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Existence and Lyapunov stability of periodic solutions for a generalized higher-order neutral
differential equation are established.

1. Introduction

In recent years, there is a good amount of work on periodic solutions for neutral differential
equations (see [1–11] and the references cited therein). For example, the following neutral
differential equations

d

du
(u(t) − ku(t − τ)) = g1(u(t)) + g2(u(t − τ1)) + p(t),

(x(t) + cx(t − r))′′ + f
(
x′(t)

)
+ g(x(t − τ(t))) = p(t),

(x(t) − cx(t − σ))(n) + f(x(t))x′(t) + g

(∫0

−r
x(t + s)dα(s)

)

= p(t)

(1.1)

have been studied in [1, 3, 8], respectively, and existence criteria of periodic solutions were
established for these equations. Afterwards, alongwith intensive research on the p-Laplacian,
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some authors [4, 11] start to consider the following p-Laplacian neutral functional differential
equations:

(
φp(x(t) − cx(t − σ))′

)′ + g(t, x(t − τ(t))) = p(t),
(
φp

(
(x(t) − cx(t − σ))′

))
+ f
(
x′(t)

)
+ g(x(t − τ(t))) = e(t),

(1.2)

and by using topological degree theory and some analysis skills, existence results of periodic
solutions for (1.2) have been presented.

In general, most of the existing results are concentrated on lower-order neutral
functional differential equations, while studies on higher-order neutral functional differential
equations are rather infrequent, especially on higher-order p-Laplacian neutral functional
differential equations. In this paper, we consider the following generalized higher-order
neutral functional differential equation:

(
ϕp(x(t) − cx(t − σ))(l)

)(n−l)
= F

(
t, x(t), x′(t), . . . , x(l−1)(t)

)
, (1.3)

where ϕp : R → R is given by ϕp(s) = |s|p−2s with p ≥ 2 being a constant, F is a continuous
function defined on R

l and is periodic with respect to t with period T , that is, F(t, ·, . . . , ·) =
F(t + T, ·, . . . , ·), F(t, a, 0, . . . , 0)/≡ 0 for all a ∈ R, and c, σ are constants.

Since the neutral operator is divided into two cases |c|/= 1 and |c| = 1, it is natural
to study the neutral differential equation separately according to these two cases. The case
|c| = 1 has been studied in [5]. Now we consider (1.3) for the case |c|/= 1. So throughout
this paper, we always assume that |c|/= 1, and the paper is organized as follows. We first
transform (1.3) into a system of first-order differential equations, and then by applying
Mawhin’s continuation theory and some new inequalities, we obtain sufficient conditions
for the existence of periodic solutions for (1.3). The Lyapunov stability of periodic solutions
for the equation will then be established. Finally, an example is given to illustrate our results.

2. Preparation

First, we recall two lemmas. LetX and Y be real Banach spaces and let L : D(L) ⊂ X → Y be a
Fredholm operator with index zero; hereD(L) denotes the domain of L. This means that Im L
is closed in Y and dim Ker L = dim(Y/ Im L) < +∞. Consider supplementary subspaces X1,
Y1 of X, Y , respectively, such that X = Ker L ⊕ X1, Y = Im L ⊕ Y1. Let P : X → KerL and
Q : Y → Y1 denote the natural projections. Clearly, Ker L ∩ (D(L) ∩ X1) = {0} and so the
restriction LP := L|D(L)∩X1 is invertible. Let K denote the inverse of LP .

LetΩ be an open bounded subset of X withD(L)∩Ω/= ∅. A mapN : Ω → Y is said to
be L-compact in Ω if QN(Ω) is bounded and the operator K(I −Q)N : Ω → X is compact.

Lemma 2.1 (see [12]). Suppose that X and Y are two Banach spaces, and suppose that L : D(L) ⊂
X → Y is a Fredholm operator with index zero. LetΩ ⊂ X be an open bounded set and letN : Ω → Y

be L-compact on Ω. Assume that the following conditions hold:

(1) Lx/=λNx, for all x ∈ ∂Ω ∩D(L), λ ∈ (0, 1),

(2) Nx/∈ Im L, for all x ∈ ∂Ω ∩ Ker L,
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(3) deg{JQN,Ω ∩ Ker L, 0}/= 0, where J : Im Q → Ker L is an isomorphism.

Then, the equation Lx = Nx has a solution in Ω ∩D(L).

Lemma 2.2 (see [13]). If ω ∈ C1(R,R) and ω(0) = ω(T) = 0, then

∫T

0
|ω(t)|pdt ≤

(
T

πp

)p ∫T

0

∣
∣ω′(t)

∣
∣pdt, (2.1)

where p is a fixed real number with p > 1 and

πp = 2
∫ (p−1)/p

0

ds
(
1 − sp/

(
p − 1

))1/p =
2π
(
p − 1

)1/p

p sin
(
π/p

) . (2.2)

For the sake of convenience, throughout this paper we denote by T a positive real number,
and for any continuous function u, we write

|u|0 := max
t∈[0,T]

|u(t)|. (2.3)

Let A : CT → CT be the operator on CT := {x ∈ C(R,R) : x(t + T) = x(t) for all t ∈ R}
given by

(Ax)(t) := x(t) − cx(t − σ), ∀x ∈ CT , t ∈ R. (2.4)

Lemma 2.3. The operator A has a continuous inverse A−1 on CT satisfying the following:

(1)
[
A−1f

]
(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f(t) +
∞∑

j=1

cjf
(
t − jσ

)
, for |c| < 1, ∀f ∈ CT ,

−f(t + σ)
c

−
∞∑

j=1

1
cj+1

f
(
t +
(
j + 1

)
σ
)
, for |c| > 1, ∀f ∈ CT ,

(2.5)

(2)
∣∣∣
[
A−1f

]
(t)
∣∣∣ ≤

∣∣f
∣∣
0

|1 − |c|| , ∀f ∈ CT , (2.6)

(3)
∫T

0

∣∣∣
[
A−1f

]
(t)
∣∣∣dt ≤ 1

|1 − |c||
∫T

0

∣∣f(t)
∣∣dt, ∀f ∈ CT . (2.7)

Remark 2.4. This lemma is basically proved in [3, 10]. For the convenience of the readers, we
present a detailed proof here as follows.

Proof. We split it into the following two cases.

Case 1 (|c| < 1). Define an operator B : CT → CT by

(Bx)(t) := cx(t − σ), ∀x ∈ CT , t ∈ R. (2.8)
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Clearly, Bjx(t) = cjx(t − jσ) and A = I − B. Note also that ‖B‖ < |c| < 1. Therefore, A has a
continuous inverseA−1 : CT → CT withA−1 = (I −B)−1 =∑∞

j=0 B
j ; here B0x(t) := x(t). Hence,

[
A−1f

]
(t) =

∞∑

j=0

[
Bjf

]
(t) = f(t) +

∞∑

j=1

cjf
(
t − jσ

)
, (2.9)

and so

∣
∣
∣
[
A−1f(t)

]∣∣
∣ =

∣
∣
∣
∣
∣
∣

∞∑

j=0

[
Bjf

]
(t)

∣
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣

∞∑

j=0

cjf
(
t − jσ

)
∣
∣
∣
∣
∣
∣
≤
∣
∣f
∣
∣
0

1 − |c| ,

∫T

0

∣
∣
∣
[
A−1f

]
(t)
∣
∣
∣dt ≤

∞∑

j=0

∫T

0

∣
∣
∣
(
Bjf

)
(t)
∣
∣
∣dt =

∞∑

j=0

∫T

0

∣
∣
∣cjf

(
t − jσ

)∣∣
∣dt ≤ 1

1 − |c|
∫T

0

∣
∣f(t)

∣
∣dt.

(2.10)

Case 2 (|c| > 1). Define operators

E : CT −→ CT , (Ex)(t) := x(t) − 1
c
x(t + σ),

B1 : CT −→ CT , (B1x)(t) :=
1
c
x(t + σ).

(2.11)

From the definition of the linear operator B1, we have

(
B
j

1f
)
(t) =

1
cj
f
(
t + jσ

)
,

∞∑

j=0

(
B
j

1f
)
(t) = f(t) +

∞∑

j=1

1
cj
f
(
t + jσ

)
.

(2.12)

Since ‖B1‖ < 1, the operator E has a bounded inverse E−1 : CT → CT with

E−1 = (I − B1)−1 = I +
∞∑

j=1

B
j

1, (2.13)

and so, for any f ∈ CT ,

(
E−1f

)
(t) = f(t) +

∞∑

j=1

(
B
j

1f
)
(t). (2.14)

On the other hand, from [Ax](t) = x(t) − cx(t − σ), we have

[Ax](t) = x(t) − cx(t − σ) = −c
[
x(t − σ) − 1

c
x(t)

]
. (2.15)
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That is,

[Ax](t) = −c(Ex)(t − σ). (2.16)

Now, for any f ∈ CT , if x(t) satisfies

[Ax](t) = f(t), (2.17)

then we have

−c(Ex)(t − σ) = f(t), (2.18)

or

(Ex)(t) = −f(t + σ)
c

= f1(t). (2.19)

So, we have

x(t) =
(
E−1f1

)
(t) = f1(t) +

∞∑

j=1

B
j

1f1(t) = −f(t + σ)
c

−
∞∑

j=1

B
j

1

f(t + σ)
c

. (2.20)

So, A−1 exists and satisfies

[
A−1f

]
(t) = −f(t + σ)

c
−

∞∑

j=1

B
j

1

f(t + σ)
c

= −f(t + σ)
c

−
∞∑

j=1

1
cj+1

f
(
t +
(
j + 1

)
σ
)
,

∣∣∣
[
A−1f

]
(t)
∣∣∣ =

∣∣∣∣∣∣
−f(t + σ)

c
−

∞∑

j=1

1
cj+1

f
(
t +
(
j + 1

)
σ
)
∣∣∣∣∣∣
≤
∣∣f
∣∣
0

|c| − 1
.

(2.21)

This proves (1) and (2) of Lemma 2.3. Finally, (3) is easily verified.

By Hale’s terminology [14], a solution x(t) of (1.3) is that x(t) ∈ C1(R,R) such that
Ax ∈ C1(R,R) and (1.3) is satisfied on R. In general, x(t) does not belong to C1(R,R). But
we can see easily from (Ax)′(t) = Ax′(t) that a solution x(t) of (1.3)must belong to C1(R,R).
Equation (1.3) is transformed into

(
ϕp

((
Ax(l)

)
(t)
))(n−l)

= F
(
t, x(t), x′(t), . . . , x(l−1)(t)

)
. (2.22)

Lemma 2.5 (see [4]). If p > 1, then

∫T

0

∣∣∣
(
A−1f

)
(t)
∣∣∣
p
dt ≤ 1

|1 − |c||p
∫T

0

∣∣f(t)
∣∣pdt, ∀f ∈ CT . (2.23)
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Now we consider (2.22). Define the conjugate index q ∈ (1, 2] by 1/p + 1/q = 1.
Introducing new variables

y1(t) = x(t), y2(t) = x′(t), y3(t) = x′′(t), . . . , yl(t) = x(l−1)(t),

yl+1(t) = ϕp

(
Ax(l)(t)

)
, yl+2(t) =

(
ϕp

(
Ax(l)(t)

))′
, . . . , yn(t) =

(
ϕp

(
Ax(l)(t)

))(n−l−1)
.

(2.24)

Using the fact that ϕq ◦ ϕp ≡ id and by Lemma 2.3, (1.3) can be rewritten as

y′
1(t) = y2(t),

y′
2(t) = y3(t),

...

y′
l−1(t) = yl(t),

y′
l(t) = A−1ϕq

(
yl+1(t)

)
,

y′
l+1(t) = yl+2(t),

...

y′
n−1(t) = yn(t),

y′
n(t) = F

(
t, y1(t), y2(t), . . . , yl(t)

)
.

(2.25)

It is clear that, if y(t) = (y1(t), y2(t), . . . , yn(t))
� is a T -periodic solution to (2.25), then y1(t)

must be a T -periodic solution to (1.3). Thus, the problem of finding a T -periodic solution for
(1.3) reduces to finding one for (2.25).

Define the linear spaces

X = Y =
{
y =

(
y1(·), y2(·), . . . , yn(·)

)� ∈ C0(R,Rn) : y(t + T) ≡ y(t)
}

(2.26)

with norm ‖y‖ = max{‖y1‖, ‖y2‖, . . . , ‖yn‖}. Obviously, X and Y are Banach spaces. Define

L : D(L) =
{
y ∈ C1(R,Rn) : y(t + T) = y(t)

}
⊂ X −→ Y (2.27)
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by

Ly = y′ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎝

y′
1

y′
2
...
y′
l
...
y′
n

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎠

. (2.28)

Moreover, define

N : X −→ Y (2.29)

by

Ny =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

y2(t)
y3(t)
...

A−1ϕq

(
yl+1(t)

)

yl+2(t)
...

F
(
t, y1(t), y2(t), . . . , yl(t)

)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (2.30)

Then, (2.25) can be rewritten as the abstract equation Ly = Ny. From the definition of L,
one can easily see that Ker L = {y ∈ C1(R,Rn) : y is constant} � R

n and Im L = {y : y ∈
X,
∫T
0 y(s)ds = 0}. So, L is a Fredholm operator with index zero. Let P : X → Ker L and

Q : Y → Im Q be defined by

Py =
1
T

∫T

0
y(s)ds, Qy =

1
T

∫T

0
y(s)ds. (2.31)

It is easy to see that Ker L = Im Q = R
n. Moreover, for all y ∈ Y , if we write y∗ = y − Q(y),

we have
∫T
0 y∗(s)ds = 0 and so y∗ ∈ Im L. This is to say Y = ImQ ⊕ Im L and dim(Y/ Im L) =

dim Im Q = dim Ker L. So, L is a Fredholm operator with index zero. Let K denote the
inverse of L|Ker p∩D(L), then we have

[
Ky
]
(t) =

(∫T

0
G1(t, s)y1(s)ds,

∫T

0
G2(t, s)y2(s)ds, . . . ,

∫T

0
Gn(t, s)yn(s)ds

)�
, (2.32)
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where

Gi(t, s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

s

T
, 0 ≤ s < t ≤ T,

s − T

T
, 0 ≤ t ≤ s ≤ T,

i = 1, 2, . . . , n. (2.33)

From (2.30) and (2.33), it is clear that QN and K(I − Q)N are continuous, and QN(Ω) is
bounded, and so K(I − Q)N(Ω) is compact for any open bounded Ω ⊂ X. Hence, N is L-
compact on Ω. For the function y(t) = (y1(t), y2(t), . . . , yn(t))

� defined as (2.24), we have the
following.

Lemma 2.6. If y(t) ∈ C1(R,Rn) and y(t + T) = y(t), then

∫T

0

∣∣y′
i(t)
∣∣pdt ≤ 1

|1−|c‖p
(

T

πp

)p(l−i)(
T

πq

)q(n−l) ∫T

0

∣∣y′
n(t)

∣∣qdt, (2.34)

where 1/p + 1/q = 1, p ≥ 2, i = 1, 2, . . . , l − 1.

Proof. From y1(0) = y1(T), there is a point t1 ∈ [0, T] such that y′
1(t1) = 0. Letω1(t) = y′

1(t+ t1).
Then, ω1(0) = ω1(T) = 0. From y2(0) = y2(T), there is a point t2 ∈ [0, T] such that y′

2(t2) = 0.
Let ω2(t) = y′

2(t + t2). Then, ω2(0) = ω2(T) = 0. Continuing this way, we get from yl−1(0) =
yl−1(T) a point tl−1 ∈ [0, T] such that y′

l−1(tl−1) = 0. Let ωl−1(t) = y′
l−1(t + tl−1). Then, ωl−1(0) =

ωl−1(T) = 0. From yl(t) = yl(t + T), we have
∫T
0 (Ay′

l
)(t)dt =

∫T
0 (Ayl)

′(t)dt = (Ayl)(t)|T0 = 0,
so there is a point tl ∈ [0, T] such that Ay′

l
(tl) = 0; hence, we have ϕp((Ay′

l
)(tl)) = 0. Let

ωl(t) = ϕp((Ay′
l)(t + tl)) = yl+1(t + tl). Then, ωl(0) = ωl(T) = 0. Continuing this way, we

get from yn−1(0) = yn−1(T) that there is a point tn−1 ∈ [0, T] such that y′
n−1(tn−1) = 0. Let

ωn−1(t) = y′
n−1(t + tn−1). Then, ωn−1(0) = ωn−1(T) = 0. By Lemma 2.2, we have

∫T

0

∣∣y′
1(t)

∣∣pdt =
∫T

0
|ω1(t)|pdt

≤
(

T

πp

)p ∫T

0

∣∣ω′
1(t)

∣∣pdt

=

(
T

πp

)p ∫T

0

∣∣y′
2(t)

∣∣pdt

=

(
T

πp

)p ∫T

0
|ω2(t)|pdt

≤
(

T

πp

)2p ∫T

0

∣∣ω′
2(t)

∣∣pdt

...



Boundary Value Problems 9

≤
(

T

πp

)p(l−1) ∫T

0

∣
∣ω′

l−1(t)
∣
∣pdt

=

(
T

πp

)p(l−1) ∫T

0

∣
∣y′

l(t)
∣
∣pdt.

(2.35)

By Lemma 2.5 and Lemma 2.2, we have

∫T

0

∣
∣y′

l(t)
∣
∣pdt =

∫T

0

∣
∣
∣A−1ϕq

(
yl+1(t)

)∣∣
∣
p
dt

≤ 1
|1 − |c||p

∫T

0

∣∣ϕq

(
yl+1(t)

)∣∣pdt

=
1

|1 − |c||p
∫T

0

∣∣yl+1(t)
∣∣pq−pdt

=
1

|1 − |c||p
∫T

0

∣∣yl+1(t)
∣∣qdt

=
1

|1 − |c||p
∫T

0
|ωl(t)|qdt

≤ 1
|1 − |c||p

(
T

πq

)q ∫T

0

∣∣ω′
l(t)
∣∣qdt

=
1

|1 − |c||p
(

T

πq

)q ∫T

0

∣∣yl+2(t)
∣∣qdt

...

≤ 1
|1 − |c||p

(
T

πq

)q(n−l) ∫T

0

∣∣ω′
n−1(t)

∣∣qdt

=
1

|1 − |c||p
(

T

πq

)q(n−l) ∫T

0

∣∣y′
n(t)

∣∣qdt.

(2.36)

Combining (2.35) and (2.36), we get

∫T

0

∣∣y′
1(t)

∣∣pdt ≤ 1
|1 − |c||p

(
T

πp

)p(l−1)(
T

πq

)q(n−l) ∫T

0

∣∣y′
n(t)

∣∣qdt. (2.37)
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Similarly, we get

∫T

0

∣
∣y′

i(t)
∣
∣pdt ≤ 1

|1 − |c||p
(

T

πp

)p(l−i)(
T

πq

)q(n−l) ∫T

0

∣
∣y′

n(t)
∣
∣qdt. (2.38)

This completes the proof of Lemma 2.6.

Remark 2.7. In particular, if we take p = 2, then q = 2 and

πp = πq = π2 = 2
∫ (2−1)/2

0

ds

(1 − s2/(2 − 1))1/2
=

2π(2 − 1)1/2

2 sin(π/2)
= π. (2.39)

In this case, (2.34) is transformed into

∫T

0

∣∣yi(t)
∣∣2dt ≤ 1

|1−|c‖2
(
T

π

)2(n−i) ∫T

0

∣∣y′
n(t)

∣∣2dt. (2.40)

3. Main Results

For the sake of convenience, we list the following assumptions which will be used repeatedly
in the sequel.

(H1) There exists a constant D > 0 such that

z1F(t, z1, z2, . . . , zl) > 0, ∀(t, z1, z2, . . . , zl) ∈ [0, T] × R
l, with |z1| > D. (3.1)

(H2) There exists a constant M > 0 such that

|F(t, z1, z2, . . . , zl)| ≤ M, ∀(t, z1, z2, . . . , zl) ∈ [0, T] × R
l. (3.2)

(H3) There exist nonnegative constants α1, α2, . . . , αl,m such that

|F(t, z1, z2, . . . , zl)| ≤ α1|z1| + α2|z2| + · · · + αl|zl| +m, ∀(t, z1, z2, . . . , zl) ∈ [0, T] × R
l. (3.3)

(H4) There exist nonnegative constants γ1, γ2, . . . , γn such that

|F(t, u1, u2, . . . , un) − F(t, v1, v2, . . . , vn)| ≤ γ1|u1 − v1| + γ2|u2 − v2| + · · · + γn|un − vn| (3.4)

for all (t, u1, u2, . . . , un), (t, v1, v2, . . . , vn) ∈ [0, T] × R
n.

Theorem 3.1. If (H1) and (H2) hold, then (1.3) has at least one nonconstant T -periodic solution.
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Proof. Consider the equation

Ly = λNy, λ ∈ (0, 1). (3.5)

Let Ω1 = {y ∈ D(L) : Ly = λNy, λ ∈ (0, 1)}. If y(t) = (y1(t), y2(t), . . . , yn(t))
� ∈ Ω1, then

y′
1(t) = λy2(t),

y′
2(t) = λy3(t),

...

y′
l−1(t) = λyl(t),

y′
l(t) = λϕq

(
yl+1(t)

)
,

y′
l+1(t) = λyl+2(t),

...

y′
n−1(t) = λyn(t),

y′
n(t) = λF

(
t, y1(t), y2(t), . . . , yl(t)

)
.

(3.6)

We first claim that there exists a constant ξ ∈ R such that

∣∣y1(ξ)
∣∣ ≤ D. (3.7)

Integrating the last equation of (3.6) over [0, T], we have

∫T

0
F
(
t, y1(t), y2(t), . . . , yl(t)

)
dt = 0. (3.8)

By the continuity of F, there exists ξ ∈ [0, T] such that

F
(
ξ, y1(ξ), . . . , yl(ξ)

)
= 0. (3.9)

From assumption (H1), we get (3.7). As a consequence, we have

∣∣y1(t)
∣∣ =

∣∣∣∣∣
y1(ξ) +

∫ t

ξ

y′
1(s)ds

∣∣∣∣∣
≤ D +

∫T

0

∣∣y′
1(s)

∣∣ds. (3.10)
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On the other hand, multiplying both sides of the last equation of (3.6) by y′
n(t) and integrating

over [0, T], using assumption (H2),we have

∫T

0

∣
∣y′

n(t)
∣
∣2dt = λ

∫T

0
F
(
t, y1(t), y2(t), . . . , yl(t)

)
y′
n(t)dt

≤
∫T

0

∣
∣F
(
t, y1(t), y2(t), . . . , yl(t)

)∣∣
∣
∣y′

n(t)
∣
∣dt

≤ M

∫T

0

∣
∣y′

n(t)
∣
∣dt

≤ MT1/2

(∫T

0

∣
∣y′

n(t)
∣
∣2dt

)1/2

.

(3.11)

It is easy to see that there exists a constant M′
n > 0 (independent of λ) such that

∫T

0

∣∣y′
n(t)

∣∣2dt ≤ M′
n. (3.12)

From yn−1(0) = yn−1(T), there exists a point t1 ∈ [0, T] such that yn(t1) = 0. By Hölder’s
inequality, we have

∣∣yn(t)
∣∣ ≤

∫T

0

∣∣y′
n(t)

∣∣dt ≤ T1/2

(∫T

0

∣∣y′
n(t)

∣∣2dt

)1/2

≤ T1/2M′1/2
n := Mn. (3.13)

From yn−2(0) = yn−2(T), there exists a point t2 ∈ [0, T] such that yn−1(t2) = 0, and we have

∣∣yn−1(t)
∣∣ ≤

∫T

0

∣∣y′
n−1(t)

∣∣dt =
∫T

0

∣∣λyn(t)
∣∣dt ≤

∫T

0

∣∣yn(t)
∣∣dt ≤ TMn := Mn−1. (3.14)

Continuing this way for yn−2, . . . , yl+1, we get

∣∣yl+1(t)
∣∣ ≤ TMl+2 := Ml+1. (3.15)
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Hence,

∣
∣yl(t)

∣
∣ ≤

∫T

0

∣
∣y′

l(t)
∣
∣dt ≤

∫T

0

∣
∣
∣λA−1ϕq

(
yl+1(t)

)∣∣
∣dt ≤ 1

|1 − |c||
∫T

0

∣
∣yl+1(t)

∣
∣q−1dt

≤ 1
|1 − |c||TM

q−1
l+1 := Ml,

∣
∣yl−1(t)

∣
∣ ≤ TMl := Ml−1,

...
∣∣y2(t)

∣∣ ≤ TM3 := M2.

(3.16)

Meanwhile, from (3.10), we get

∣∣y1(t)
∣∣ ≤ D +

∫T

0

∣∣y′
1(t)

∣∣dt ≤ D + TM2 := M1. (3.17)

LetM0 = max{M1,M2, . . . ,Mn}. Then, obviously ‖y1‖ ≤ M0, ‖y2‖ ≤ M0, . . . , and ‖yn‖ ≤ M0.
Let Ω2 = {y ∈ Ker L : Ny ∈ ImL}. If y ∈ Ω2, then y ∈ Ker L, which means that

y = constant and QNy = 0. We see that

y2 = 0,

y3 = 0,

...

yn = 0,

F
(
t, y1, 0, . . . , 0

)
= 0.

(3.18)

So,

∣∣y1
∣∣ ≤ D ≤ M0, y2 = y3 = · · · = yn = 0 ≤ M0. (3.19)

Now take Ω = {y = (y1, y2, . . . , yn)
� ∈ X : ‖y1‖ < M0 + 1, ‖y2‖ < M0 + 1, . . . , ‖yn‖ <

M0 + 1}. By the analysis above, it is easy to see that Ω1 ⊂ Ω, Ω2 ⊂ Ω, and conditions (1) and
(2) of Lemma 2.1 are satisfied.

Next we show that condition (3) of Lemma 2.1 is also satisfied. Define an isomorphism
J : Im Q → Ker L as follows:

J
(
y1, y2, . . . , yn

)� :=
(
yn, y1, . . . , yn−1

)�
. (3.20)
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LetH(μ, y) = μy + (1−μ)JQNy, (μ, y) ∈ [0, 1]×Ω. Then, for all (μ, y) ∈ (0, 1)× (∂Ω∩KerL),

H
(
μ, y

)
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎝

μy1 +
1 − μ

T

∫T

0
F
(
t, y1, 0, . . . , 0

)
dt

y2
...

A−1ϕq

(
yl+1

)

...
yn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎠

. (3.21)

From (H1), it is obvious that yH(μ, y) > 0 for all (μ, y) ∈ (0, 1) × (∂Ω ∩ KerL). Therefore,

deg{JQN,Ω ∩ Ker L, 0} = deg
{
H
(
0, y

)
,Ω ∩ Ker L, 0

}

= deg
{
H
(
1, y

)
,Ω ∩ Ker L, 0

}

= deg{I,Ω ∩ Ker L, 0}/= 0,

(3.22)

which means that condition (3) of Lemma 2.1 is also satisfied. By applying Lemma 2.1, we
conclude that equation Ly = Ny has a solution y(t)∗ = (y∗

1(t), y
∗
2(t), . . . , y

∗
n(t))

� on Ω; that is,
(1.3) has a T -periodic solution y∗

1(t) with ‖y∗
1‖ < M0 + 1.

Finally, observe that y∗
1(t) is not constant. For, if y

∗
1 ≡ a (constant), then from (1.3) we

have F(t, a, 0, . . . , 0) ≡ 0, which contradicts the assumption that F(t, a, 0, . . . , 0)/≡ 0. The proof
is complete.

Theorem 3.2. If (H1) and (H3) hold, then (1.3) has at least one nonconstant T -periodic solution if
one of the following conditions holds:

(1) p > 2,

(2) p = 2 and 1/|1 − |c||[(α1T + α2)(T/π)
l−1 + α3(T/π)

l−2 + · · · + αl(T/π)](T/π)
n−l < 1.

Proof. Let Ω1 be defined as in Theorem 3.1. If y(t) = (y1(t), y2(t), . . . , yn(t))
� ∈ Ω1, then from

the proof of Theorem 3.1 we have

y′
n(t) = λF

(
t, y1(t), y2(t), . . . , yl(t)

)
, (3.23)

∣∣y1
∣∣
0 ≤ D +

∫T

0

∣∣y′
1(s)

∣∣ds. (3.24)

We claim that |yn|0 is bounded.
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Multiplying both sides of (3.23) by ϕq(y′
n(t)) and integrating over [0, T], by using

assumption (H3), we have

∫T

0

∣
∣y′

n(t)
∣
∣qdt = λ

∫T

0
F
(
t, y1(t), y2(t), . . . , yl(t)

)
ϕq

(
y′
n(t)

)
dt

≤
∫T

0

∣
∣F
(
t, y1(t), y2(t), . . . , yl(t)

)∣∣
∣
∣ϕq

(
y′
n(t)

)∣∣dt

≤ α1

∫T

0

∣
∣y1(t)

∣
∣
∣
∣ϕq

(
y′
n(t)

)∣∣dt + α2

∫T

0

∣
∣y2(t)

∣
∣
∣
∣ϕq

(
y′
n(t)

)∣∣dt

+ · · · + αl

∫T

0

∣
∣yl(t)

∣
∣
∣
∣ϕq

(
y′
n(t)

)∣∣dt +m

∫T

0

∣
∣ϕq

(
y′
n(t)

)∣∣dt

≤ α1
∣∣y1
∣∣
0

∫T

0

∣∣ϕq

(
y′
n(t)

)∣∣dt + α2

∫T

0

∣∣y2(t)
∣∣∣∣ϕq

(
y′
n(t)

)∣∣dt

+ · · · + αl

∫T

0

∣∣yl(t)
∣∣∣∣ϕq

(
y′
n(t)

)∣∣dt +m

∫T

0

∣∣ϕq

(
y′
n(t)

)∣∣dt

≤ α1

(

D +
∫T

0

∣∣y′
1(t)

∣∣dt

)∫T

0

∣∣ϕq

(
y′
n(t)

)∣∣dt + α2

∫T

0

∣∣y2(t)
∣∣∣∣ϕq

(
y′
n(t)

)∣∣dt

+ · · · + αl

∫T

0

∣∣yl(t)
∣∣∣∣ϕq

(
y′
n(t)

)∣∣dt +m

∫T

0

∣∣ϕq

(
y′
n(t)

)∣∣dt.

(3.25)

Applying Hölder’s inequality, we have

∫T

0

∣∣y′
n(t)

∣∣qdt ≤ α1

⎡

⎣D + T1/p

(∫T

0

∣∣y′
1(t)

∣∣qdt

)1/q
⎤

⎦T1/q

(∫T

0

∣∣ϕq

(
y′
n(t)

)∣∣pdt

)1/p

+ α2

(∫T

0

∣∣y2(t)
∣∣qdt

)1/q(∫T

0

∣∣ϕq

(
y′
n(t)

)∣∣pdt

)1/p

+ · · · + αl

(∫T

0

∣∣yl(t)
∣∣qdt

)1/q(∫T

0

∣∣ϕq

(
y′
n(t)

)∣∣pdt

)1/p

+mT1/q

(∫T

0

∣∣ϕq

(
y′
n(t)

)∣∣pdt

)1/p

≤ α1T · T (p−2)/q(p−1)
(∫T

0

∣∣y′
1(t)

∣∣pdt

)1/q(p−1)(∫T

0

∣∣y′
n(t)

∣∣qdt

)1/p

+ α2T
(p−2)/q(p−1)

(∫T

0

∣∣y2(t)
∣∣pdt

)1/q(p−1)(∫T

0

∣∣y′
n(t)

∣∣qdt

)1/p

+ · · ·
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+ αlT
(p−2)/q(p−1)

(∫T

0

∣
∣yl(t)

∣
∣pdt

)1/q(p−1)(∫T

0
|y′

n(t)|qdt
)1/p

+ (α1D +m)T1/q

(∫T

0
|y′

n(t)|qdt
)1/p

= α1T · T (p−2)/p
(∫T

0

∣
∣y′

1(t)
∣
∣pdt

)1/p(∫T

0

∣
∣y′

n(t)
∣
∣qdt

)1/p

+ α2T
(p−2)/p

(∫T

0

∣
∣y2(t)

∣
∣pdt

)1/p(∫T

0

∣
∣y′

n(t)
∣
∣qdt

)1/p

+

· · · + αlT
(p−2)/p

(∫T

0

∣
∣yl(t)

∣
∣pdt

)1/p(∫T

0

∣
∣y′

n(t)
∣
∣qdt

)1/p

+ (α1D +m)T1/q

(∫T

0

∣∣y′
n(t)

∣∣qdt

)1/p

.

(3.26)

Applying Lemma 2.6 and (3.26), we have

∫T

0

∣∣y′
n(t)

∣∣qdt ≤ α1T · T (p−2)/p 1
|1 − |c||

(
T

πp

)l−1(
T

πq

)q(n−l)/p(∫T

0

∣∣y′
n(t)

∣∣qdt

)2/p

+ α2T
(p−2)/p 1

|1 − |c||

(
T

πp

)l−1(
T

πq

)q(n−l)/p(∫T

0

∣∣y′
n(t)

∣∣qdt

)2/p

+

· · · + αlT
(p−2)/p 1

|1 − |c||

(
T

πp

)(
T

πq

)q(n−l)/p(∫T

0

∣∣y′
n(t)

∣∣qdt

)2/p

+ (α1D +m)T1/q

(∫T

0

∣∣y′
n(t)

∣∣qdt

)1/p

≤ 1
|1 − |c||

⎡

⎣(α1T + α2)

(
T

πp

)l−1
+ α3

(
T

πp

)l−2
+ · · · + αl

(
T

πp

)⎤

⎦

×T (p−2)/p
(

T

πq

)q(n−l)/p
·
(∫T

0

∣∣y′
n(t)

∣∣qdt

)2/p

+ (α1D+m)T1/q

(∫T

0

∣∣y′
n(t)

∣∣qdt

)1/p

.

(3.27)
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Case 1. If p = 2 and 1/|1 − |c||[(α1T + α2)(T/π)
l−1 + α3(T/π)

l−2 + · · · + αl(T/π)](T/π)
n−l < 1,

then it is easy to see that there exists a constant M′
n > 0 (independent of λ) such that

∫T

0

∣
∣y′

n(t)
∣
∣qdt ≤ M′

n. (3.28)

Case 2. If p > 2, then it is easy to see that there exists a constant M′
n > 0 (independent of λ)

such that

∫T

0

∣
∣y′

n(t)
∣
∣qdt ≤ M′

n. (3.29)

From yn−1(0) = yn−1(T), there exists a point t1 ∈ [0, T] such that yn(t1) = 0. By Hölder’s
inequality, we have

∣∣yn(t)
∣∣ ≤

∫T

0

∣∣y′
n(t)

∣∣dt ≤ T1/p

(∫T

0

∣∣y′
n(t)

∣∣qdt

)1/q

≤ T1/pM
′ 1/q

n := Mn. (3.30)

This proves the claim, and the rest of the proof of the theorem is identical to that of
Theorem 3.1.

Remark 3.3. If (1.3) takes the form

(
ϕp(x(t) − cx(t − σ))(l)

)(n−l)
= F

(
t, x(t), x′(t), . . . , x(l−1)(t)

)
+ e(t), (3.31)

where e(t) ∈ C(R,R), e(t + T) = e(t) and
∫T
0 e(t)dt = 0, then the results of Theorems 3.1 and

3.2 still hold.

Remark 3.4. If p = 2, then (1.3) is transformed into

(x(t) − cx(t − σ))(n) = F
(
t, x(t), x′(t), . . . , x(n−1)(t)

)
, (3.32)

and the results of Theorems 3.1 and 3.2 still hold.

Next, we study the Lyapunov stability of the periodic solutions of (3.32).

Theorem 3.5. Assume that (H4) holds. Then every T -periodic solution of (3.32) is Lyapunov stable.

Proof. Let

z1(t) = x(t), z2(t) = x′(t), . . . , zn(t) = x(n−1)(t). (3.33)
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Then, system (3.32) is transformed into

z′1(t) = z2(t),

z′2(t) = z3(t),

...

z′n(t) = A−1F(t, z1(t), z2(t), . . . , zn(t)).

(3.34)

Suppose now that z∗(t) = (z∗1(t), z
∗
2(t), . . . , z

∗
n(t))

� is a T -periodic solution of (3.34). Let
z(t) = (z1(t), z2(t), . . . , zn(t))

� be any arbitrary solution of (3.34). For any k = 1, . . . , n, write
wk(t) = zk(t) − z∗

k
(t). Then, it follows from (3.34) that

w′
1(t) = w2(t),

w′
2(t) = w3(t),

...

w′
n(t) = A−1(F(t, z1(t), z2(t), . . . , zn(t)) − F

(
t, z∗1(t), z

∗
2(t), . . . , z

∗
n(t)

))
,

(3.35)

and so

∣∣w′
1(t)

∣∣ = |w2(t)|,
∣∣w′

2(t)
∣∣ = |w3(t)|,
...

∣∣w′
n(t)

∣∣ =
∣∣∣A−1(F(t, z1(t), z2(t), . . . , zn(t)) − F

(
t, z∗1(t), z

∗
2(t), . . . , z

∗
n(t)

))∣∣∣.

(3.36)

Let u(l)
k (t) = |w(l)

k (t)|, l = 0, 1, k = 1, 2, . . . , n. Then,

u′
1(t) = u2(t),

u′
2(t) = u3(t),

...

u′
n(t) =

∣∣∣A−1(F(t, z1(t), z2(t), . . . , zn(t)) − F
(
t, z∗1(t), z

∗
2(t), . . . , z

∗
n(t)

))∣∣∣.

(3.37)

Take β = max{γ1/|1 − |c||, γ2/|1 − |c|| + 1, . . . , γn/|1 − |c|| + 1} + 1, and define a function V (·) by

V (t, u1, . . . , un) := e−βt
n∑

k=1

uk(t). (3.38)
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Let U(u1, . . . , un) =
∑n

k=1 yk(t). It is obvious that V (t, u1, . . . , un) > 0 and V (t, u1, . . . , un) ≥
U(u1, . . . , un) > 0. From (H4) and Lemma 2.3, we get

V̇ (t, u1, . . . , un) = −βe−βt
(

n∑

k=1

uk(t)

)

+ e−βt(u2(t) + · · · + un(t))

+ e−βt
∣
∣
∣A−1(F(t, z1(t), z2(t), . . . , zn(t)) − F

(
t, z∗1(t), z

∗
2(t), . . . , z

∗
n(t)

))∣∣
∣

≤ −βe−βt
(

n∑

k=1

uk(t)

)

+ e−βt(u2(t) + · · · + un(t))

+
e−βt

|1 − |c||
∣
∣(F(t, z1(t), z2(t), . . . , zn(t)) − F

(
t, z∗1(t), z

∗
2(t), . . . , z

∗
n(t)

))∣∣

≤ −βe−βt
(

n∑

k=1

uk(t)

)

+ e−βt(u2(t) + · · · + un(t))

+
e−βt

|1 − |c||
(
γ1
∣∣z1(t) − z∗1(t)

∣∣ + · · · + γn|zn(t) − z∗n(t)|
)

= −βe−βt
(

n∑

k=1

uk(t)

)

+ e−βt(u2(t) + · · · + un(t))

+
e−βt

|1 − |c||
(
γ1|w1(t)| + · · · + γn|wn(t)|

)

= −βe−βt
(

n∑

k=1

uk(t)

)

+ e−βt(u2(t) + · · · + un(t))

+
e−βt

|1 − |c||
(
γ1u1(t) + · · · + γnun(t)

)

=
(
−β +

γ1
|1 − |c||

)
u1(t)e−βt +

n∑

k=2

(
−β + 1 +

γk
|1 − |c||

)
uk(t)e−βt

< 0.

(3.39)

Hence, V is a Lyapunov function for nonautonomous (3.32) (see [15, page 50]), and so
the T -periodic solution z∗ of (3.32) is Lyapunov stable.

Finally, we present an example to illustrate our result.

Example 3.6. Consider the n-order delay differential equation

(
ϕp(x(t) − 3x(t − σ))(4)

)(n−4)
=

1
3π

x(t) +
1
8
sinx′(t) +

1
8
cosx′′(t) sin 2t +

1
8
sinx′′′(t).

(3.40)
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Here p is a constant with p ≥ 2. Comparing with (1.3), we have c = 3 and

F(t, z1, z2, z3, z4) =
1
3π

z1 +
1
8
sin z2 +

1
8
cos z3 sin 2t +

1
8
sin z4. (3.41)

Observe that F has period T = π and satisfies

F(t, a, 0, 0, 0) =
1
3π

a +
1
8
sin 2t /≡ 0, ∀a ∈ R. (3.42)

Pick D = 3π . Then,

|z1F(t, z1, z2, z3, z4)| = |z1| ·
∣
∣
∣
∣
1
3π

z1 +
1
8
sin z2 +

1
8
cos z3 sin 2t +

1
8
sin z4

∣
∣
∣
∣

≥ |z1| ·
∣∣∣∣
1
3π

|z1| −
∣∣∣∣
1
8
sin z2 +

1
8
cos z3 sin 2t +

1
8
sin z4

∣∣∣∣

∣∣∣∣

≥ 3π ·
[
1 − 3

8

]

> 0

(3.43)

for all (t, z1, z2, z3, z4) ∈ [0, T] ×R
l with |z1| > D = 3π . Hence, (H1) holds. On the other hand,

since

|F(t, z1, z2, z3, z4)| ≤ 1
3π

|z1| +
∣∣∣∣
1
8
sin z2 +

1
8
cos z3 sin 2t +

1
8
sin z4

∣∣∣∣

<
1
3π

|z1| + 1,

(3.44)

assumption (H3) holds with α1 = 1/3π, α2 = 0, α3 = 0, α4 = 0, and m = 1.

Case 1. If p > 2, then by (1) of Theorem 3.2, (3.40) has at least one nonconstant π-periodic
solution.

Case 2. If p = 2, then

1
|1 − |c||

[

(α1T + α2)
(
T

π

)3

+ α3

(
T

π

)2

+ α4

(
T

π

)](
T

π

)n−4

=
1
2
×
[(

1
3π

× π + 0
)
× 1 + 0 × 1 + 0 × 1

]
× 1

=
1
2
× 1
3
< 1.

(3.45)

So by (2) of Theorem 3.2, (3.40) has at least one nonconstant π-periodic solution.
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