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This paper investigates the existence and multiplicity of positive solutions for a class of higher-
order nonlinear fractional differential equations with integral boundary conditions. The results
are established by converting the problem into an equivalent integral equation and applying
Krasnoselskii’s fixed-point theorem in cones. The nonexistence of positive solutions is also studied.

1. Introduction

Fractional differential equations arise in many engineering and scientific disciplines as
the mathematical modelling of systems and processes in the fields of physics, chemistry,
aerodynamics, electrodynamics of complex medium, polymer rheology, Bode’s analysis of
feedback amplifiers, capacitor theory, electrical circuits, electron-analytical chemistry, biology,
control theory, fitting of experimental data, and so forth, and involves derivatives of fractional
order. Fractional derivatives provide an excellent tool for the description of memory and
hereditary properties of various materials and processes. This is the main advantage of
fractional differential equations in comparison with classical integer-order models. An
excellent account in the study of fractional differential equations can be found in [1–5]. For
the basic theory and recent development of the subject, we refer a text by Lakshmikantham
[6]. For more details and examples, see [7–23] and the references therein. However, the theory
of boundary value problems for nonlinear fractional differential equations is still in the initial
stages and many aspects of this theory need to be explored.
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In [23], Zhang used a fixed-point theorem for the mixed monotone operator to show
the existence of positive solutions to the following singular fractional differential equation.

Dα
0+u(t) + q(t)f

(
t, x(t), x′(t), . . . , x(n−2)(t)

)
= 0, 0 < t < 1, (1.1)

subject to the boundary conditions

u(0) = u′(0) = u′′(0) = · · · = u(n−2)(0) = u(n−1)(1) = 0, (1.2)

whereDα
0+ is the standard Rimann-Liouville fractional derivative of order n−1 < α ≤ n, n ≥ 2,

the nonlinearity f may be singular at u = 0, u′ = 0, . . . , u(n−2) = 0, and function q(t) may be
singular at t = 0. The author derived the corresponding Green’s function named by fractional
Green’s function and obtained some properties as follows.

Proposition 1.1. Green’s function G(t, s) satisfies the following conditions:

(i) G(t, s) ≥ 0, G(t, s) ≤ tα−n+2/Γ(α − n + 2), G(t, s) ≤ G(s, s) for all 0 ≤ t, s ≤ 1;

(ii) there exists a positive function ρ ∈ C(0, 1) such that

min
γ≤t≤δ

G(t, s) ≥ ρ(s)G(s, s), s ∈ (0, 1), (1.3)

where 0 < γ < δ < 1 and

ρ(s) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[δ(1 − s)]α−n+1 − (δ − s)α−n+1

(s(1 − s))α−n+1
, s ∈ (0, r],

(
γ

s

)α−n+1
, s ∈ [r, 1),

(1.4)

here γ < r < δ.

It is well known that the cone theoretic techniques play a very important role in
applying Green’s function in the study of solutions to boundary value problems. In [23], the
author cannot acquire a positive constant taking instead of the role of positive function ρ(s)
with n−1 < α ≤ n, n ≥ 2 in (1.3). At the same time, we notice that many authors obtained the
similar properties to that of (1.3), for example, see Bai [12], Bai and Lü [13], Jiang and Yuan
[14], Li et al, [15], Kaufmann andMboumi [19], and references therein. Naturally, one wishes
to find whether there exists a positive constant ρ such that

min
γ≤t≤δ

G(t, s) ≥ ρG(s, s), s ∈ [0, 1], (1.5)

for the fractional order cases. In Section 2, we will deduce some new properties of Green’s
function.
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Motivated by the above mentioned work, we study the following higher-order
singular boundary value problem of fractional differential equation.

Dα
0+x(t) + g(t)f(t, x(t)) = 0, 0 < t < 1

x(0) = x′(0) = · · · = x(n−2)(0) = 0,

x(1) =
∫1

0
h(t)x(t)dt,

(P)

where Dα
0+ is the standard Rimann-Liouville fractional derivative of order n − 1 < α ≤ n,

n ≥ 3, g ∈ C((0, 1), [0,+∞)) and g may be singular at t = 0 or/and at t = 1, h ∈ L1[0, 1] is
nonnegative, and f ∈ C([0, 1] × [0,+∞), [0,+∞)).

For the case of α = n,
∫1
0 h(t)x(t)dt = ax(η), 0 < η < 1, 0 < aηn−1 < 1, the boundary

value problems (P) reduces to the problem studied by Eloe and Ahmad in [24]. In [24], the
authors used the Krasnosel’skii and Guo [25] fixed-point theorem to show the existence of
at least one positive solution if f is either superlinear or sublinear to problem (P). For the
case of α = n,

∫1
0 h(t)x(t)dt = Σm−2

i=1 ξix(ηi), ξi ∈ (0,∞), ηi ∈ (0, 1), i = 1, 2, . . . , n − 2, the
boundary value problems (P) is related to a m-point boundary value problems of integer-
order differential equation. Under this case, a great deal of research has been devoted to
the existence of solutions for problem (P), for example, see Pang et al. [26], Yang and Wei
[27], Feng and Ge [28], and references therein. All of these results are based upon the fixed-
point index theory, the fixed-point theorems and the fixed-point theory in cone for strict set
contraction operator.

The organization of this paper is as follows. We will introduce some lemmas and
notations in the rest of this section. In Section 2, we present the expression and properties of
Green’s function associated with boundary value problem (P). In Section 3, we discuss some
characteristics of the integral operator associated with the problem (P) and state a fixed-
point theorem in cones. In Section 4, we discuss the existence of at least one positive solution
of boundary value problem (P). In Section 5, we will prove the existence of two orm positive
solutions, wherem is an arbitrary natural number. In Section 6, we study the nonexistence of
positive solution of boundary value problem (P). In Section 7, one example is also included
to illustrate the main results. Finally, conclusions in Section 8 close the paper.

The fractional differential equations related notations adopted in this paper can be
found, if not explained specifically, in almost all literature related to fractional differential
equations. The readers who are unfamiliar with this area can consult, for example, [1–6] for
details.

Definition 1.2 (see [4]). The integral

Iα0+f(x) =
1

Γ(α)

∫x

0

f(t)

(x − t)1−α
dt, x > 0, (1.6)

where α > 0, is called Riemann-Liouville fractional integral of order α.
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Figure 1: Graph of functions G1(τ(s), s) G1(s, s) for α = 5/2.

Definition 1.3 (see [4]). For a function f(x) given in the interval [0, 1), the expression

Dα
0+f(x) =

1
Γ(n − α)

(
d

dx

)n ∫x

0

f(t)

(x − t)α−n+1
dt, (1.7)

where n = [α] + 1, [α] denotes the integer part of number α, is called the Riemann-Liouville
fractional derivative of order α.

Lemma 1.4 (see [13]). Assume that u ∈ C(0, 1) ∩ L(0, 1) with a fractional derivative of order α > 0
that belongs to u ∈ C(0, 1) ∩ L(0, 1). Then

Iα0+D
α
0+u(t) = u(t) + C1t

α−1 + C2t
α−2 + · · · + CNtα−N, (1.8)

for some Ci ∈ R, i = 1, 2, . . . ,N, whereN is the smallest integer greater than or equal to α.

2. Expression and Properties of Green’s Function

In this section, we present the expression and properties of Green’s function associated with
boundary value problem (P).

Lemma 2.1. Assume that
∫1
0 h(t)t

α−1dt /= 1. Then for any y ∈ C[0, 1], the unique solution of
boundary value problem

Dα
0+x(t) + y(t) = 0, 0 < t < 1

x(0) = x′(0) = . . . = x(n−2)(0) = 0,

x(1) =
∫1

0
h(t)x(t)dt

(2.1)
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Figure 2: Graph of function τ(s) for α = 5/2.

is given by

x(t) =
∫1

0
G(t, s)y(s)ds, (2.2)

where

G(t, s) = G1(t, s) +G2(t, s), (2.3)

G1(t, s) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

tα−1(1 − s)α−1 − (t − s)α−1

Γ(α)
, 0 ≤ s ≤ t ≤ 1,

tα−1(1 − s)α−1

Γ(α)
, 0 ≤ t ≤ s ≤ 1,

(2.4)

G2(t, s) =
tα−1

1 − ∫1
0 h(t)t

α−1dt

∫1

0
h(t)G1(t, s)dt. (2.5)

Proof . By Lemma 1.4, we can reduce the equation of problem (2.1) to an equivalent integral
equation

x(t) = −Iα0+y(t) + c1t
α−1 + c2t

α−2 + · · · + cnt
α−n

= − 1
Γ(α)

∫ t

0
(t − s)α−1y(s)ds + c1t

α−1 + c2t
α−2 + · · · + cnt

α−n.
(2.6)

By x(0) = 0, there is cn = 0. Thus,

x(t) = −Iα0+y(t) + c1t
α−1 + c2t

α−2 + · · · + cn−1tα−n+1. (2.7)
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Differentiating (2.7), we have

x′(t) = −α − 1
Γ(α)

∫ t

0
(t − s)α−2y(s)ds + c1(α − 1)tα−2 + · · · + cn−1(α − n + 1)tα−n. (2.8)

By (2.8) and x′(0) = 0, we have cn−1 = 0. Similarly, we can obtain that c2 = c3 = · · · = cn−2 = 0.
Then

x(t) = − 1
Γ(α)

∫ t

0
(t − s)α−1y(s)ds + c1t

α−1. (2.9)

By x(1) =
∫1
0 h(t)x(t)dt, we have

c1 =
∫1

0
h(t)x(t)dt +

1
Γ(α)

∫1

0
(1 − s)α−1y(s)ds. (2.10)

Therefore, the unique solution of BVP (2.1) is

x(t) = − 1
Γ(α)

∫ t

0
(t − s)α−1y(s)ds + tα−1

(∫1

0
h(t)x(t)dt +

1
Γ(α)

∫1

0
(1 − s)α−1y(s)ds

)

=
∫1

0
G1(t, s)y(s)ds + tα−1

∫1

0
h(t)x(t)dt,

(2.11)

where G1(t, s) is defined by (2.4).
From (2.11), we have

∫1

0
h(t)x(t)dt =

∫1

0
h(t)

∫1

0
G1(t, s)y(s)dsdt +

∫1

0
h(t)tα−1dt

∫1

0
h(t)x(t)dt. (2.12)

It follows that

∫1

0
h(t)x(t)dt =

1

1 − ∫1
0 h(t)t

α−1dt

∫1

0
h(t)

∫1

0
G1(t, s)y(s)dsdt. (2.13)

Substituting (2.13) into (2.11), we obtain

x(t) =
∫1

0
G1(t, s)y(s)ds +

tα−1

1 − ∫1
0 h(t)t

α−1dt

∫1

0
h(t)

∫1

0
G1(t, s)y(s)dsdt

=
∫1

0
G1(t, s)y(s)ds +

∫1

0
G2(t, s)y(s)ds

=
∫1

0
G(t, s)y(s)ds,

(2.14)
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where G(t, s), G1(t, s), and G2(t, s) are defined by (2.3), (2.4), and (2.5), respectively. The
proof is complete.

From (2.3), (2.4), and (2.5), we can prove that G(t, s), G1(t, s), and G2(t, s) have the
following properties.

Proposition 2.2. The function G1(t, s) defined by (2.4) satisfies

(i) G1(t, s) ≥ 0 is continuous for all t, s ∈ [0, 1], G1(t, s) > 0, for all t, s ∈ (0, 1);

(ii) for all t ∈ [0, 1], s ∈ (0, 1), one has

G1(t, s) ≤ G1(τ(s), s) =
(τ(s))α−1(1 − s)α−1 − (τ(s) − s)α−1

Γ(α)
, (2.15)

where

τ(s) =
s

1 − (1 − s)(α−1)/(α−2)
. (2.16)

Proof. (i) It is obvious that G1(t, s) is continuous on [0, 1] × [0, 1] and G1(t, s) ≥ 0 when s ≥ t.
For 0 ≤ s < t ≤ 1, we have

tα−1(1 − s)α−1 − (t − s)α−1 = (1 − s)α−1
[
tα−1 −

(
t − s

1 − s

)α−1]
≥ 0. (2.17)

So, by (2.4), we have

G1(t, s) ≥ 0, ∀t, s ∈ [0, 1]. (2.18)

Similarly, for t, s ∈ (0, 1), we have G1(t, s) > 0.
(ii) Since n − 1 < α ≤ n, n ≥ 3, it is clear that G1(t, s) is increasing with respect to t for

0 ≤ t ≤ s ≤ 1.
On the other hand, from the definition of G1(t, s), for given s ∈ (0, 1), s < t ≤ 1, we

have

∂G1(t, s)
∂t

=
α − 1
Γ(α)

{
tα−2(1 − s)α−1 − (t − s)α−2

}
. (2.19)

Let

∂G1(t, s)
∂t

= 0. (2.20)

Then, we have

tα−2(1 − s)α−1 = (t − s)α−2, (2.21)
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and so,

(1 − s)α−1 =
(
1 − s

t

)α−2
. (2.22)

Noticing α > 2, from (2.22), we have

t =
s

1 − (1 − s)(α−1)/(α−2)
=: τ(s). (2.23)

Then, for given s ∈ (0, 1), we have G1(t, s) arrives at maximum at (τ(s), s) when s < t.
This together with the fact that G1(t, s) is increasing on s ≥ t, we obtain that (2.15) holds.

Remark 2.3. From Figure 1, we can see that G1(s, s) ≤ G1(τ(s), s) for α > 2. If 1 < α ≤ 2, then

G1(t, s) ≤ G1(s, s) =
sα−1(1 − s)α−1

Γ(α)
. (2.24)

Remark 2.4. From Figure 2, we can see that τ(s) is increasing with respect to s.

Remark 2.5. From Figure 3, we can see that G1(τ(s), s) > 0 for s ∈ Jθ = [θ, 1 − θ], where
θ ∈ (0, 1/2).

Remark 2.6. Let G1(τ(s), s) = (τ(s))α−1(1 − s)α−1 − (τ(s) − s)α−1. From (2.15), for s ∈ (0, 1), we
have

dG1(τ(s), s)
ds

= −(α − 1)(1 − s)α−2(τ(s))α−1 − (α − 1)(τ(s) − s)α−2

×

⎛
⎜⎝−1 + 1

1 − (1 − s)(α−1)/(α−2)
− (α − 1)(1 − s)−1+(α−1)/(α−2)s

(α − 2)
(
1 − (1 − s)(α−1)/(α−2)

)2

⎞
⎟⎠

+ (α − 1)(1 − s)(α−1)(τ(s))(α−2)

×

⎛
⎜⎝ 1

1 − (1 − s)(α−1)/(α−2)
− (α − 1)(1 − s)(α−1)/(α−2)s

(α − 2)
(
1 − (1 − s)(α−1)/(α−2)

)2

⎞
⎟⎠.

(2.25)

Remark 2.7. From (2.25), we have

lim
s→ 0

dG1(τ(s), s)
ds

= (α − 1)

[
−
(
α − 2
α − 1

)α−1
+
(
α − 2
α − 1

)α−2]
:= f(α). (2.26)

Remark 2.8. From Figure 4, it is easy to obtain that f(α) is decreasing with respect to α, and

lim
α→ 2

f(α) = 1, lim
α→∞

f(α) =
1
e
. (2.27)
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Proposition 2.9. There exists γ > 0 such that

min
t∈[θ,1−θ]

G1(t, s) ≥ γG1(τ(s), s), ∀s ∈ [0, 1]. (2.28)

Proof. For t ∈ Jθ, we divide the proof into the following three cases for s ∈ [0, 1].

Case 1. If s ∈ Jθ, then from (i) of Proposition 2.2 and Remark 2.5, we have

G1(t, s) > 0, G1(τ(s), s) > 0, ∀t, s ∈ Jθ. (2.29)

It is obvious that G1(t, s) and G1(τ(s), s) are bounded on Jθ. So, there exists a constant γ1 > 0
such that

G1(t, s) ≥ γ1G1(τ(s), s), ∀t, s ∈ Jθ. (2.30)

Case 2. If s ∈ [1 − θ, 1], then from (2.4), we have

G1(t, s) =
tα−1(1 − s)α−1

Γ(α)
. (2.31)

On the other hand, from the definition of τ(s), we obtain that τ(s) takes its maximum
1 at s = 1. So

G1(τ(s), s) =
(τ(s))α−1(1 − s)α−1 − (τ(s) − s)α−1

Γ(α)

≤ (τ(s))α−1(1 − s)α−1

Γ(α)

=
(τ(s))α−1

tα−1
(1 − s)α−1tα−1

Γ(α)

≤ 1
θα−1G1(t, s).

(2.32)

Therefore, G1(t, s) ≥ θα−1G1(τ(s), s). Letting θα−1 = γ2, we have

G1(t, s) ≥ γ2G1(τ(s), s). (2.33)

Case 3. If s ∈ [0, θ], from (i) of Proposition 2.2, it is clear that

G1(t, s) > 0, G1(τ(s), s) > 0, ∀t ∈ Jθ, s ∈ (0, θ]. (2.34)



10 Boundary Value Problems

In view of Remarks 2.6–2.8, we have

lim
s→ 0

G1(t, s)
G1(τ(s), s)

= lim
s→ 0

tα−1(1 − s)α−1 − (t − s)α−1

(τ(s))α−1(1 − s)α−1 − (τ(s) − s)α−1

= lim
s→ 0

−(α − 1)tα−1(1 − s)α−2 − (α − 1)(t − s)α−2

dG1(τ(s), s)/ds

> 0.

(2.35)

From (2.35), there exists a constant γ3 such that

G1(t, s) ≥ γ3G1(τ(s), s). (2.36)

Letting γ = min{γ1, γ2, γ3} and using (2.30), (2.33), and (2.36), it follows that (2.28) holds. This
completes the proof.

Let

μ =
∫1

0
h(t)tα−1dt. (2.37)

Proposition 2.10. If μ ∈ [0, 1), then one has

(i) G2(t, s) ≥ 0 is continuous for all t, s ∈ [0, 1], G2(t, s) > 0, for all t, s ∈ (0, 1);

(ii) G2(t, s) ≤ (1/(1 − μ))
∫1
0 h(t)G1(t, s)dt, for all t ∈ [0, 1], s ∈ (0, 1).

Proof. Using the properties ofG1(t, s), definition ofG2(t, s), it can easily be shown that (i) and
(ii) hold.

Theorem 2.11. If μ ∈ [0, 1), the function G(t, s) defined by (2.3) satisfies

(i) G(t, s) ≥ 0 is continuous for all t, s ∈ [0, 1], G(t, s) > 0, for all t, s ∈ (0, 1);

(ii) G(t, s) ≤ G(s) for each t, s ∈ [0, 1], and

min
t∈[θ,1−θ]

G(t, s) ≥ γ∗G(s), ∀s ∈ [0, 1], (2.38)

where

γ∗ = min
{
γ, θα−1

}
, G(s) = G1(τ(s), s) +G2(1, s), (2.39)

τ(s) is defined by (2.16), γ is defined in Proposition 2.9.
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Proof. (i) From Propositions 2.2 and 2.10, we obtain that G(t, s) ≥ 0 is continuous for all
t, s ∈ [0, 1], and G(t, s) > 0, for all t, s ∈ (0, 1).

(ii) From (ii) of Proposition 2.2 and (ii) of Proposition 2.10, we have thatG(t, s) ≤ G(s)
for each t, s ∈ [0, 1].

Now, we show that (2.38) holds.
In fact, from Proposition 2.9, we have

min
t∈Jθ

G(t, s) ≥ γG1(τ(s), s) +
θα−1

1 − μ

∫1

0
h(t)G1(t, s)dt

≥ γ∗
[
G1(τ(s), s) +

1
1 − μ

∫1

0
h(t)G1(t, s)dt

]

= γ∗G(s), ∀s ∈ [0, 1].

(2.40)

Then the proof of Theorem 2.11 is completed.

Remark 2.12. From the definition of γ∗, it is clear that 0 < γ∗ < 1.

3. Preliminaries

Let J = [0, 1] and E = C[0, 1] denote a real Banach space with the norm ‖ · ‖ defined by
‖x‖ = max0≤t≤1|x(t)|. Let

K =
{
x ∈ E : x ≥ 0,min

t∈Jθ
x(t) ≥ γ∗‖x‖

}
,

Kr = {x ∈ K : ‖x‖ ≤ r}, ∂Kr = {x ∈ K : ‖x‖ = r}.
(3.1)

To prove the existence of positive solutions for the boundary value problem (P), we
need the following assumptions:

(H1) g ∈ C((0, 1), [0,+∞)), g(t)�≡ 0 on any subinterval of (0,1) and 0 <
∫1
0 G(s)g(s)ds <

+∞, where G(s) is defined in Theorem 2.11;

(H2) f ∈ C([0, 1] × [0,+∞), [0,+∞)) and f(t, 0) = 0 uniformly with respect to t on [0, 1];

(H3) μ ∈ [0, 1), where μ is defined by (2.37).

From condition (H1), it is not difficult to see that g may be singular at t = 0 or/and at
t = 1, that is, limt→ 0+ g(t) = ∞ or/and limt→ 1− g(t) = ∞.

Define T : K → K by

(Tx)(t) =
∫1

0
G(t, s)g(s)f(s, x(s))ds, (3.2)

where G(t, s) is defined by (2.3).
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Lemma 3.1. Let (H1)–(H3) hold. Then boundary value problems (P) has a solution x if and only if
x is a fixed point of T .

Proof. From Lemma 2.1, we can prove the result of this lemma.

Lemma 3.2. Let (H1)–(H3) hold. Then TK ⊂ K and T : K → K is completely continuous.

Proof. For any x ∈ K, by (3.2), we can obtain that Tx ≥ 0. On the other hand, by (ii) of
Theorem 2.11, we have

(Tx)(t) ≤
∫1

0
G(s)g(s)f(s, x(s))ds. (3.3)

Similarly, by (2.38), we obtain

(Tx)(t) ≥ γ∗
∫1

0
G(s)g(s)f(s, x(s))ds

= γ∗‖Tx‖, t ∈ Jθ.

(3.4)

So, Tx ∈ K and hence T(K) ⊂ K. Next by similar proof of Lemma 3.1 in [13] and Ascoli-
Arzela theorem one can prove T : K → K is completely continuous. So it is omitted.

To obtain positive solutions of boundary value problem (P), the following fixed-point
theorem in cones is fundamental which can be found in [25, page 94].

Lemma 3.3 (Fixed-point theorem of cone expansion and compression of norm type). Let P be
a cone of real Banach space E, and let Ω1 and Ω2 be two bounded open sets in E such that 0 ∈ Ω1 and
Ω1 ⊂ Ω2. Let operator A : P ∩ (Ω2 \Ω1) → P be completely continuous. Suppose that one of the two
conditions

(i) ‖Ax‖ ≤ ‖x‖, for all x ∈ P ∩ ∂Ω1 and ‖Ax‖ ≥ ‖x‖, for all x ∈ P ∩ ∂Ω2

or

(ii) ‖Ax‖ ≥ ‖x‖, for all x ∈ P ∩ ∂Ω1, and ‖Ax‖ ≤ ‖x‖, for all x ∈ P ∩ ∂Ω2

is satisfied. Then A has at least one fixed point in P ∩ (Ω2 \Ω1).

4. Existence of Positive Solution

In this section, we impose growth conditions on f which allow us to apply Lemma 3.3 to
establish the existence of one positive solution of boundary value problem (P), and we begin
by introducing some notations:

fβ = lim sup
x→ β

max
t∈[0,1]

f(t, x)
x

, fβ = lim inf
x→ β

min
t∈[0,1]

f(t, x)
x

, (4.1)
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where β denotes 0 or ∞, and

σ =
∫1

0
G(s)g(s)ds. (4.2)

Theorem 4.1. Assume that (H1)–(H3) hold. In addition, one supposes that one of the following
conditions is satisfied:

(C1) f0 > 1/
∫1−θ
θ G(s)g(s)ds(γ∗)2 and f∞ < 1/σ (particularly, f0 = ∞ and f∞ = 0).

(C2) there exist two constants r2, R2 with 0 < r2 ≤ R2 such that f(t, ·) is nondecreasing on
[0, R2]

for all t ∈ [0, 1], and f(t, γ∗r2) ≥ r2/γ
∗ ∫1−θ

θ G(s)g(s)ds, and f(t, R2) ≤ R2/σ for all t ∈ [0, 1].
Then boundary value problem (P) has at least one positive solution.

Proof. Let T be cone preserving completely continuous that is defined by (3.2).

Case 1. The condition (C1) holds. Considering f0 > 1/
∫1−θ
θ G(s)g(s)ds(γ∗)2, there exists

r1 > 0 such that f(t, x) ≥ (f0 − ε1)x, for t ∈ [0, 1], x ∈ [0, r1], where ε1 > 0 satisfies∫1−θ
θ G(s)g(s)ds(γ∗)2(f0 − ε1) ≥ 1. Then, for t ∈ [0, 1], x ∈ ∂Kr1 , we have

(Tx)(t) =
∫1

0
G(t, s)g(s)f(s, x(s))ds

≥ γ∗
∫1

0
G(s)g(s)f(s, x(s))ds

≥ γ∗
∫1

0
G(s)g(s)

(
f0 − ε1

)
x(s)ds

≥ (
γ∗
)2(

f0 − ε1
)∫1−θ

θ

G(s)g(s)ds‖x‖

≥ ‖x‖,

(4.3)

that is, x ∈ ∂Kr1 imply that

‖Tx‖ ≥ ‖x‖. (4.4)

Next, turning to f∞ < 1/σ, there exists R1 > 0 such that

f(t, x) ≤ (
f∞ + ε2

)
x, for t ∈ [0, 1], x ∈

(
R1,∞

)
, (4.5)

where ε2 > 0 satisfies σ(f∞ + ε2) ≤ 1.
Set

M = max
0≤x≤R1, t∈[0,1]

f(t, x), (4.6)

then f(t, x) ≤ M + (f∞ + ε2)x.
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Chose R1 > max{r1, R1,Mσ(1 − σ(f∞ + ε2))
−1}. Then, for x ∈ ∂KR1 , we have

(Tx)(t) =
∫1

0
G(t, s)g(s)f(s, x(s))ds

≤
∫1

0
G(s)g(s)f(s, x(s))ds

≤
∫1

0
G(s)g(s)

[
M +

(
f∞ + ε2

)
x(s)

]
ds

≤ M

∫1

0
G(s)g(s)ds +

(
f∞ + ε2

) ∫1

0
G(s)g(s)ds‖x‖

< R1 − σ
(
f∞ + ε2

)
R1 +

(
f∞ + ε2

)
σ‖x‖

= R1,

(4.7)

that is, x ∈ ∂KR1 imply that

‖Tx‖ < ‖x‖. (4.8)

Case 2. The Condition (C2) satisfies. For x ∈ K, from (3.1)we obtain that mint∈Jθ x(t) ≥ γ∗‖x‖.
Therefore, for x ∈ ∂Kr2 , we have x(t) ≥ γ∗‖x‖ = γ∗r2 for t ∈ Jθ, this together with (C2), we
have

(Tx)(t) =
∫1

0
G(t, s)g(s)f(s, x(s))ds

≥ γ∗
∫1−θ

θ

G(s)g(s)f
(
s, γ∗r2

)
ds

≥ γ∗
1

γ∗
∫1−θ
θ G(s)g(s)ds

r2

∫1−θ

θ

G(s)g(s)ds

= r2 = ‖x‖,

(4.9)

that is, x ∈ ∂Kr2 imply that

‖Tx‖ ≥ ‖x‖. (4.10)
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On the other hand, for x ∈ ∂KR2 , we have that x(t) ≤ R2 for t ∈ [0, 1], this together with (C2),
we have

(Tx)(t) =
∫1

0
G(t, s)g(s)f(s, x(s))ds

≤
∫1

0
G(s)g(s)f(s, x(s))ds

≤ R2

σ

∫1

0
G(s)g(s)ds

= R2,

(4.11)

that is, x ∈ ∂KR2 imply that

‖Tx‖ ≤ ‖x‖. (4.12)

Applying Lemma 3.3 to (4.4) and (4.8), or (4.10) and (4.12), yields that T has a fixed
point x∗ ∈ Kr,R or x∗ ∈ Kri,Ri (i = 1, 2) with x∗(t) ≥ γ∗‖x∗‖ > 0, t ∈ [0, 1]. Thus it follows that
boundary value problems (P) has a positive solution x∗, and the theorem is proved.

Theorem 4.2. Assume that (H1)–(H3) hold. In addition, one supposes that the following condition
is satisfied:

(C3) f0 < 1/σ and f∞ > 1/
∫1−θ
θ G(s)g(s)ds(γ∗)2 (particularly, f0 = 0 and f∞ = ∞).

Then boundary value problem (P) has at least one positive solution.

5. The Existence of Multiple Positive Solutions

Now we discuss the multiplicity of positive solutions for boundary value problem (P). We
obtain the following existence results.

Theorem 5.1. Assume (H1)–(H3), and the following two conditions:

(C4) f0 > 1/
∫1−θ
θ G(s)g(s)ds(γ∗)2 and f∞ > 1/

∫1−θ
θ G(s)g(s)ds(γ∗)2 (particularly, f0 =

f∞ = ∞);

(C5) there exists b > 0 such that maxt∈[0,1],x∈∂Kbf(t, x) < b/σ.

Then boundary value problem (P) has at least two positive solutions x∗(t), x∗∗(t), which satisfy

0 < ‖x∗∗‖ < b < ‖x∗‖. (5.1)

Proof. We consider condition (C4). Choose r, R with 0 < r < b < R.
If f0 > 1/

∫1−θ
θ G(s)g(s)ds(γ∗)2, then by the proof of (4.4), we have

‖Tx‖ ≥ ‖x‖, for x ∈ ∂Kr. (5.2)
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If f∞ > 1/
∫1−θ
θ G(s)g(s)ds(γ∗)2, then similar to the proof of (4.4), we have

‖Tx‖ ≥ ‖x‖, for x ∈ ∂KR. (5.3)

On the other hand, by (C5), for x ∈ ∂Kb,we have

(Tx)(t) =
∫1

0
G(t, s)g(s)f(s, x(s))ds

≤
∫1

0
G(s)g(s)f(s, x(s))ds

≤ b

σ

∫1

0
G(s)g(s)ds

= b.

(5.4)

By (5.4), we have

‖(Tx)‖ < b = ‖x‖. (5.5)

Applying Lemma 3.3 to (5.2), (5.3), and (5.5) yields that T has a fixed point x∗∗ ∈ Kr,b,
and a fixed point x∗ ∈ Kb,R. Thus it follows that boundary value problem (P) has at least two
positive solutions x∗ and x∗∗. Noticing (5.5), we have ‖x∗‖/= b and ‖x∗∗‖/= b. Therefore (5.1)
holds, and the proof is complete.

Theorem 5.2. Assume (H1)–(H3), and the following two conditions:

(C6) f0 < 1/σ and f∞ < 1/σ;

(C7) there exists B > 0 such that mint∈Jθ,x∈∂KBf(t, x) > B/
∫1−θ
θ G(s)g(s)dsγ∗.

Then boundary value problem (P) has at least two positive solutions x∗(t), x∗∗(t), which satisfy

0 < ‖x∗∗‖ < B < ‖x∗‖. (5.6)

Theorem 5.3. Assume that (H1), (H2), and (H3) hold. If there exist 2m positive numbers
dk,Dk, k = 1, 2, . . . , m with d1 < γ∗D1 < D1 < d2 < γ∗D2 < D2 < · · · < dm < γ∗Dm < Dm

such that

(C8) f(t, x) ≥ (1/
∫1−θ
θ G(s)g(s)dsγ∗)dk for (t, x) ∈ [0, 1] × [γ∗dk, dk] and f(t, x) ≤ σ−1Dk

for (t, x) ∈ [0, 1] × [γ∗Dk,Dk], k = 1, 2, . . . , m.

Then boundary value problem (P) has at leastm positive solutions xk satisfying dk ≤ ‖xk‖ ≤ Dk, k =
1, 2, . . . , m.
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Theorem 5.4. Assume that (H1), (H2), and (H3) hold. If there exist 2m positive numbers
dk,Dk, k = 1, 2, . . . , m with d1 < D1 < d2 < D2 < · · · < dm < Dm such that

(C9) f(t, ·) is nondecreasing on [0, Dm] for all t ∈ [0, 1];

(C10) f(t, γ∗dk) ≥ d2/
∫1−θ
θ G(s)g(s)dsγ∗, and f(t,Dk) ≤ σ−1Dk, k = 1, 2, . . . , m.

Then boundary value problem (P) has at leastm positive solutions xk satisfying dk ≤ ‖xk‖ ≤ Dk, k =
1, 2, . . . , m.

6. The Nonexistence of Positive Solution

Our last results corresponds to the case when boundary value problem (P) has no positive
solution.

Theorem 6.1. Assume (H1)–(H3) and f(t, x) < σ−1x, for all t ∈ J, x > 0, then boundary value
problem (P) has no positive solution.

Proof. Assume to the contrary that x(t) is a positive solution of the boundary value problem
(P). Then,x ∈ K, x(t) > 0 for t ∈ (0, 1), and

‖x‖ = max
t∈J

|x(t)|

=
∫1

0
G(t, s)g(s)f(s, x(s))ds

≤
∫1

0
G(s)g(s)f(s, x(s))ds

<

∫1

0
G(s)g(s)

1
σ
‖x‖ds

=
1
σ

∫1

0
G(s)g(s)ds‖x‖

= ‖x‖,

(6.1)

which is a contradiction, and complete the proof.

Similarly, we have the following results.

Theorem 6.2. Assume (H1)− (H3) and f(t, x) > (1/
∫1−θ
θ G(s)g(s)ds(γ∗)2)x, for all x > 0, t ∈

J , then boundary value problem (P) has no positive solution.

7. Example

To illustrate how our main results can be used in practice we present an example.
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Figure 3: Graph of function G1(τ(s), s) for θ = 1/3, α = 5/2.

Example 7.1. Consider the following boundary value problem of nonlinear fractional
differential equations:

−D5/2
0+ x =

1√
t

(
t + x1/3 tanhx + x1/3

)
,

x(0) = 0, x′(0) = 0,

x(1) =
∫1

0

1

6|t − 1/2|2/3
x(t)dt,

(7.1)

where

α =
5
2
, g(t) =

1√
t
, h(t) =

1

6|t − 1/2|2/3
,

f(t, x) = t + x1/3 tanhx + x1/3.

(7.2)

It is easy to see that (H1)–(H3) hold. By simple computation, we have

f0 = ∞, f∞ = 0, (7.3)

thus it follows that problem (7.1) has a positive solution by (C1).

8. Conclusions

In this paper, by using the famous Guo-Krasnoselskii fixed-point theorem, we have
investigated the existence and multiplicity of positive solutions for a class of higher-order
nonlinear fractional differential equations with integral boundary conditions and obtained
some easily verifiable sufficient criteria. The interesting point is that we obtain some new
positive properties of Green’s function, which significantly extend and improve many known
results for fractional order cases, for example, see [12–15, 19]. The methodology which we
employed in studying the boundary value problems of integer-order differential equation
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Figure 4: Graph of function f(α) for α > 2.

in [28] can be modified to establish similar sufficient criteria for higher-order nonlinear
fractional differential equations. It is worth mentioning that there are still many problems
that remain open in this vital field except for the results obtained in this paper: for example,
whether or not we can obtain the similar results of fractional differential equations with p-
Laplace operator by employing the same technique of this paper, and whether or not our
concise criteria can guarantee the existence of positive solutions for higher-order nonlinear
fractional differential equations with impulses. More efforts are still needed in the future.

Acknowledgments

The authors thank the referee for his/her careful reading of the manuscript and useful
suggestions. These have greatly improved this paper. This work is sponsored by the Funding
Project for Academic Human Resources Development in Institutions of Higher Learning
Under the Jurisdiction of Beijing Municipality (PHR201008430), the Scientific Research
Common Program of Beijing Municipal Commission of Education (KM201010772018),
the 2010 level of scientific research of improving project (5028123900), the Graduate
Technology Innovation Project (5028211000) and Beijing Municipal Education Commission
(71D0911003).

References

[1] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations,
A Wiley-Interscience Publication, John Wiley & Sons, New York, NY, USA, 1993.

[2] K. B. Oldham and J. Spanier, The Fractional Calculus: Theory and Applications of Differentiation and
Integration to Arbitrary Order, vol. 11 of Mathematics in Science and Engineering, Academic Press,
London, UK, 1974.

[3] I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional
Differential Equations, to Methods of Their Solution and Some of Their Applications, vol. 198 ofMathematics
in Science and Engineering, Academic Press, San Diego, Calif, USA, 1999.

[4] S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives: Theory and
Applications, Gordon and Breach, Yverdon, Switzerland, 1993.

[5] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential
Equations, vol. 204 of North-Holland Mathematics Studies, Elsevier, Amsterdam, The Netherlands, 2006.

[6] V. Lakshmikantham, S. Leela, and J. Vasundhara Devi, Theory of Fractional Dynamic Systems,
Cambridge Academic, Cambridge, UK, 2009.



20 Boundary Value Problems

[7] V. Lakshmikantham and A. S. Vatsala, “Basic theory of fractional differential equations,” Nonlinear
Analysis: Theory, Methods & Applications, vol. 69, no. 8, pp. 2677–2682, 2008.

[8] V. Lakshmikantham, “Theory of fractional functional differential equations,” Nonlinear Analysis:
Theory, Methods & Applications, vol. 69, no. 10, pp. 3337–3343, 2008.

[9] V. Lakshmikantham and A. S. Vatsala, “General uniqueness and monotone iterative technique for
fractional differential equations,” Applied Mathematics Letters, vol. 21, no. 8, pp. 828–834, 2008.

[10] B. Ahmad and J. J. Nieto, “Existence of solutions for nonlocal boundary value problems of higher-
order nonlinear fractional differential equations,” Abstract and Applied Analysis, vol. 2009, Article ID
494720, 9 pages, 2009.

[11] B. Ahmad and J. J. Nieto, “Existence results for nonlinear boundary value problems of fractional
integrodifferential equations with integral boundary conditions,” Boundary Value Problems, vol. 2009,
Article ID 708576, 11 pages, 2009.

[12] Z. Bai, “On positive solutions of a nonlocal fractional boundary value problem,” Nonlinear Analysis:
Theory, Methods & Applications, vol. 72, no. 2, pp. 916–924, 2010.
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