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We consider the nonlinear eigenvalue problems u′′ + λf(u) = 0, 0 < t < 1, u(0) = 0, u(1) =
∑m−2

i=1 αiu(ηi), where m ≥ 3, ηi ∈ (0, 1), and αi > 0 for i = 1, . . . , m − 2, with
∑m−2

i=1 αi < 1, and
f ∈ C1(R\{0},R) ∩ C(R,R) satisfies f(s)s > 0 for s /= 0, and f0 = ∞, where f0 = lim|s|→ 0f(s)/s.
We investigate the global structure of nodal solutions by using the Rabinowitz’s global bifurcation
theorem.

1. Introduction

We study the global structure of nodal solutions of the problem

u′′ + λf(u) = 0, t ∈ (0, 1), (1.1)

u(0) = 0, u(1) =
m−2∑

i=1

αiu
(
ηi
)
. (1.2)

Here m ≥ 3, ηi ∈ (0, 1), and αi > 0 for i = 1, . . . , m − 2 with
∑m−2

i=1 αi < 1; λ is a positive
parameter, and f ∈ C1(R \ {0},R) ∩ C(R,R).

In the case that f0 ∈ (0,∞), the global structure of nodal solutions of nonlinear second-
order m-point eigenvalue problems (1.1), (1.2) have been extensively studied; see [1–5]
and the references therein. However, relatively little is known about the global structure of
solutions in the case that f0 = ∞, and few global results were found in the available literature
when f0 = ∞ = f∞. The likely reason is that the global bifurcation techniques cannot be
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used directly in the case. On the other hand, when m-point boundary value condition (1.2)
is concerned, the discussion is more difficult since the problem is nonsymmetric and the
corresponding operator is disconjugate. In [6], we discussed the global structure of positive
solutions of (1.1), (1.2)with f0 = ∞.However, to the best of our knowledge, there is no paper
to discuss the global structure of nodal solutions of (1.1), (1.2)with f0 = ∞.

In this paper, we obtain a complete description of the global structure of nodal
solutions of (1.1), (1.2) under the following assumptions:

(A1) αi > 0 for i = 1, . . . , m − 2, with 0 <
∑m−2

i=1 αi < 1;

(A2) f ∈ C1(R \ {0},R) ∩ C(R,R) satisfies f(s)s > 0 for s /= 0;

(A3) f0 := lim|s|→ 0f(s)/s = ∞;

(A4) f∞ := lim|s|→∞f(s)/s ∈ [0,∞].

Let Y = C[0, 1] with the norm

‖u‖∞ = max
t∈[0,1]

|u(t)|. (1.3)

Let

X =

{

u ∈ C1[0, 1] | u(0) = 0, u(1) =
m−2∑

i=1

αiu
(
ηi
)
}

,

E =

{

u ∈ C2[0, 1] | u(0) = 0, u(1) =
m−2∑

i=1

αiu
(
ηi
)
} (1.4)

with the norm

‖u‖X = max
{‖u‖∞,

∥
∥u′∥∥

∞
}
, ‖u‖ = max

{‖u‖∞,
∥
∥u′∥∥

∞,
∥
∥u′′∥∥

∞
}
, (1.5)

respectively. Define L : E → Y by setting

Lu := −u′′, u ∈ E. (1.6)

Then L has a bounded inverse L−1 : Y → E and the restriction of L−1 toX, that is, L−1 : X → X
is a compact and continuous operator; see [1, 2, 6].

For any C1 function u, if u(x0) = 0, then x0 is a simple zero of u if u′(x0)/= 0. For
any integer k ≥ 1 and any ν ∈ {+,−}, define sets Sν

k, Tν
k ⊂ C2[0, 1] consisting of functions

u ∈ C2[0, 1] satisfying the following conditions:

Sν
k
: (i) u(0) = 0, νu′(0) > 0,

(ii) u has only simple zeros in [0, 1] and has exactly k − 1 zeros in (0, 1);

Tν
k : (i) u(0) = 0, νu′(0) > 0 and u′(1)/= 0,

(ii) u′ has only simple zeros in (0, 1) and has exactly k zeros in (0, 1),

(iii) u has a zero strictly between each two consecutive zeros of u′.
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Remark 1.1. Obviously, if u ∈ Tν
k , then u ∈ Sν

k or u ∈ Sν
k+1. The sets Tν

k are open in E and
disjoint.

Remark 1.2. The nodal properties of solutions of nonlinear Sturm-Liouville problems with
separated boundary conditions are usually described in terms of sets similar to Sν

k; see
[7]. However, Rynne [1] stated that Tν

k
are more appropriate than Sν

k
when the multipoint

boundary condition (1.2) is considered.

Next, we consider the eigenvalues of the linear problem

Lu = λu, u ∈ E. (1.7)

We call the set of eigenvalues of (1.7) the spectrum of L and denote it by σ(L). The following
lemmas or similar results can be found in [1–3].

Lemma 1.3. Let (A1) hold. The spectrum σ(L) consists of a strictly increasing positive sequence of
eigenvalues λk, k = 1, 2, . . . , with corresponding eigenfunctions ϕk(x) = sin(

√
λk x). In addition,

(i) limk→∞λk = ∞;

(ii) ϕk ∈ T+
k , for each k ≥ 1, and ϕ1 is strictly positive on (0, 1).

We can regard the inverse operator L−1 : Y → E as an operator L−1 : Y → Y. In
this setting, each λk, k = 1, 2, . . . , is a characteristic value of L−1, with algebraic multiplicity
defined to be dim

⋃∞
j=1 N((I − λkL

−1)j), where N denotes null-space and I is the identity on
Y.

Lemma 1.4. Let (A1) hold. For each k ≥ 1, the algebraic multiplicity of the characteristic value
λk, k = 1, 2, . . . , of L−1 : Y → Y is equal to 1.

Let E = R×E under the product topology. As in [7], we add the points {(λ,∞) | λ ∈ R}
to our space E. Let Φν

k
= R × Tν

k
. Let Σν

k
denote the closure of set of those solutions of (1.1),

(1.2) which belong to Φν
k. The main results of this paper are the following.

Theorem 1.5. Let (A1)–(A4) hold.

(a) If f∞ = 0, then there exists a subcontinuum Cν
k
of Σν

k
with (0, 0) ∈ Cν

k
and

Proj
R
Cν
k = (0,∞). (1.8)

(b) If f∞ ∈ (0,∞), then there exists a subcontinuum Cν
k of Σ

ν
k with

(0, 0) ∈ Cν
k, Proj

R
Cν
k ⊆

(

0,
λ1
f∞

)

. (1.9)

(c) If f∞ = ∞, then there exists a subcontinuum Cν
k of Σν

k with (0, 0) ∈ Cν
k, ProjR Cν

k is a
bounded closed interval, and Cν

k
approaches (0,∞) as ‖u‖ → ∞.
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Theorem 1.6. Let (A1)–(A4) hold.

(a) If f∞ = 0, then (1.1), (1.2) has at least one solution in Tν
k
for any λ ∈ (0,∞).

(b) If f∞ ∈ (0,∞), then (1.1), (1.2) has at least one solution in Tν
k
for any λ ∈ (0, λ1/f∞).

(c) If f∞ = ∞, then there exists λ∗ > 0 such that (1.1), (1.2) has at least two solutions in Tν
k

for any λ ∈ (0, λ∗).

We will develop a bifurcation approach to treat the case f0 = ∞. Crucial to this
approach is to construct a sequence of functions {f [n]} which is asymptotic linear at 0 and
satisfies

f [n] −→ f,
(
f [n]

)

0
−→ ∞. (1.10)

By means of the corresponding auxiliary equations, we obtain a sequence of unbounded
components {Cν[n]

k
} via Rabinowitz’s global bifurcation theorem [8], and this enables us to

find unbounded components Cν
k satisfying

(0, 0) ∈ Cν
k ⊂ lim sup C

ν[n]
k

. (1.11)

The rest of the paper is organized as follows. Section 2 contains some preliminary
propositions. In Section 3, we use the global bifurcation theorems to analyse the global
behavior of the components of nodal solutions of (1.1), (1.2).

2. Preliminaries

Definition 2.1 (see [9]). Let W be a Banach space and {Cn | n = 1, 2, . . .} a family of subsets of
W. Then the superior limit D of {Cn} is defined by

D := lim sup
n→∞

Cn = {x ∈ W | ∃{ni} ⊂ N and xni ∈ Cni , such that xni −→ x}. (2.1)

Lemma 2.2 (see [9]). Each connected subset of metric space W is contained in a component, and
each connected component ofW is closed.

Lemma 2.3 (see [6]). Assume that

(i) there exist zn ∈ Cn n = 1, 2, . . . and z∗ ∈ W, such that zn → z∗;

(ii) rn = ∞, where rn = sup{‖x‖ | x ∈ Cn};
(iii) for all R > 0, (

⋃∞
n=1 Cn) ∩ BR is a relative compact set of W , where

BR = {x ∈ W | ‖x‖ ≤ R}. (2.2)

Then there exists an unbounded connected component C in D and z∗ ∈ C.
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Define the map Tλ : Y → E by

Tλu(t) = λ

∫1

0
H(t, s)f(u(s))ds, (2.3)

where

H(t, s) = G(t, s) +
∑m−2

i=1 αiG
(
ηi, s

)

1 −∑m−2
i=1 αiηi

t, G(t, s) =

⎧
⎨

⎩

(1 − t)s, 0 ≤ s ≤ t ≤ 1,

t(1 − s), 0 ≤ t ≤ s ≤ 1.
(2.4)

It is easy to verify that the following lemma holds.

Lemma 2.4. Assume that (A1)-(A2) hold. Then Tλ : Y → E is completely continuous.
For r > 0, let

Ωr = {u ∈ Y | ‖u‖∞ < r}. (2.5)

Lemma 2.5. Let (A1)-(A2) hold. If u ∈ ∂Ωr , r > 0, then

‖Tλu‖∞ ≤ λM̂r

(

1 +
∑m−2

i=1 αi

1 −∑m−2
i=1 αiηi

)∫1

0
G(s, s)ds, (2.6)

where M̂r = 1 +max0≤|s|≤r{|f(s)|}.

Proof. The proof is similar to that of Lemma 3.5 in [6]; we omit it.

Lemma 2.6. Let (A1)-(A2) hold, and {(μl, yl)} ⊂ Φν
k
is a sequence of solutions of (1.1), (1.2).

Assume that μl ≤ C0 for some constant C0 > 0, and liml→∞‖yl‖ = ∞. Then

lim
l→∞

∥
∥yl

∥
∥
∞ = ∞. (2.7)

Proof. From the relation yl(t) = μl

∫1
0 H(t, s)f(yl(s))ds, we conclude that y′

1(t) =
μl

∫1
0 Ht(t, s)f(yl(s))ds. Then

∥
∥y′

l

∥
∥
∞ ≤ C0

(

1 +
∑m−2

i=1 αi

1 −∑m−2
i=1 αiηi

)∫1

0

∣
∣f
(
yl(s)

)∣
∣ds, (2.8)

which implies that {‖y′
l
‖∞} is bounded whenever {‖yl‖∞} is bounded.
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3. Proof of the Main Results

For each n ∈ N, define f [n](s) : R → R by

f [n](s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f(s), s ∈
(
1
n
,∞

)

∪
(

−∞,− 1
n

)

,

nf

(
1
n

)

s, s ∈
[

− 1
n
,
1
n

]

.

(3.1)

Then f [n] ∈ C(R,R) ∩ C1(R \ {±1/n},R) with

f [n](s)s > 0, ∀s /= 0,
(
f [n]

)

0
= nf

(
1
n

)

. (3.2)

By (A3), it follows that

lim
n→∞

(
f [n]

)

0
= ∞. (3.3)

Now let us consider the auxiliary family of the equations

u′′ + λf [n](u) = 0, t ∈ (0, 1), (3.4)

u(0) = 0, u(1) =
m−2∑

i=1

αiu
(
ηi
)
. (3.5)

Lemma 3.1 (see [1, Proposition 4.1]). Let (A1), (A2) hold. If (μ, u) ∈ E is a nontrivial solution of
(3.4), (3.5), then u ∈ Tν

k
for some k, ν.

Let ζ[n] ∈ C(R,R) be such that

f [n](u) =
(
f [n]

)

0
u + ζ[n](u) = nf

(
1
n

)

u + ζ[n](u). (3.6)

Note that

lim
|s|→ 0

ζ[n](s)
s

= 0. (3.7)

Let us consider

Lu − λ
(
f [n]

)

0
u = λζ[n](u) (3.8)

as a bifurcation problem from the trivial solution u ≡ 0.
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Equation (3.8) can be converted to the equivalent equation

u(t) =
∫1

0
H(t, s)

[
λ
(
f [n]

)

0
u(s) + λζ[n](u(s))

]
ds

:= λL−1
[(

f [n]
)

0
u(·)

]
(t) + λL−1

[
ζ[n](u(·))

]
(t).

(3.9)

Further we note that ‖L−1[ζ[n](u)]‖ = o(‖u‖) for u near 0 in E.
The results of Rabinowitz [8] for (3.8) can be stated as follows. For each integer k ≥

1, ν ∈ {+,−}, there exists a continuum {Cν[n]
k

} of solutions of (3.8) joining (λk/(f [n])0, 0) to
infinity in E. Moreover, {Cν[n]

k } \ {(λk/(f [n] )0, 0)} ⊂ Φν
k.

Proof of Theorem 1.5. Let us verify that {Cν[n]
k

} satisfies all of the conditions of Lemma 2.3.
Since

lim
n→∞

λk
(
f [n]

)
0

= lim
n→∞

λk
nf(1/n)

= 0, (3.10)

condition (i) in Lemma 2.3 is satisfied with z∗ = (0, 0). Obviously

rn = sup
{
λ +

∥
∥y

∥
∥ | (λ, y) ∈ Cν[n]

k

}
= ∞, (3.11)

and accordingly, (ii) holds. (iii) can be deduced directly from the Arzela-Ascoli Theorem and
the definition of f [n]. Therefore, the superior limit of {Cν[n]

k
}, Dν

k
, contains an unbounded

connected component Cν
k with (0, 0) ∈ Cν

k.
From the condition (A2), applying Lemma 2.2 with p = 2 in [10], we can show that the

initial value problem

v′′ + λf(v) = 0, t ∈ (0, 1),

v(t0) = 0, v(t0) = β
(3.12)

has a unique solution on [0, 1] for every t0 ∈ [0, 1] and β ∈ R. Therefore, any nontrivial
solution u of (1.1), (1.2) has only simple zeros in (0, 1) and u′(0)/= 0. Meanwhile, (A1) implies
that u′(1)/= 0 [1, proposition 4.1]. Since Cν[n]

k
⊂ Φν

k
, we conclude that Cν

k
⊂ Φν

k
. Moreover,

Cν
k ⊂ Σν

k by (1.1) and (1.2).
We divide the proof into three cases.

Case 1 (f∞ = 0). In this case, we show that Proj
R
Cν
k
= [0,∞).

Assume on the contrary that

sup
{
λ | (λ, u) ∈ Cν

k

}
< ∞, (3.13)
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then there exists a sequence {(μl, yl)} ⊂ Cν
k such that

lim
l→∞

∥
∥yl

∥
∥ = ∞, μl ≤ C0, (3.14)

for some positive constant C0 depending not on l. From Lemma 2.6, we have

lim
l→∞

∥
∥yl

∥
∥
∞ = ∞. (3.15)

Set vl(t) = yl(t)/‖yl‖∞. Then ‖vl‖∞ = 1. Now, choosing a subsequence and relabelling
if necessary, it follows that there exists (μ∗, v∗) ∈ [0, C0] × E with

‖v∗‖∞ = 1, (3.16)

such that

lim
l→∞

(
μl, vl

)
=
(
μ∗, v∗

)
, in R × E. (3.17)

Since lim|u|→∞f(u)/u = 0, we can show that

lim
l→∞

∣
∣f
(
yl(t)

)∣
∣

∥
∥yl

∥
∥
∞

= 0. (3.18)

The proof is similar to that of the step 1 of Theorem 1 in [7]; we omit it. So, we obtain

v′′
∗(t) + μ∗ · 0 = 0, t ∈ (0, 1), (3.19)

v∗(0) = 0, v∗(1) =
m−2∑

i=1

αiv∗
(
ηi
)
, (3.20)

and subsequently, v∗(t) ≡ 0 for t ∈ [0, 1]. This contradicts (3.16). Therefore

sup
{
λ | (λ, y) ∈ Cν

k

}
= ∞. (3.21)

Case 2 (f∞ ∈ (0,∞)). In this case, we can show easily that C joins (0, 0) with (λk/f∞,∞) by
using the same method used to prove Theorem 5.1 in [2].

Case 3 (f∞ = ∞). In this case, we show that Cν
k
joins (0, 0) with (0,∞).

Let {(μl, yl)} ⊂ Cν
k
be such that

μl +
∥
∥yl

∥
∥ −→ ∞, l −→ ∞. (3.22)
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If {‖yl‖} is bounded, say, ‖yl‖ ≤ M1, for some M1 depending not on l, then we may
assume that

lim
l→∞

μl = ∞. (3.23)

Taking subsequences again if necessary, we still denote {(μl, yl)} such that {yl} ⊂ Tν
k ∩ Sν

k. If
{yl} ⊂ Tν

k
∩ Sν

k+1, all the following proofs are similar.
Let

0 = τ0l < τ1l < · · · < τk−1l (3.24)

denote the zeros of yl in [0, 1]. Then, after taking a subsequence if necessary, liml→∞τ
j

l
:=

τ
j
∞, j ∈ {0, 1, . . . , k − 1}. Clearly, τ0∞ = 0. Set τk∞ = 1. We can choose at least one subinterval
(τj∞, τ

j+1
∞ ) � I

j
∞ which is of length at least 1/k for some j ∈ {0, 1, . . . , k − 1}. Then, for this

j, τ
j+1
l

− τ
j

l
> 3/4k if l is large enough. Put (τj

l
, τ

j+1
l

) � I
j

l
.

Obviously, for the above given k, ν and j, yl(t) have the same sign on I
j

l
for all l.

Without loss of generality, we assume that

yl(t) > 0, t ∈ I
j

l
. (3.25)

Moreover, we have

max
t∈Ij

l

|ul(t)| ≤ M1. (3.26)

Combining this with the fact

f
(
yl(t)

)

yl(t)
≥ inf

{
f(s)
s

| 0 < s ≤ M1

}

> 0, t ∈
(
τ
j

l , τ
j+1
l

)
, (3.27)

and using the relation

y′′
l (t) + μl

f
(
yl(t)

)

yl(t)
yl(t) = 0, t ∈

(
τ
j

l
, τ

j+1
l

)
, (3.28)

we deduce that yl must change its sign on (τjl , τ
j+1
l ) if l is large enough. This is a contradiction.

Hence {‖yl‖} is unbounded. From Lemma 2.6, we have that

lim
l→∞

∥
∥yl

∥
∥
∞ = ∞. (3.29)

Note that {(μl, yl)} satisfies the autonomous equation

y′′
l + μlf

(
yl

)
= 0, t ∈ (0, 1). (3.30)
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We see that yl consists of a sequence of positive and negative bumps, together with a
truncated bump at the right end of the interval [0, 1],with the following properties (ignoring
the truncated bump) (see, [1]):

(i) all the positive (resp., negative) bumps have the same shape (the shapes of the
positive and negative bumps may be different);

(ii) each bump contains a single zero of y′
l, and there is exactly one zero of yl between

consecutive zeros of y′
l
;

(iii) all the positive (negative) bumps attain the same maximum (minimum) value.

Armed with this information on the shape of yl, it is easy to show that for the above
given I

j

l
, {‖yl‖Ij

l
,∞ := max

I
j

l
yl(t)}∞l=1 is an unbounded sequence. That is

lim
l→∞

∥
∥yl

∥
∥
I
j

l
,∞ = ∞. (3.31)

Since yl is concave on I
j

l
, for any σ > 0 small enough,

yl(t) ≥ σ
∥
∥yl

∥
∥
I
j

l
,∞, ∀t ∈

[
τ
j

l
+ σ, τ

j+1
l

− σ
]
. (3.32)

This together with (3.31) implies that there exist constants α, β with [α, β] ⊂ I
j
∞, such

that

lim
l→∞

yl(t) = ∞, uniformly for t ∈ [α, β]. (3.33)

Hence, we have

lim
l→∞

f
(
yl(t)

)

yl(t)
= ∞, uniformly for t ∈ [α, β]. (3.34)

Now, we show that liml→∞μl = 0.
Suppose on the contrary that, choosing a subsequence and relabeling if necessary, μl ≥

b0 for some constant b0 > 0. This implies that

lim
l→∞

μl

f
(
yl(t)

)

yl(t)
= ∞, uniformly for t ∈ [α, β]. (3.35)

From (3.28) we obtain that yl must change its sign on [α, β] if l is large enough. This is a
contradiction. Therefore liml→∞μl = 0.

Proof of Theorem 1.6. (a) and (b) are immediate consequence of Theorem 1.5(a) and (b),
respectively.

To prove (c), we rewrite (1.1), (1.2) to

u = λ

∫1

0
H(t, s)f(u(s))ds = Tλu(t). (3.36)
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By Lemma 2.5, for every r > 0 and u ∈ ∂Ωr ,

‖Tλu‖∞ ≤ λM̂r

(

1 +
∑m−2

i=1 αi

1 −∑m−2
i=1 αiηi

)∫1

0
G(s, s)ds, (3.37)

where M̂r = 1 +max0≤|s|≤r{|f(s)|}.
Let λr > 0 be such that

λrM̂r

(

1 +
∑m−2

i=1 αi

1 −∑m−2
i=1 αiηi

)∫1

0
G(s, s)ds = r. (3.38)

Then for λ ∈ (0, λr) and u ∈ ∂Ωr ,

‖Tλu‖∞ < ‖u‖∞. (3.39)

This means that

Σν
k ∩ {(λ, u) ∈ (0,∞) × E | 0 < λ < λr, u ∈ E : ‖u‖∞ = r} = ∅. (3.40)

By Lemma 2.6 and Theorem 1.5, it follows that Cν
k is also an unbounded component joining

(0, 0) and (0,∞) in [0,∞) × Y . Thus, (3.40) implies that for λ ∈ (0, λr), (1.1), (1.2) has at least
two solutions in Tν

k
.
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