|x|→∞

∣∣∣∣h(x)x

∣∣∣∣ < 1∣∣μ(c)∣∣ . (4.22)

Then Jc attains a minimum at some point (x0, y0).
Moreover, (−u0,−v0) is a solution of (1.2), where we put (v0, u0) = Kc(x0, y0).

Proof.

Claim 1 (Jc attains a minimum at some point (x0, y0)). The space L2(0, 1)×L2(0, 1) is reflexive,
and by our assumptions Jc is weakly sequentially lower semicontinuous. In fact, Jc is the sum
of a convex continuous functional (corresponding to the two last summands in the integrand)
with a weakly sequentially continuous functional (because of the compactness of Kc). So, in
order to prove that Jc has a minimum, it is enough to show that Jc is coercive. By (4.22) we
take α > |μ(c)|/2 > 0 such that

lim sup
|x|→∞

∣∣∣∣g(x)x

∣∣∣∣ < 1
2α

, lim sup
|y|→∞

∣∣∣∣∣
h
(
y
)

y

∣∣∣∣∣ <
1
2α

. (4.23)

So, there exists k > 0 such that

∣∣g(x)∣∣ ≤ |x|
2α

+ k, ∀x ∈ R,

∣∣h(y)∣∣ ≤
∣∣y∣∣
2α

+ k, ∀y ∈ R.

(4.24)
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Thus, for every ε > 0, there exists a > 0 such that we have

G∗(x) ≥ (α − ε)x2 − a, ∀x ∈ R,

H∗(y) ≥ (α − ε)y2 − a, ∀y ∈ R.
(4.25)

On the other hand (see [8, Proposition VI.9]),

〈
Kc

(
x(s), y(s)

)
,
(
x(s), y(s)

)〉
L2×L2 ≥ μ(c)

〈(
x(s), y(s)

)
,
(
x(s),y(s)

)〉
L2×L2

= μ(c)
∫1

0

(
x2(s) + y2(s)

)
ds.

(4.26)

Taking ε such that 2(α − ε) > |μ(c)|, we have

Jc
(
x, y

) ≥ μ(c)
2

∫1

0

(
x2(s) + y2(s)

)
ds + (α − ε)

∫1

0

(
x2(s) + y2(s)

)
ds − 2a, (4.27)

and therefore Jc is coercive.

Claim 2. If we denote (v0, u0) = Kc(x0, y0) then (−u0,−v0) is a solution of (1.2).
Since (x0, y0) is a critical point of Jc then for all (x, y) ∈ L2(0, 1) × L2(0, 1) we have

J ′c
(
x0, y0

)(
x, y

)
=
〈
Kc

(
x0(s), y0(s)

)
,
(
x(s), y(s)

)〉
L2×L2

+
∫1

0

[
g−1(x0(s))x(s) + h−1(y0(s)

)
y(s)

]
ds

= 0,

(4.28)

which implies that v0(s) + g−1(x0(s)) = 0 and u0(s) + h−1(y0(s)) = 0 for a.e. s ∈ [0, 1], where
we put (v0, u0) = Kc(x0, y0). Then (−u0,−v0) is a solution of (1.2).

Remark 4.3. Under the more restrictive assumption

sup
v,w∈R

g(v) − g(w)
v −w

<
1∣∣μ(c)∣∣ , sup

v,w∈R

h(v) − h(w)
v −w

<
1∣∣μ(c)∣∣ , (4.29)

it follows that J ′c is a strictly monotone operator (see [11]). Hence, when (4.29) holds, Jc has a
unique critical point. The argument of Claim 2 in previous theorem shows that there is a one-
to-one correspondence between critical points of Jc and the solutions to (1.2). In consequence,
the solution of problem (1.2) is unique.

Remark 4.4. Suppose that under the conditions of the theorem, g(0) = h(0) = 0. If moreover

lim inf
z→ 0

g(z)
z

>
1∣∣μ(c)∣∣ , lim inf

z→ 0

h(z)
z

>
1∣∣μ(c)∣∣ , (4.30)
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we claim that the solution given by the theorem is not the trivial one (0, 0). In fact let (x, y)
be a normalized eigenvector associated to μ(c). The properties of eigenvectors imply that x
and y are in fact continuous functions. Since (4.30) implies 2G∗(z) ≤ kz2 and 2H∗(z) ≤ kz2

for some k < −μ(c) and |z| small, an easy computation implies that

Jc
(
t
(
x, y

))
< 0 (4.31)

for t sufficiently small. Hence the minimum of Jc is not attained at (0, 0).

Remark 4.5. If g(0) > 0 and h(0) ≥ 0 or g(0) ≥ 0 and h(0) > 0, we have that γ = (0, 0) is a lower
solution. Moreover if 0 < c < 12 and

lim sup
x→∞

g(x)
x

<
2
3
(12 − c), lim sup

x→∞

h(x)
x

<
2
3
(12 − c), (4.32)

then we can take an upper solution of the form β = a(t(1 − t), t(1 − t)) with a > 0 and then
apply the monotone method.
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