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The cone theory andmonotone iterative technique are used to investigate theminimal nonnegative
solution of nonlocal boundary value problems for second-order nonlinear impulsive differential
equations on an infinite interval with an infinite number of impulsive times. All the existing
results obtained in previous papers on nonlocal boundary value problems are under the case of
the boundary conditions with no impulsive effects or the boundary conditions with impulsive
effects on a finite interval with a finite number of impulsive times, so our work is new. Meanwhile,
an example is worked out to demonstrate the main results.

1. Introduction

The theory of impulsive differential equations describes processes which experience a sudden
change of their state at certain moments. Processes with such a character arise naturally
and often, especially in phenomena studied in physics, chemical technology, population
dynamics, biotechnology, and economics. The theory of impulsive differential equations has
become an important area of investigation in the recent years and is much richer than the
corresponding theory of differential equations. For an introduction of the basic theory of
impulsive differential equations in Rn; see Lakshmikantham et al. [1], Bainov and Simeonov
[2], and Samoı̆lenko and Perestyuk [3] and the references therein.

Usually, we only consider the differential equation, integrodifferential equation,
functional differential equations, or dynamic equations on time scales on a finite interval
with a finite number of impulsive times. To identify a few, we refer the reader to [4–13]
and references therein. In particular, we would like to mention some results of Guo and Liu
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[5] and Guo [6]. In [5], by using fixed-point index theory for cone mappings, Guo and Liu
investigated the existence of multiple positive solutions of a boundary value problem for the
following second-order impulsive differential equation:

−x′′(t) = f(t, x(t)) t ∈ J, t /= tk, k = 1, 2, . . . , m,

Δx|t=tk = Ik(x(tk)), k = 1, 2, . . . , m,

ax(0) − bx′(0) = θ, cx(1) + dx′(1) = θ,

(1.1)

where f ∈ C(J × P, P), J = [0, 1], P is a cone in the real Banach space E, θ denotes the zero
element of E, f(t, θ) = θ for t ∈ J, Ik(θ) = θ, k = 1, 2, . . . , m, 0 < t1 < t2 < · · · < tk < · · · < tm <
1, a ≥ 0, b ≥ 0, c ≥ 0, d ≥ 0 and δ = ac + ad + bc > 0.

In [6], by using fixed-point theory, Guo established the existence of solutions of a
boundary value problem for the following second-order impulsive differential equation in
a Banach space E :

−x′′(t) = f
(
t, x, x′(t)

)
t ∈ J, t /= tk, k = 1, 2, . . . , m,

Δx|t=tk = Ik(x(tk)), k = 1, 2, . . . , m,

Δx′∣∣
t=tk

= Nk

(
x(tk), x′(tk)

)
, k = 1, 2, . . . , m,

ax(0) − bx′(0) = x0, cx(1) + dx′(1) = x∗
0,

(1.2)

where f ∈ C(J × E × E, E), J = [0, 1], Ik ∈ C[E, E], Nk ∈ C[E × E, E], x0, x
∗
0 ∈ E, 0 < t1 < t2 <

· · · < tk < · · · < tm < 1, and p = ac + ad + bc /= 0.
On the other hand, the readers can also find some recent developments and

applications of the case that impulse effects on a finite interval with a finite number
of impulsive times to a variety of problems from Nieto and Rodrı́guez-López [14–16],
Jankowski [17–19], Lin and Jiang [20], Ma and Sun [21], He and Yu [22], Feng and Xie [23],
Yan [24], Benchohra et al. [25], and Benchohra et al. [26].

Recently, in [27], Li and Nieto obtained some new results of the case that impulse
effects on an infinite interval with a finite number of impulsive times. By using a fixed-point
theorem due to Avery and Peterson [28], Li and Nieto considered the existence of multiple
positive solutions of the following impulsive boundary value problem on an infinite interval:

u′′(t) + q(t)f(t, u) = 0, ∀0 < t < ∞, t /= tk, k = 1, 2, . . . , p

Δu(tk) = Ik(u(tk)), k = 1, 2, . . . , p,

u(0) =
m−2∑

i=1

αiu(ξi), u′(∞) = 0,

(1.3)

where f ∈ C([0,+∞)×[0,+∞), [0,+∞)), Ik ∈ C([0,+∞), [0,+∞)), u′(∞) = limt→+∞u′(t), 0 <
ξ1 < ξ2 < · · · < ξm−2 < ∞, 0 < t1 < t2 < · · · < tp < +∞, and q ∈ C([0,+∞), [0,+∞)).
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At the same time, we also notice that there has been increasing interest in studying
nonlinear differential equation and impulsive integrodifferential equation on an infinite
interval with an infinite number of impulsive times; to identify a few, we refer the reader to
Guo and Liu [29], Guo [30–32], and Li and Shen [33]. It is here worth mentioning the works
by Guo [31]. In [31], Guo investigated the minimal nonnegative solution of the following
initial value problem for a second order nonlinear impulsive integrodifferential equation of
Volterra type on an infinite interval with an infinite number of impulsive times in a Banach
space E:

x′′ = f(t, x, Tx), ∀t ≥ 0, t /= tk,

Δx|t=tk = Ik(x(tk)),

Δx′∣∣
t=tk

= Nk(x(tk)) (k = 1, 2, . . .),

x(0) = x0, x′(0) = x∗
0,

(1.4)

where f ∈ C(J × P × P, E), Ik,Nk ∈ C[P, P], J = [0,∞), x0,x
∗
0 ∈ P, 0 < t1 < · · · < tk < · · · <

· · · , tk → ∞, as k → ∞, P is a cone of E.
However, the corresponding theory for nonlocal boundary value problems for

impulsive differential equations on an infinite interval with an infinite number of impulsive
times is not investigated till now. Now, in this paper, we will use the cone theory and
monotone iterative technique to investigate the existence of minimal nonnegative solution
for a class of second-order nonlinear impulsive differential equations on an infinite interval
with an infinite number of impulsive times.

Consider the following boundary value problem for second-order nonlinear impulsive
differential equation:

−x′′(t) = f
(
t, x(t), x′(t)

)
t ∈ J, t /= tk,

Δx|t=tk = Ik(x(tk)), k = 1, 2, . . . ,

Δx′∣∣
t=tk

= Ik(x(tk)), k = 1, 2, . . . ,

x(0) =
∫∞

0
g(t)x(t)dt, x′(∞) = 0,

(1.5)

where J = [0,∞), f ∈ C(J × R+ × R+, R+), R+ = [0,+∞), 0 < t1 < t2 < · · · < tk <

· · · , tk → ∞, Ik ∈ C[R+, R+], Ik ∈ C[R+, R+], g(t) ∈ C(R+, R+), with
∫∞
0 g(t)dt < 1. x′(∞) =

limt→∞x′(t). Δx|t=tk denotes the jump of x(t) at t = tk, that is,

Δx|t=tk = x
(
t+k
) − x

(
t−k
)
, (1.6)

where x(t+k) and x(t−k) represent the right-hand limit and left-hand limit of x(t) at t = tk,
respectively. Δx′|t=tk has a similar meaning for x′(t).
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Let

PC[J, R] =
{
x : x is a map from J into R such that x(t) is continuous at t /= tk,

left continuous at t = tk and x
(
t+k
)
exist for k = 1, 2, . . .

}
,

PC1[J, R] =
{
x ∈ PC[J, R] : x′(t) exists and is continuous at t /= tk,

left continuous at t = tk and x′(t+k
)
exist for k = 1, 2, . . .

}
.

(1.7)

Let E = {x ∈ PC1[J, R] : supt∈J(|x(t)|/(1 + t)) < ∞, supt∈J |x′(t)| < ∞} with the norm
‖x‖ = max{‖x‖1, ‖x′‖∞}, where

‖x‖1 = sup
t∈J

|x(t)|
1 + t

,
∥∥x′∥∥

∞ = sup
t∈J

∣∣x′(t)
∣∣. (1.8)

Define a cone P ⊂ E by

P =
{
x ∈ E : x(t) ≥ 0, x′(t) ≥ 0

}
. (1.9)

Let J ′ = J \ {t1, t2, . . . , tk, . . . , }, J0 = [0, t1], and Ji = (ti, ti+1] (i = 1, 2, 3, . . .). x ∈ E ∩
C2[J ′, R] is called a nonnegative solution of (1.5), if x(t) ≥ 0, x′(t) ≥ 0 and x(t) satisfies (1.5).

If Ik = 0, Ik = 0, k = 1, 2, . . . , g(t) = 0, then boundary value problem (1.5) reduces to the
following two point boundary value problem:

−x′′(t) = f
(
t, x(t), x′(t)

)
t ∈ J,

x(0) = 0, x′(∞) = 0,
(1.10)

which has been intensively studied; see Ma [34], Agarwal and O’Regan [35], Constantin [36],
Liu [37, 38], and Yan and Liu [39] for some references along this line.

The organization of this paper is as follows. In Section 2, we provide some necessary
background. In Section 3, the main result of problem (1.5) will be stated and proved. In
Section 4, we give an example to illustrate how the main results can be used in practice.

2. Preliminaries

To establish the existence of minimal nonnegative solution in E of problem (1.5), let us list
the following assumptions, which will stand throughout this paper.
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(H1) Suppose that f ∈ C[J × R+ × R+, R+], Ik ∈ C[R+, R+], Ik ∈ C[R+, R+], and there
exist p,q,r ∈ C(J, R+) and nonnegative constants ck, dk, ek, fk such that

f(t, u, v) ≤ p(t)u + q(t)v + r(t), ∀t ∈ J, and ∀u, v ∈ R+,

Ik(u) ≤ cku + dk, ∀u ∈ R+ (k = 1, 2, 3 . . .),

Ik(u) ≤ eku + fk, ∀u ∈ R+ (k = 1, 2, 3 . . .),

p∗ =
∫∞

0
p(t)(t + 1)dt < ∞, q∗ =

∫∞

0
q(t)dt < ∞,

r∗ =
∫∞

0
r(t)dt < ∞, c∗ =

∞∑

k=1

(tk + 1)ck < ∞,

d∗ =
∞∑

k=1

dk < ∞, e∗ =
∞∑

k=1

(tk + 1)ek < ∞, f∗ =
∞∑

k=1

fk < ∞.

(2.1)

(H2)f(t, u1, v1) ≤ f(t, u2, v2), Ik(u1) ≤ Ik(u2), Ik(u1) ≤ Ik(u2), for t ∈ J, u1 ≤ u2, v1 ≤
v2 (k = 1, 2, 3 . . .).

Lemma 2.1. Suppose that (H1) holds. Then for all x ∈ P ,
∫∞
0 f(t, x(t), x′(t))dt,

∑∞
k=1 Ik(x(tk)), and∑∞

k=1 Ik(x(tk)) are convergent.

Proof. By (H1), we have

f
(
t, x(t), x′(t)

) ≤ p(t)(t + 1)
x(t)
t + 1

+ q(t)x′(t) + r(t),

Ik(x(tk)) ≤ ck(tk + 1)
x(tk)
tk + 1

+ dk,

Ik(x(tk)) ≤ ek(tk + 1)
x(tk)
tk + 1

+ fk.

(2.2)

Thus,

∫∞

0
f
(
s, x(s), x′(s)

)
ds ≤ p∗||x||1 + q∗

∥∥x′∥∥
∞ + r∗ < ∞,

∞∑

k=1

Ik(x(tk)) ≤ c∗‖x‖1 + d∗ < ∞,

∞∑

k=1

Ik(x(tk)) ≤ e∗‖x‖1 + f∗ < ∞.

(2.3)

The proof is complete.
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Lemma 2.2. Suppose that (H1) holds. If 0 ≤ ∫∞
0 g(t)dt < 1, then x ∈ E ∩ C2[J ′, R] is a solution of

problem (1.5) if and only if x ∈ E is a solution of the following impulsive integral equation:

x(t) =
∫∞

0
G(t, s)f

(
s, x(s), x′(s)

)
ds +

∞∑

k=1

G(t, tk)Ik(x(tk)) +
∞∑

k=1

G′
s(t, tk)Ik(x(tk))

+
1

1 − ∫∞
0 g(t)dt

∫∞

0
g(t)

[∫∞

0
G(t, s)f

(
s, x(s), x′(s)

)
ds +

∞∑

k=1

G(t, tk)Ik(x(tk))

+
∞∑

k=1

G′
s(t, tk)Ik(x(tk))

]

dt, ∀t ∈ J,

(2.4)

where

G(t, s) =

⎧
⎨

⎩

t, 0 ≤ t ≤ s < +∞,

s, 0 ≤ s ≤ t < +∞,

G′
s(t, s) =

⎧
⎨

⎩

0, 0 ≤ t ≤ s < +∞,

1, 0 ≤ s ≤ t < +∞.

(2.5)

Proof. First, suppose that x ∈ E ∩ C2[J ′, R] is a solution of problem (1.5). It is easy to see by
integration of (1.5) that

−x′(t) + x′(0) =
∫ t

0
f
(
s, x(s), x′(s)

)
ds +

∑

tk<t

Ik(x(tk)). (2.6)

Taking limit for t → ∞, by Lemma 2.1 and the boundary conditions, we have

x′(0) =
∫∞

0
f
(
s, x(s), x′(s)

)
ds +

∞∑

k=1

Ik(x(tk)). (2.7)

Thus,

x′(t) =
∫∞

0
f
(
s, x(s), x′(s)

)
ds +

∞∑

k=1

Ik(x(tk)) −
∫ t

0
f
(
s, x(s), x′(s)

)
ds −

∑

tk<t

Ik(x(tk)). (2.8)
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Integrating (2.8), we can get

x(t) = x(0) +
∫∞

0
G(t, s)f

(
s, x(s), x′(s)

)
ds +

∞∑

k=1

G(t, tk)Ik(x(tk)) +
∞∑

k=1

G′
s(t, tk)Ik(x(tk))

=
∫∞

0
g(t)x(t)dt +

∫∞

0
G(t, s)f

(
s, x(s), x′(s)

)
ds

+
∞∑

k=1

G(t, tk)Ik(x(tk)) +
∞∑

k=1

G′
s(t, tk)Ik(x(tk)).

(2.9)

It follows that

∫∞

0
g(t)dt =

1
1 − ∫∞

0 g(t)x(t)dt

∫∞

0
g(t)

[∫∞

0
G(t, s)f

(
s, x(s), x′(s)

)
ds

+
∞∑

k=1

G(t, tk)Ik(x(tk)) +
∞∑

k=1

G′
s(t, tk)Ik(x(tk))

]

dt.

(2.10)

So we have (2.4).
Conversely, suppose that x ∈ E is a solution of (2.4). Evidently,

Δx|t=tk = Ik(x(tk)), (k = 1, 2, . . . , ). (2.11)

Direct differentiation of (2.4) implies, for t /= tk,

x′(t) =
∫∞

t

f
(
s, x(s), x′(s)

)
ds +

∑

tk≥t
Ik(x(tk)),

Δx′∣∣
t=tk

= Ik(x(tk)), (k = 1, 2, . . . , ),

x′′(t) = −f(t, x(t), x′(t)
)
.

(2.12)

So x ∈ C2[J ′, R]. It is easy to verify that x(0) =
∫∞
0 g(t)x(t)dt, x′(∞) = 0. The proof of

Lemma 2.2 is complete.

Define an operator T : E → E,

(Tx)(t) =
∫∞

0
G(t, s)f

(
s, x(s), x′(s)

)
ds +

∞∑

k=1

G(t, tk)Ik(x(tk)) +
∞∑

k=1

G′
s(t, tk)Ik(x(tk))

+
1

1 − ∫∞
0 g(t)dt

∫∞

0
g(t)

[∫∞

0
G(t, s)f

(
s, x(s), x′(s)

)
ds +

∞∑

k=1

G(t, tk)Ik(x(tk))

+
∞∑

k=1

G′
s(t, tk)Ik(x(tk))

]

dt, ∀t ∈ J.

(2.13)
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Lemma 2.3. Assume that (H1) and (H2) hold. Then operator T maps P into P , and

‖Tx‖ ≤ β + α‖x‖, ∀x ∈ P, (2.14)

where

α =
2 − ∫∞

0 g(t)dt

1 − ∫∞
0 g(t)dt

(
p∗ + q∗ + c∗ + e∗

)
, β =

2 − ∫∞
0 g(t)dt

1 − ∫∞
0 g(t)dt

(
r∗ + f∗ + d∗). (2.15)

Moreover, for x,y ∈ P with x(t) ≤ y(t), x′(t) ≤ y′(t), for all t ∈ J ′, one has

(Tx)(t) ≤ (
Ty

)
(t), (Tx)′(t) ≤ (

Ty
)′(t), ∀ t ∈ J ′. (2.16)

Proof. Let x ∈ P . From the definition of T and (H1), we can obtain that T is an operator from
P into P , and

|(Tx)(t)|
1 + t

≤
∫∞

0

∣∣f
(
s, x(s), x′(s)

)∣∣ds +
∞∑

k=1

∣∣∣Ik(x(tk))
∣∣∣

+
∞∑

k=1

|Ik(x(tk))|+ 1
1 − ∫∞

0 g(t)dt

(∫∞

0

∣∣f
(
s, x(s), x′(s)

)∣∣ds+
∞∑

k=1

∣∣∣Ik(x(tk))
∣∣∣+

∞∑

k=1

|Ik(x(tk))|
)

≤ 2 − ∫∞
0 g(t)dt

1 − ∫∞
0 g(t)dt

(
p∗ + q∗ + c∗ + e∗

)‖x‖ + 2 − ∫∞
0 g(t)dt

1 − ∫∞
0 g(t)dt

(
r∗ + f∗ + d∗)

= α‖x‖ + β, ∀t ∈ J.

(2.17)

Direct differentiation of (2.13) implies, for t /= tk,

(Tx)′(t) =
∫∞

t

f
(
s, x(s), x′(s)

)
ds +

∑

tk≥t
Ik(x(tk)). (2.18)

Thus we have |(Tx)′(t)| ≤ ∫∞
0 |f(s, x(s), x′(s))|ds+∑∞

k=1 |Ik(x(tk))| ≤ α‖x‖ + β, for all t ∈ J ′. It
follows that (2.14) is satisfied. Equation (2.16) is easily obtained by (H2).



Boundary Value Problems 9

3. Main Result

In this section, we establish the existence of a minimal nonnegative solution for problem (1.5).

Theorem 3.1. Let conditions (H1)-(H2) be satisfied. Suppose further that

α =
2 − ∫∞

0 g(t)dt

1 − ∫∞
0 g(t)dt

(
p∗ + q∗ + c∗ + e∗

)
< 1. (3.1)

Then problem (1.5) has the minimal nonnegative solution x with ‖x‖ ≤ β/(1 − α), where β is defined
as in Lemma 2.3. Here, the meaning of minimal nonnegative solution is that if x is an arbitrary
nonnegative solution of (1.5), then x(t) ≥ x(t), x′(t) ≥ x′(t), for all t ∈ J ′. Moreover, if we let
x0(t) = 0, xn(t) = (Txn−1)(t), for all t ∈ J (n = 1, 2, . . .), then xn ⊂ P with

0 = x0(t) ≤ x1(t) ≤ · · · ≤ xn(t) ≤ · · · ≤ x(t), ∀t ∈ J,

0 = x′
0(t) ≤ x′

1(t) ≤ · · · ≤ x′
n(t) ≤ · · · ≤ x′(t), ∀t ∈ J ′,

(3.2)

and {xn(t)} and {x′
n(t)} converge uniformly to x(t) and x′(t) on Ji, (i = 0, 1, 2, . . .), respectively.

Proof. By Lemma 2.3 and the definition of operator T , we have xn ⊂ P , and

‖xn‖ ≤ β + α‖xn−1‖ (n = 1, 2, 3, . . .), (3.3)

0 = x0(t) ≤ x1(t) ≤ · · · ≤ xn(t) ≤ · · · , ∀t ∈ J, (3.4)

0 = x′
0(t) ≤ x′

1(t) ≤ · · · ≤ x′
n(t) ≤ · · · , ∀t ∈ J ′. (3.5)

By (3.3), we have

‖xn‖ ≤ β + αβ + α2β + · · · + αn−1β =
β(1 − αn)
1 − α

≤ β

1 − α
, (n = 1, 2 . . .). (3.6)

From (3.4), (3.5), and (3.6), we know that limn→∞xn(t) and limn→∞x′
n(t) exist. Suppose that

lim
n→∞

xn(t) = x(t), lim
n→∞

x′
n(t) = y(t), ∀t ∈ J ′. (3.7)
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By the definition of xn(t),we have

x′
n(t) =

∫∞

t

f
(
s, xn−1(s), x′

n−1(s)
)
ds +

∑

tk≥t
Ik(xn(tk)), ∀t ∈ J ′, (n = 1, 2, . . .), (3.8)

x′′
n(t) = −f(t, xn−1(t), x′

n−1(t)
)
, ∀t ∈ J ′, (n = 1, 2, . . .). (3.9)

From (3.6), we obtain

|xn(t)|
t + 1

≤ β

1 − α
,

∣
∣x′

n(t)
∣
∣ ≤ β

1 − α
, ∀t ∈ J ′, (n = 1, 2, . . .). (3.10)

It follows that {xn(t)} is equicontinuous on every Ji (i = 0, 1, 2, . . .). Combining this with
Ascoli-Arzela theorem and diagonal process, there exists a subsequence which converges
uniformly to x(t) on Ji (i = 0, 1, 2, . . .). Which together with (3.4) imply that {xn(t)} converges
uniformly to x(t) on Ji (i = 0, 1, 2, . . .), and x ∈ PC[J, R], ‖x‖1 ≤ β/(1−α). On the other hand,
by (H1),(3.6), and (3.9), we have

∣∣x′′
n(t)

∣∣ ≤ p(t)(t + 1)‖xn−1‖1 + q(t)
∥∥x′

n−1
∥∥
∞ + r(t)

≤ p(t)(t + 1)
β

1 − α
+ q(t)

β

1 − α
+ r(t) = s(t) ∈ C(J, R+), ∀t ∈ J ′ (n = 1, 2, . . .).

(3.11)

Since s(t) is bounded on [0,M] (M is a finite positive number), {x′
n(t)} is equicontinuous

on every Ji, i = 1, 2, . . . . Combining this with Ascoli-Arzela theorem and diagonal process,
there exists a subsequence which converges uniformly to y(t) on Ji (i = 0, 1, 2, . . .), which
together with (3.5) imply that {x′

n(t)} converges uniformly to y(t) on Ji (i = 0, 1, 2, . . .),
and y ∈ PC[J, R], ‖y‖∞ ≤ β/(1 − α). From above, we know that x′(t) exists and x′(t) =
y(t), for all t ∈ J ′. It follows that x ∈ P and

‖x‖ ≤ β

1 − α
. (3.12)

Now we prove that x(t) = (Tx)(t).
By the continuity of f and the uniform convergence of xn(t), x′

n(t), we know that

f
(
s, xn(s), x′

n(s)
) −→ f

(
s, x(s), x′(s)

)
, n −→ ∞, ∀t ∈ J ′. (3.13)

On the other hand, by (H1) and (3.6) and (3.12), we have

∣∣∣f
(
s, xn(s), x′

n(s)
) − f

(
s, x(s), x′(s)

)∣∣∣

≤ 2
(
p(s)(s + 1) + q(s)

) β

1 − α
+ 2r(s) = z(s) ∈ L[J, R+] (n = 1, 2, . . .).

(3.14)
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Combining this with the dominated convergence theorem, we have

lim
n→∞

∫∞

t

f
(
s, xn(s), x′

n(s)
)
ds =

∫∞

t

f
(
s, x(s), x′(s)

)
ds, ∀t ∈ J,

lim
n→∞

∫ t

0
f
(
s, xn(s), x′

n(s)
)
ds =

∫ t

0
f
(
s, x(s), x′(s)

)
ds, ∀t ∈ J.

(3.15)

Moreover, we can see that

lim
n→∞

∑

0<tk<t

Ik(xn(tk)) =
∑

0<tk<t

Ik(x(tk)),

lim
n→∞

∑

0<tk<t

Ik(xn(tk)) =
∑

0<tk<t

Ik(x(tk)),

lim
n→∞

∑

tk≥t
Ik(xn(tk)) =

∑

tk≥t
Ik(x(tk)),

lim
n→∞

∑

tk≥t
Ik(xn(tk)) =

∑

tk≥t
Ik(x(tk)).

(3.16)

Now taking limits from two sides of xn(t) = (Txn−1)(t) and using (3.15)–(3.16), we have

x(t) =
∫∞

0
G(t, s)f

(
s, x(s), x′(s)

)
ds +

∞∑

k=1

G(t, tk)Ik(x(tk)) +
∞∑

k=1

G′
s(t, tk)Ik(x(tk))

+
1

1 − ∫∞
0 g(t)dt

∫∞

0
g(t)

[∫∞

0
G(t, s)f

(
s, x(s), x′(s)

)
ds

+
∞∑

k=1

G(t, tk)Ik(x(tk)) +
∞∑

k=1

G′
s(t, tk)Ik(x(tk))

]

dt, ∀t ∈ J.

(3.17)

By Lemma 2.2, x(t) is a nonnegative solution of (1.5).
Suppose that x ∈ P ∩ C2[J ′, R] is an arbitrary nonnegative solution of (1.5). Then

x(t) = (Tx)(t). It is clear that x(t) ≥ 0, x′(t) ≥ 0, ∀t ∈ J ′. Suppose that x(t) ≥ xn−1(t), x′(t) ≥
x′
n−1(t), for all t ∈ J ′. By (2.16) we have (Tx)(t) ≥ (Txn−1)(t), (Tx)

′(t) ≥ (Txn−1)
′(t), for all t ∈

J ′. This means that x(t) ≥ xn(t), x′(t) ≥ x′
n(t), for all t ∈ J ′ (n = 1, 2, . . .). Taking limit, we

have x(t) ≥ x(t), x′ (t) ≥ x′(t), for all t ∈ J ′. The proof of Theorem 3.1 is complete.
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4. Example

To illustrate how our main results can be used in practice, we present an example.

Example 4.1. Consider the following boundary value problem of second-order impulsive
differential equation on infinite interval

−x′′ =
1

100
(t + 1)−9/4

(
1 + x + x′)2/3, t ∈ J, t /= k,

Δx|t=k =
1
8k

(x(k) + 1)1/2 (k = 1, 2, . . .),

Δx|t=k =
1
10k

(x(k) + 1)1/2 (k = 1, 2, . . .),

x(0) =
∫∞

0

1
2
e−tx(t)dt, x′(∞) = 0,

(4.1)

where

f
(
t, x, y

)
=

1
100

(t + 1)−9/4
(
1 + x + y

)2/3
,

Ik(x(tk)) =
1
8k

(x(k) + 1)1/2, k = 1, 2, . . . ,

Ik(x(tk)) =
1
10k

(x(k) + 1)1/2, k = 1, 2, . . . ,

g(t) =
1
2
e−t.

(4.2)

Evidently, x(t) ≡ 0 is not the solution of (4.1).

Conclusion

Problem (4.1) has minimal positive solution.

Proof. It is clear that
∫∞
0 (1/2)e−tdt < 1 and (H2) is satisfied.

By the inequality (1 + x)γ ≤ 1 + γx, for all 0 ≤ x < ∞, 0 < γ < 1, we see that

f
(
t, x, y

) ≤ 1
100

(t + 1)−9/4
(
1 +

2
3
x +

2
3
y

)
,

Ik(x) ≤ 1
8k

(
1 +

1
2
x

)
, Ik(x) ≤ 1

10k

(
1 +

1
2
x

)
, k = 1, 2, . . . .

(4.3)



Boundary Value Problems 13

Let

p(t) =
1

150
(t + 1)−9/4, q(t) =

1
150

(t + 1)−9/4, r(t) =
1
100

(t + 1)−9/4,

ck =
1

2 × 8k
, dk =

1
8k

, ek =
1

2 × 10k
, fk =

1
10k

.

(4.4)

Then, we easily obtain that

∫∞

0
p(t)(1 + t)dt =

4
150

,

∫∞

0
q(t)dt =

4
750

,

∫∞

0
r(t)dt =

2
250

,

∞∑

k=1

(tk + 1)ck =
15
98

,
∞∑

k=1

dk =
1
7
,

∞∑

k=1

(tk + 1)ek =
19
162

,
∞∑

k=1

fk =
1
9
.

(4.5)

Thus, (H1) is satisfied and α = 150001/165375 < 1. By Theorem 3.1, it follows that problem
(4.1) has a minimal positive solution.
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