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Some new existence and uniqueness theorems of fixed points of mixed monotone operators are
obtained, and then they are applied to a nonlinear singular second-order three-point boundary
value problem on time scales. We prove the existence and uniqueness of a positive solution for the
above problem which cannot be solved by using previously available methods.

1. Introduction

The study of mixed monotone operators has been a matter of discussion since they were
introduced by Guo and Lakshmikantham [1] in 1987, because it has not only important
theoretical meaning but also wide applications in microeconomics, the nuclear industry, and
so on (see [1–4]). Recently, some new and interesting results about these kinds of operators
have emerged, and they are used extensively in nonlinear differential and integral equations
(see [5–9]).

In this paper, we extend the main results of [9] to mixed monotone operators. Without
demanding compactness and continuity conditions and the existence of upper and lower
solutions, we study the existence, uniqueness, and iterative convergence of fixed points of a
class of mixed monotone operators. Then, we apply these results to the following singular
second-order three-point boundary value problem on time scales:

−x′′(t) = w(t)
[
f1(x(t)) + f2(x(t))

]
, t ∈ [a, b]

�
,

x(a) = 0, x
(
σ2(b)

)
= δx

(
η
)
,

(1.1)
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where a, b ∈ � with a < b, η ∈ (a, b)
�
, and 0 < δ < (σ2(b) − a)/(η − a). The functions

w : (a, b) → [0,+∞) and fi : (0,+∞) → [0,+∞) (i = 1, 2) are continuous. Our nonlinearityw
may have singularity at t = a and/or t = b and fi(x) (i = 1, 2)may have singularity at x = 0.

To understand the notations used in (1.1), we recall that � is a time scales, that is, � is
an arbitrary nonempty closed subset of �. For each interval I of �, we define I� = I ∩ �. For
more details on time scales, one can refer to [10–12].

In recent years, there is much attention paid to the existence of positive solutions
for nonlocal boundary value problems on time scales, see [13–18] and references therein.
Dynamic equations have been applied in the study of insect population models, stock market
and heat transfer and so on [19–22]. Time scales can be used in microeconomics models to
study behavior which is sometimes continuous and sometimes discrete. A simple example
of this continuous-discrete behavior is seen in suppliers short-run decisions and long-run
decisions. Unifying both continuous and discretemodel can avoid repeat research and has the
capacity to get some different types of models which neither continuous models nor discrete
models can effectively describe.

On the other hand, singular boundary value problems on time scales have also been
investigated extensively (see [23–27]). We would like to mention some results of DaCunha
et al. [23], Hao et al. [25], Luo [26], and Hu [27], which motivated us to consider problem
(1.1).

In [23], DaCunha et al. considered the following singular second-order three-point
dynamic boundary value problem:

−x′′(t) = f(t, x), t ∈ (0, 1]
�
,

x(0) = 0, x
(
σ2(1)

)
= x

(
η
)
,

(1.2)

where η ∈ (0, 1]
�
is fixed and f(t, x) is singular at x = 0 and possible at t = 0, x = ∞. The

authors claimed that “we note that this is the first work (to our knowledge) that deals with
singular boundary value problems in a general time scales setting.” The results on existence
of positive solutions were obtained by means of a fixed point theorem due to Gatica, Oliker
and Waltman for mappings that are decreasing with respect to a cone.

In [25], Hao et al. were concernedwith the following singular boundary value problem
of nonlinear dynamic equation

[
ϕ(t)xΔ(t)

]Δ
+ λm(t)f(t, x(σ(t))) = 0, t ∈ [a, b]

�
,

αx(a) − βxΔ(a) = 0, γx(σ(b)) + δxΔ(σ(b)) = 0,

(1.3)

where m(·) : (a, σ(b))
�

→ [0,+∞) is rl-continuous and may be singular at t = a and/or
t = σ(b). With suitable growth and limit conditions, an existence theorem of positive solutions
was established by using the Krasnoselskii fixed point theorem.
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In [26], Luo studied the following singularm-point dynamic eigenvalue problemwith
mixed derivatives:

−
(
p(t)uΔ(t)

)∇
= λf(t, u(t)), t ∈ (0, 1]

�
,

u(0) =
m−2∑

i=1

aiu(ξi), γu(1) + δp(1)uΔ(1) =
m−2∑

i=1

bip(ξi)uΔ(ξi),

(1.4)

where f(t, w) is singular at t = 0 and w = 0. The author obtained eigenvalue intervals in
which there exists at least one positive solution of problem (1.4) by making use of the fixed
point index theory.

In [27], Hu were concerned with the following singular third-order three-point
boundary value problem on time scales:

(
uΔΔ(t)

)∇
+w(t)f(t, u(t)) = 0, t ∈ [a, b]

�
,

u
(
ρ(a)

) − βuΔ(ρ(a)
)
= αu

(
η
)
, γu

(
η
)
= u(b), uΔΔ(ρ(a)

)
= 0,

(1.5)

where w : (a, b)
�

→ [0,+∞) and f : [a, b]
�
× (0,+∞) → [0,+∞) are continuous. The

nonlinearity w may have singularity at t = a and/or t = b and f(t, u) may have singularity
at u = 0. With the aid of the fixed point theorem of cone expansion and compression type,
results on the existence of positive solutions to (1.5) were obtained in the bounded set.

From the above research, we note that there is no result on the uniqueness of solutions
and convergence of the iterative sequences for singular boundary value problems on time
scales. As we know, completely continuity condition is crucial for the above discussion.
However, it is difficult to verify for singular problems on time scales, in particular, in order
to remove the singularity in f(u) at u = 0, more restricted conditions are required. For
instance, condition (A1) of Theorem 2.3 in [23] and condition (C2) of Theorem 3.1 in [27].
In our abstract results on mixed monotone operators, since the compactness and continuity
conditions are not required, they can be directly applied to singular boundary value problem
(1.1).

The purpose of this paper is to present some conditions for problem (1.1) that have a
unique solution, the iterative sequences yielding approximate solutions are also given. Our
main result generalizes and improves Theorem 2.3 in [18].

2. Preliminaries and Abstract Theorems

Let the real Banach space E be partially ordered by a cone P of E, that is, x ≤ y if and only if
y −x ∈ P .A : P ×P → P is said to be a mixed monotone operator if A(x, y) is increasing in x
and decreasing in y, that is, ui, vi (i = 1, 2) ∈ P , u1 ≤ u2, v1 ≥ v2 implies A(u1, v1) ≤ A(u2, v2).
Element x ∈ P is called a fixed point ofA if A(x, x) = x.

Recall that cone P is said to be solid if the interior P ◦ is nonempty andwe denote x � θ
if x ∈ P ◦. P is said to be normal if there exists a positive constant N, such that θ ≤ x ≤ y ⇒
‖x‖ ≤ N‖y‖, the smallest N is called the normal constant of P . For all x, y ∈ E, the notation
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x ∼ ymeans that there exist λ > 0 and μ > 0 such that λx ≤ y ≤ μx. Clearly, ∼ is an equivalence
relation. Given h > θ (i.e., h ≥ θ and h/= θ), we denote by Ph the set Ph = {x ∈ E | x ∼ h}. It is
easy to see that Ph ⊂ P is convex and λPh = Ph for all λ > 0. If P ◦ /= ∅ and h ∈ P ◦, it is clear that
Ph = P ◦.

All the concepts discussed above can be found in [1, 2, 4]. For more results about
mixed monotone operators and other related concepts, the reader is referred to [3, 5–9] and
some of the references therein.

In [9], Zhai and Cao introduced the following definition of τ-ϕ-concave operators.

Definition 2.1 (see [9]). Let E be a real Banach space and P be a cone in E. We say an operator
A : P → P is τ-ϕ-concave if there exist two positive-valued functions τ(t), ϕ(t) on interval
(a, b) such that

(H1) τ : (a, b) → (0, 1) is a surjection;

(H2) ϕ(t) > τ(t), for all t ∈ (a, b);

(H3) A(τ(t)x) ≥ ϕ(t)Ax, for all t ∈ (a, b), x ∈ P .

They obtained the following result.

Theorem 2.2 (see [9]). Let E be a real Banach space and P be a normal cone in E. Suppose that an
operatorA : P → P is increasing and τ-ϕ-concave. In addition, suppose that there exists h ∈ P \ {θ}
such thatAh ∈ Ph. Then

(i) there are u0, v0 ∈ Ph and r ∈ (0, 1) such that rv0 ≤ u0 ≤ v0, u0 ≤ Au0 ≤ Av0 ≤ v0;

(ii) operator A has a unique fixed point x∗ in [u0, v0];

(iii) for any initial x0 ∈ Ph, constructing successively the sequence xn = Axn−1, n = 1, 2, . . .,
we have ‖xn − x∗‖ → 0 (n → ∞).

We can extend Theorem 2.2 to mixed monotone operators, our main results can be
stated as follows.

Theorem 2.3. Let P be a normal cone in a real Banach space E, and A : P × P → P a mixed
monotone operator. Assume that for all a < t < b, there exist two positive-valued functions τ(t), ϕ(t)
on interval (a, b) such that

(C1) τ : (a, b) → (0, 1) is a surjection;

(C2) ϕ(t) > τ(t), for all t ∈ (a, b);

(C3) A(τ(t)x, (1/τ(t))y) ≥ ϕ(t)A(x, y), for all t ∈ (a, b), x, y ∈ P .

In addition, suppose that there exists h ∈ P \ {θ} such thatA(h, h) ∈ Ph. Then

(i) there are u0, v0 ∈ Ph and r ∈ (0, 1) such that rv0 ≤ u0 ≤ v0, u0 ≤ A(u0, v0) ≤ A(v0, u0) ≤
v0;

(ii) operator A has a unique fixed point x∗ in [u0, v0];

(iii) for any initial x0, y0 ∈ Ph, constructing successively the sequences xn = A(xn−1, yn−1),
yn = A(yn−1, xn−1), n = 1, 2, . . ., we have ‖xn − x∗‖ → 0 and ‖yn − x∗‖ → 0 as n → ∞.
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Corollary 2.4. Let E be a real Banach space, P a normal, solid cone in E. SupposeA : P ◦ ×P ◦ → P ◦

is a mixed monotone operator and satisfies the conditions (C1)–(C3) of Theorem 2.3. Then

(i) there are u0, v0 ∈ P ◦ and r ∈ (0, 1) such that rv0 ≤ u0 ≤ v0, u0 ≤ A(u0, v0) ≤ A(v0, u0) ≤
v0;

(ii) operator A has a unique fixed point x∗ in P ◦;

(iii) for any initial x0, y0 ∈ P ◦, constructing successively the sequences xn = A(xn−1, yn−1),
yn = A(yn−1, xn−1), n = 1, 2, . . ., we have ‖xn − x∗‖ → 0 and ‖yn − x∗‖ → 0 as n → ∞.

Remark 2.5. In Theorem 2.3, if A : P ◦ × P ◦ → P ◦ with P is a solid cone, we can know that
A(h, h) ∈ Ph is automatically satisfied. Therefore, we can deduce that Corollary 2.4 holds
from Theorem 2.3. For simplicity, we only present the proof of Theorem 2.3.

Proof of Theorem 2.3. Note thatA(h, h) ∈ Ph, we can find a sufficiently small number e0 ∈ (0, 1)
such that

e0h ≤ A(h, h) ≤ h

e0
. (2.1)

According to (C1), we can obtain that there exists t1 ∈ (a, b) such that τ(t1) = e0, thus

τ(t1)h ≤ A(h, h) ≤ h

τ(t1)
. (2.2)

Since ϕ(t1) > τ(t1), we can find a positive integer k such that

(
ϕ(t1)
τ(t1)

)k

≥ 1
τ(t1)

. (2.3)

Let u0 = [τ(t1)]kh, v0 = (1/[τ(t1)]k)h, and construct successively the sequences

un = A(un−1, vn−1), vn = A(vn−1, un−1), n = 1, 2, . . . . (2.4)

It is clear that u0, v0 ∈ Ph and u0 < v0, u1 = A(u0, v0) ≤ A(v0, u0) = v1. In general, we obtain
un ≤ vn, n = 1, 2, . . ..

It follows from (C3), (2.2), and (2.3) that

u1 = A(u0, v0) = A

(

[τ(t1)]kh,
h

[τ(t1)]k

)

= A

(

τ(t1)[τ(t1)]k−1h,
1

τ(t1)
h

[τ(t1)]k−1

)

≥ ϕ(t1)A

(

[τ(t1)]k−1h,
h

[τ(t1)]k−1

)
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= ϕ(t1)A

(

τ(t1)[τ(t1)]k−2h,
1

τ(t1)
h

[τ(t1)]k−2

)

≥ [
ϕ(t1)

]2
A

(

[τ(t1)]k−2h,
h

[τ(t1)]k−2

)

≥ · · · ≥ [
ϕ(t1)

]k
A(h, h)

≥ [
ϕ(t1)

]k
τ(t1)h

≥ [τ(t1)]kh = u0.

(2.5)

From (C3), we have

A

(
x

τ(t)
, τ(t)y

)
≤ 1
ϕ(t)

A
(
x, y

)
, ∀t ∈ (a, b), x, y ∈ P. (2.6)

Combining (2.2) with (2.3) and (2.6), we have

v1 = A(v0, u0) = A

(
h

[τ(t1)]k
, [τ(t1)]kh

)

= A

(
1

τ(t1)
h

[τ(t1)]k−1
, τ(t1)[τ(t1)]k−1h

)

≤ 1
ϕ(t1)

A

(
h

[τ(t1)]k−1
, [τ(t1)]k−1h

)

=
1

ϕ(t1)
A

(
1

τ(t1)
h

[τ(t1)]k−2
, τ(t1)[τ(t1)]k−2h

)

≤
[

1
ϕ(t1)

]2
A

(
h

[τ(t1)]k−2
, [τ(t1)]k−2h

)

≤ · · · ≤
[

1
ϕ(t1)

]k
A(h, h)

≤
[

1
ϕ(t1)

]k h

τ(t1)

≤ h

[τ(t1)]k
= v0.

(2.7)
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Thus, we obtain

u0 ≤ u1 ≤ v1 ≤ v0. (2.8)

By induction, it is easy to obtain that

u0 ≤ u1 ≤ · · · ≤ un ≤ · · · ≤ vn ≤ · · · ≤ v1 ≤ v0. (2.9)

Take any r ∈ (0, [τ(t1)]
2k), then r ∈ (0, 1) and u0 ≥ rv0. So we can know that

un ≥ u0 ≥ rv0 ≥ rvn, n = 1, 2, . . . . (2.10)

Let

rn = sup{r > 0 | un ≥ rvn}, n = 1, 2, . . . . (2.11)

Thus, we have un ≥ rnvn, n = 1, 2, . . ., and then

un+1 ≥ un ≥ rnvn ≥ rnvn+1, n = 1, 2, . . . . (2.12)

Therefore, rn+1 ≥ rn; that is,

0 < r0 ≤ r1 ≤ · · · ≤ rn ≤ · · · ≤ 1. (2.13)

Set r∗ = limn→∞rn, we will show that r∗ = 1. In fact, if 0 < r∗ < 1, by (C1), there exists
t2 ∈ (a, b) such that τ(t2) = r∗. Consider the following two cases.

(i) There exists an integer N such that rN = r∗. In this case, we have rn = r∗ and
un ≥ r∗vn for all n ≥ N hold. Hence

un+1 = A(un, vn) ≥ A

(
r∗vn,

1
r∗
un

)
= A

(
τ(t2)vn,

1
τ(t2)

un

)

≥ ϕ(t2)A(vn, un) = ϕ(t2)vn+1, n ≥ N.

(2.14)

By the definition of rn, we have

rn+1 = r∗ ≥ ϕ(t2) > τ(t2) = r∗, n ≥ N, (2.15)

which is a contradiction.
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(ii) For all integers n, rn < r∗. Then, we obtain 0 < rn/r∗ < 1. By (C1), there exist
zn ∈ (a, b) such that τ(zn) = rn/r∗. Hence

un+1 = A(un, vn) ≥ A

(
rnvn,

1
rn
un

)
= A

(
rn
r∗
r∗vn,

1
(rn/r∗)r∗

un

)
= A

(
τ(zn)r∗vn,

1
τ(zn)r∗

un

)

≥ ϕ(zn)A
(
r∗vn,

1
r∗
un

)
= ϕ(zn)A

(
τ(t2)vn,

1
τ(t2)

un

)

≥ ϕ(zn)ϕ(t2)A(vn, un) = ϕ(zn)ϕ(t2)vn+1.

(2.16)

By the definition of rn, we have

rn+1 ≥ ϕ(zn)ϕ(t2) > τ(zn)ϕ(t2) =
rn
r∗
ϕ(t2). (2.17)

Let n → ∞, we have

r∗ ≥ ϕ(t2) > τ(t2) = r∗, (2.18)

which is also a contradiction. Thus, limn→∞rn = 1.
Furthermore, similarly to the proof of Theorem 2.1 in [9], there exits x∗ ∈ [u0, v0] such

that limn→∞un = limn→∞vn = x∗, and x∗ is the fixed point of operator A.
In the following, we prove that x∗ is the unique fixed point ofA in Ph. In fact, suppose

that x∗ ∈ Ph is another fixed point of operator A. Let

c1 = sup
{
0 < c ≤ 1 | cx∗ ≤ x∗ ≤ 1

c
x∗

}
. (2.19)

Clearly, 0 < c1 ≤ 1 and c1x∗ ≤ x∗ ≤ (1/c1)x∗. If 0 < c1 < 1, according to (C1), there exists
t3 ∈ (a, b) such that τ(t3) = c1. Then

x∗ = A(x∗, x∗) ≥ A

(
c1x∗,

1
c1
x∗

)
= A

(
τ(t3)x∗,

1
τ(t3)

x∗

)

≥ ϕ(t3)A(x∗, x∗) = ϕ(t3)x∗,

x∗ = A(x∗, x∗) ≤ A

(
1
c1
x∗, c1x∗

)
= A

(
1

τ(t3)
x∗, τ(t3)x∗

)

≤ 1
ϕ(t3)

A(x∗, x∗) =
1

ϕ(t3)
x∗.

(2.20)

It follows that

ϕ(t3)x∗ ≤ x∗ ≤ 1
ϕ(t3)

x∗. (2.21)
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Hence, c1 ≥ ϕ(t3) > τ(t3) = c1, which is a contradiction. Thus we have c1 = 1, that is, x∗ = x∗.
Therefore, A has a unique fixed point x∗ in Ph. Note that [u0, v0] ⊂ Ph, so we know that x∗

is the unique fixed point of A in [u0, v0]. For any initial x0, y0 ∈ Ph, we can choose a small
number e ∈ (0, 1) such that

eh ≤ x0 ≤ 1
e
h, eh ≤ y0 ≤ 1

e
h. (2.22)

From (C1), there is t4 ∈ (a, b) such that τ(t4) = e, thus

τ(t4)h ≤ x0 ≤ 1
τ(t4)

h, τ(t4)h ≤ y0 ≤ 1
τ(t4)

h. (2.23)

We can choose a sufficiently large positive integer q such that

(
ϕ(t4)
τ(t4)

)q

≥ 1
τ(t4)

. (2.24)

Take û0 = [τ(t4)]qh, v̂0 = (1/[τ(t4)]q)h. We can find that

û0 ≤ x0 ≤ v̂0, û0 ≤ y0 ≤ v̂0, (2.25)

constructing successively the sequences

xn = A
(
xn−1, yn−1

)
, yn = A

(
yn−1, xn−1

)
, n = 1, 2, . . . ,

ûn = A(ûn−1, v̂n−1), v̂n = A(v̂n−1, ûn−1), n = 1, 2, . . . .
(2.26)

By using the mixed monotone properties of operator A, we have

ûn ≤ xn ≤ v̂n, ûn ≤ yn ≤ v̂n, n = 1, 2, . . . . (2.27)

Similarly to the above proof, we can know that there exists y∗ ∈ Ph such that

A
(
y∗, y∗) = y∗, lim

n→∞
ûn = lim

n→∞
v̂n = y∗. (2.28)

By the uniqueness of fixed points of operator A in Ph, we have y∗ = x∗. Taking into account
that P is normal, we deduce that limn→∞xn = limn→∞yn = x∗. This completes the proof.

3. Applications to Singular BVP (1.1) on Time Scales

A Banach space E = C([a, σ2(b)]
�
) is the set of real-valued continuous (in the topology of �)

function u(t) defined on [a, σ2(b)]�with the norm ‖u‖ = maxt∈[a,σ2(b)]
�
|u(t)|.
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Define a cone by

P =
{
u ∈ E | min

t∈[a,σ2(b)]
�

u(t) ≥ 0
}
. (3.1)

It is clear that P is a normal cone of which the normality constant is 1.
In order to obtain our main result, we need the following lemmas.

Lemma 3.1 (see [18]). The Green function corresponding to the following problem

−xΔΔ(t) = 0, t ∈ [a, b]�,

x(a) = 0, x
(
σ2(b)

)
= δx

(
η
)

(3.2)

is given by

K(t, s) = G(t, s) +
δG

(
η, s

)

σ2(b) − a − δ
(
η − a

) (t − a), (3.3)

where

G(t, s) =
1

σ2(b) − a

⎧
⎪⎨

⎪⎩

(t − a)
(
σ2(b) − σ(s)

)
, t ≤ s,

(σ(s) − a)
(
σ2(b) − t

)
, t ≥ σ(s),

(3.4)

is Green’s function for the BVP:

−xΔΔ(t) = 0, t ∈ [a, b]
�
,

x(a) = x
(
σ2(b)

)
= 0.

(3.5)

Lemma 3.2 (see [18]). For any (t, s) ∈ [a, σ2(b)]�× [a, σ(b)]�, we have

δG
(
η, s

)

σ2(b) − a − δ
(
η − a

) (t − a) ≤ K(t, s) ≤
[

1 +
δG

(
η, s

)

σ2(b) − a − δ
(
η − a

)

]

(t − a). (3.6)

Our main result is the following theorem.

Theorem 3.3. Assume that

(E1) f1 is nondecreasing, f2 is nonincreasing and there exist τ(t), ϕ(t) on interval (a, b)
�
such

that τ : (a, b)
�
→ (0, 1) is a surjection and ϕ(t) > τ(t), for all t ∈ (a, b)

�
which satisfy

f1
(
τ
(
μ
)
x1
)
+ f2

(
1

τ
(
μ
)x2

)

≥ ϕ
(
μ
)[
f1(x1) + f2(x2)

]
, ∀μ ∈ (a, b)

�
, x1, x2 ∈ P ; (3.7)
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(E2) there exist two constantsN1,N2 > 0 and h ∈ P \ {0} such that

N1h(t) ≤
∫σ(b)

a

K(t, s)w(s)
[
f1(h(s)) + f2(h(s))

]
Δs ≤ N2h(t), ∀t ∈

[
a, σ2(b)

]

�

. (3.8)

Then problem (1.1) has a unique positive solution x∗ in Ph. Moreover, for any initial
x0, y0 ∈ Ph, constructing successively the sequences

xn(t) =
∫σ(b)

a

K(t, s)w(s)
[
f1(xn−1(s)) + f2

(
yn−1(s)

)]
Δs, t ∈

[
a, σ2(b)

]

�

, n = 1, 2, . . . ,

yn(t) =
∫σ(b)

a

K(t, s)w(s)
[
f1
(
yn−1(s)

)
+ f2(xn−1(s))

]
Δs, t ∈

[
a, σ2(b)

]

�

, n = 1, 2, . . . ,

(3.9)

we have ‖xn − x∗‖ → 0 and ‖yn − x∗‖ → 0 as n → ∞.

Proof of Theorem 3.3. Define an operator A : P × P → E

A(x1, x2)(t) =
∫σ(b)

a

K(t, s)w(s)
[
f1(x1(s)) + f2(x2(s))

]
Δs, t ∈

[
a, σ2(b)

]

�

. (3.10)

It is easy to check that x is a solution of problem (1.1) if and only if x is a fixed point of
operator A. Clearly, we can know that A : P × P → P is a mixed monotone operator. For any
μ ∈ (a, b)

�
and x1, x2 ∈ P , according to (E1), we obtain

A

(

τ
(
μ
)
x1,

1
τ
(
μ
)x2

)

=
∫σ(b)

a

K(t, s)w(s)

[

f1
(
τ
(
μ
)
x1(s)

)
+ f2

(
1

τ
(
μ
)x2(s)

)]

Δs

≥ ϕ
(
μ
)
∫σ(b)

a

K(t, s)w(s)
[
f1(x1(s)) + f2(x2(s))

]
Δs

= ϕ
(
μ
)
A(x1, x2).

(3.11)

Hence,

A

(

τ
(
μ
)
x1,

1
τ
(
μ
)x2

)

≥ ϕ
(
μ
)
A(x1, x2), for μ ∈ (a, b)�, x1, x2 ∈ P. (3.12)

In addition, from (E2), we know that

N1h(t) ≤ A(h, h) =
∫σ(b)

a

K(t, s)w(s)
[
f1(h(s)) + f2(h(s))

]
Δs ≤ N2h(t), ∀t ∈

[
a, σ2(b)

]

�

.

(3.13)

Thus A(h, h) ∈ Ph. Therefore, all the conditions of Theorem 2.3 are satisfied. By Theorem 2.3,
we can obtain the conclusions of Theorem 3.3.
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Now, let us end this paper by the following example.

Example 3.4. Let � = [0, 1/2] ∪ [2/3, 1], consider the following BVP on time scales

−xΔΔ(t) =
1
t

[
3 + x1/2(t) + 5 +

1
x1/2(t)

]
, t ∈ [0, 1]

�
,

x(0) = 0, x(1) = 2x
(
1
3

)
.

(3.14)

Setw(t) = 1/t, f1(x) = 3+x1/2, f2(x) = 5+1/x1/2, τ(t) = t, ϕ(t) = t2/3. Then τ : (0, 1)
�
→ (0, 1)

is a surjection and ϕ(t) > τ(t) for t ∈ (0, 1)
�
.

For any t ∈ (0, 1), x1, x2 ∈ P , it is easy to check that

f1(tx1) + f2

(
1
t
x2

)
= 3 + (tx1)1/2 + 5 +

1

(x2/t)1/2

≥ t2/3
(

3 + x1/2
1 + 5 +

1

x1/2
2

)

= t2/3
[
f1(x1) + f2(x2)

]
.

(3.15)

It follows from Lemma 3.1 that

G

(
1
3
, s

)
=

⎧
⎪⎪⎨

⎪⎪⎩

1
3
(1 − σ(s)),

1
3
≤ s,

2
3
σ(s),

1
3
≥ σ(s).

(3.16)

Let
∫1
0 6G(1/3, s)(1/s)(3 + s1/2 + 5 + 1/s1/2)Δs = d, since

d = 6
∫1/3

0

2
3
s
1
s

(
8 + s1/2 +

1
s1/2

)
ds + 6

∫1/2

1/3

1
3
(1 − s)

1
s

(
8 + s1/2 +

1
s1/2

)
ds

+ 6
∫2/3

1/2

1
3
(1 − σ(s))

1
s

(
8 + s1/2 +

1
s1/2

)
Δs + 6

∫1

2/3

1
3
(1 − σ(s))

1
s

(
8 + s1/2 +

1
s1/2

)
ds

= 32(ln 3 − ln 2) − 34
9

(
1
2

)−1/2
− 4
3

(
1
2

)3/2

+ 4
(
1
3

)−1/2

+ 16
(
1
3

)5/2

+
2
9

(
1
2

)1/2

+ 4
(
2
3

)−1/2
+ 8

(
1
3

)1/2

− 8
9

> 0.
(3.17)
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We choose h(t) = t − a = t, according to Lemma 3.2, we have

∫1

0
K(t, s)

1
s

[
f1(s) + f2(s)

]
Δs ≥ td,

∫1

0
K(t, s)

1
s

[
f1(s) + f2(s)

]
Δs ≤ t

[

d +
∫1

0

1
s

(
8 + s1/2 +

1
s1/2

)
Δs

]

.

(3.18)

By Theorem 3.3, problem (3.14) has a unique positive solution x∗ in Ph = Pt. For any initial
x0, y0 ∈ Pt, constructing successively the sequences

xn(t) =
∫1

0
K(t, s)

1
s

[

8 + x1/2
n−1(s) +

1

y1/2
n−1(s)

]

Δs, t ∈ [0, 1]
�
, n = 1, 2, . . . ,

yn(t) =
∫1

0
K(t, s)

1
s

[

8 + y1/2
n−1(s) +

1

x1/2
n−1(s)

]

Δs, t ∈ [0, 1]
�
, n = 1, 2, . . . ,

(3.19)

we have ‖xn − x∗‖ → 0, ‖yn − x∗‖ → 0 as n → ∞.

Remark 3.5. Example 3.4 indicates that Theorem 3.3 generalizes and complements Theorem
2.3 in [18] at the following aspects. Firstly, in our proof, we only need to check the conditions
“there exists h ∈ P \ {θ} such that A(h, h) ∈ Ph”, in fact, the author has shown that
“A : Ph → Ph” in the proof of Theorem 2.3 in [18]. It is clear that our hypotheses are
weaker than those imposed in Theorem 2.3 in [18]. According to Lemma 3.2, we can know
that the condition (E2) is automatically satisfied. Secondly, we have considered the case that
the condition “τ(t) = t and ϕ(t) = tq (q ∈ (0, 1))” is not satisfied, therefore, the condition (E1)
incorporates the more comprehensive functions than the condition (H3) in Theorem 2.3 in
[18]. Thirdly, the more general conditions are imposed on our nonlinear term, they can be the
sum of nondecreasing functions and nonincreasing functions.
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