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We establish existence results of the following three-point boundary value problems: u′′(t) +
f(t, u(t)) = 0, t ∈ (0, 1), (BC)u(0) = 0 and u(1) = δu(η), where 0 < η < 1 and 0 < δ ≤ 1. The
approach applied in this paper is upper and lower solution method associated with basic degree
theory or Schauder’s fixed point theorem. We deal with this problem with the function f which is
Carathéodory or singular on its domain.

1. Introduction

In this paper, we consider three-point boundary value problem

u′′(t) + f(t, u(t)) = 0, t ∈ (0, 1), (1.1)

u(0) = 0, u(1) = δu
(
η
)
, (1.2)

where 0 < η < 1 and 0 < δ ≤ 1.
In the mathematical literature, a number of works have appeared on nonlocal

boundary value problems, and one of the first of these was [1]. Il’in andMoiseev initiated the
research of multipoint boundary value problems for second-order linear ordinary differential
equations, see [2, 3], motivated by the study [4–6] of Bitsadze and Samarskii.

Recently, nonlinear multipoint boundary value problems have been receiving
considerable attention, and have been studied extensively by using iteration scheme
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(e.g., [7]), fixed point theorems in cones (e.g., [8]), and the Leray-Schauder continuation
theorem (e.g., [9]). We refer more detailed treatment to more interesting research [10, 11]
and the references therein.

The theory of upper and lower solutions is also a powerful tool in studying boundary
value problems. For the existence results of two-point boundary value problem, there already
are lots of interesting works by applying this essential technique (see [12, 13]). Recently, it is
shown that this method plays an important role in proving the existence of solutions for
three-point boundary value problems (see [14–16]).

Last but not least, as the singular source term appearing in two-point problems,
singular three-point boundary value problems also attract more attention (e.g., [17]).

In this paper, we will discuss the existence of solutions of some general types on three-
point boundary value problems by using upper and lower solution method associated with
basic degree theory or Schauder’s fixed point theorem.

This paper is organized as follows. In Section 2, we give two lemmas which will be
extensively used later. In Section 3, when the source term f is a Carathéodory function, we
consider the Sobolev space W2,1(0, 1) defined by

W2,1(0, 1) :=
{
u ∈ C1[0, 1] | u′′ ∈ L1(0, 1)

}
, (1.3)

and obtain the existence of W2,1-solution in Theorems 3.5 and 3.11. In Section 4, we discuss
the singular case, that is, f maybe singular at the end points t = 0 or t = 1, or at u = 0. We will
introduce theA-class of functions and another space W2,A (see [18, 19]) as follows:

A :=
{
h ∈ L1

loc(0, 1) | s(1 − s)h(s) ∈ L1(0, 1)
}
,

W2,A(0, 1) :=
{
u ∈ W1,1(0, 1) | u′′ ∈ A

}
,

(1.4)

and prove the existence ofW2,A-solution in Theorems 4.1 and 4.4. Some sufficient conditions
for constructing upper and lower solutions are given in each section for applications.

2. Preliminaries

Define G : [0, 1] × [0, 1] → (−∞,∞) by

G(t, s) :=
1

1 − δη
t(1 − s) −U(t, s) − δ

1 − δη
V (t, s), 0 ≤ t, s ≤ 1, (2.1)

where δ and η are given as (1.2) and

U(t, s) =

⎧
⎨

⎩

t − s, s ≤ t,

0, t ≤ s,

V (t, s) =

⎧
⎨

⎩

t
(
η − s

)
, s ≤ η,

0, η ≤ s.

(2.2)

By direct computations, we get the following results.
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Lemma 2.1. (i) The function G : [0, 1] × [0, 1] → (−∞,∞) defined by (2.1), is the Green function
corresponding for the problem

u′′(t) = 0,

u(0) = 0, u(1) = δu
(
η
)
.

(2.3)

(ii) The function G : [0, 1] × [0, 1] → (−∞,∞) defined by (2.1), is continuous.
(iii) In the case 0 < δη < 1, we have

Q−1 := max
0≤t≤1

∫1

0
G(t, s)ds =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1
8

(
1 − δη2

1 − δη

)2

, δη
(
2 − η

) ≤ 1,

δη
(
1 − η

)

2
(
1 − δη

) , δη
(
2 − η

) ≥ 1.
(2.4)

Lemma 2.2. If h ∈ A, then the problem

u′′(t) + h(t) = 0 (2.5)

with boundary condition (1.2) has a unique solution u ∈ W2,A(0, 1) such that

u(t) =
∫1

0
G(t, s)h(s)ds, (2.6)

where G(t, s) is defined by (2.1).

3. Carathéodory Case

In this section we first introduce the Carathéodory function as follows.

Definition 3.1. A function f(t, u) defined on E ⊆ [a, b] × R is called a Carathéodory function
on E if

(i) for almost every t ∈ [a, b], f(t, ·) is continuous on R;

(ii) for any u ∈ R, the function f(·, u) is measurable on [a, b];

(iii) for any r > 0, there exists hr ∈ L(a, b) such that for any u ∈ [−r, r] and for almost
every t ∈ [a, b]with (t, u) ∈ E, we have |f(t, u)| ≤ hr(t).

We in this section assume that f is a Carathéodory function and discuss the existence
ofW2,1-solution by assuming the existence of upper and lower solutions.

3.1. Existence of W2,1-Solutions

We first introduce the definitions ofW2,1-upper and lower solutions as below.
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Definition 3.2. A function α ∈ C[0, 1] is called aW2,1-lower solution of problem (1.1) and (1.2)
if it satisfies

(i) α(0) ≤ 0, α(1) ≤ δα(η), and

(ii) for any t0 ∈ (0, 1), either D−α(t0) < D+α(t0), or there exists an open interval I0 ⊆
(0, 1) containing t0 such that α ∈ W2,1(I0) and, for almost every t ∈ I0, we have

α′′(t) + f(t, α(t)) ≥ 0. (3.1)

Definition 3.3. A function β ∈ C[0, 1] is called aW2,1-upper solution of problem (1.1) and (1.2)
if it satisfies

(i) β(0) ≥ 0, β(1) ≥ δβ(η), and

(ii) for any t0 ∈ (0, 1), either D−β(t0) > D+β(t0), or there exists an open interval I0 ⊆
(0, 1) containing t0 such that β ∈ W2,1(I0) and, for almost every t ∈ I0, we have

β′′(t) + f
(
t, β(t)

) ≤ 0. (3.2)

Before proving our main results, we first consider such a modified problem given as
follows:

u′′(t) + f
(
t, γ(t, u(t))

)
+
γ(t, u(t)) − u(t)

1 + |u(t)| = 0, t ∈ (0, 1), (3.3)

with boundary condition (1.2), where γ : [0, 1] × R → R is defined by

γ(t, u) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

α(t) if u < α(t),

u if α(t) ≤ u ≤ β(t),

β(t) if u > β(t).

(3.4)

Proposition 3.4. Let α(t) and β(t) be respective W2,1-lower and upper solutions of problem (1.1)
and (1.2) with α(t) ≤ β(t) on [0, 1]. If u ∈ W2,1(0, 1) is a solution of problem (3.3) and (1.2), then
α(t) ≤ u(t) ≤ β(t), for any t ∈ [0, 1].

Proof. Suppose there exists t0 ∈ [0, 1] such that

min
t∈[0,1]

(u(t) − α(t)) = u(t0) − α(t0) < 0. (3.5)

Case 1. If t0 ∈ (0, 1), we have u′(t0) − D−α(t0) ≤ u′(t0) − D+α(t0), which implies D−α(t0) ≥
D+α(t0).Hence, by Definition 3.2 and the continuity of u−α at t0, there exist an open interval
I0 ⊆ (0, 1) with t0 ∈ I0, α ∈ W2,1(I0) and a neighborhood N of t0 contained in I0 such that for
almost every t ∈ I0 ∩N,

α′′(t) + f(t, α(t)) ≥ 0. (3.6)
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Furthermore, it follows from u′(t0) − α′(t0) = 0 that for t ≥ t0, t ∈ N, we have

u′(t) − α′(t) =
∫ t

t0

(
u′′(s) − α′′(s)

)
ds

≤
∫ t

t0

[
−f(s, γ(s, u(s))) − γ(s, u(s)) − u(s)

1 + |u(s)| + f(s, α(s))
]
ds

=
∫ t

t0

[
−f(s, α(s)) − α(s) − u(s)

1 + |u(s)| + f(s, α(s))
]
ds

< 0.

(3.7)

This implies that the minimum of u − α cannot occur at t0, a contradiction.

Case 2. If t0 = 0, by the definition of W2,1-lower solution α(0) ≤ 0, we then have

0 = u(0) ≤ u(0) − α(0) < 0. (3.8)

And we get a contradiction.

Case 3. If t0 = 1, it follows from the conclusion of Case 1 that

u(1) − α(1) ≥ δ
(
u
(
η
) − α

(
η
))

> δ(u(1) − α(1)) ≥ u(1) − α(1), (3.9)

which is impossible.

Consequently, we obtain α(t) ≤ u(t) on [0, 1]. By the similar arguments as above, we
also have

u(t) ≤ β(t), on [0, 1]. (3.10)

Theorem 3.5. Let α(t) and β(t) be W2,1-lower and upper solutions of problem (1.1) and (1.2) such
that α(t) ≤ β(t) on [0, 1] and let f be a Carathéodory function on E, where

E :=
{
(t, u) ∈ [0, 1] × R | α(t) ≤ u ≤ β(t), t ∈ [0, 1]

}
. (3.11)

Then problem (1.1) and (1.2) has at least one solution u ∈ W2,1(0, 1) such that, for all t ∈ [0, 1],

α(t) ≤ u(t) ≤ β(t). (3.12)
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Proof. We consider the modified problem (3.3) and (1.2) with respect to the given α(t) and
β(t). Consider the Banach space C[0, 1] with supremum and the operator T : C[0, 1] →
C[0, 1] by

(Tu)(t) :=
∫1

0
G(t, s)

[
f
(
s, γ(s, u(s))

)
+
γ(s, u(s)) − u(s)

1 + |u(s)|
]
ds, (3.13)

for u ∈ C[0, 1], where G(t, s) is defined as (2.1). Since f is a Carathéodory function on E, for
almost all t ∈ [0, 1] and for all x ∈ [α(t), β(t)], there exists a function h ∈ L(0, 1), we have

∣
∣f(t, u)

∣
∣ ≤ h(t). (3.14)

Define

K := {u ∈ C[0, 1] | ‖u‖ ≤ M}, (3.15)

where

M := max
t∈[0,1]

∫1

0
|G(t, s)|[h(s) +M1]ds < ∞, (3.16)

M1 := max
(t,u)∈[0,1]×R

γ(t, u) − u

1 + |u| . (3.17)

It is clear thatK is a closed, bounded and convex set inC[0, 1] and one can show that T : K →
K is a completely continuous mapping by Arzelà-Ascoli theorem and Lebesgue dominated
convergence theorem. By applying Schauder’s fixed point theorem, we obtain that T has a
fixed point in K which is a solution of problem (3.3) and (1.2). From Proposition 3.4, this
fixed point is also a solution of problem (1.1) and (1.2). Hence, we complete the proof.

We further illustrate the use of Theorem 3.11 in the following second-order differential
equation:

u′′(t) + f(t, u(t)) + h(t) = 0 (3.18)

with the boundary condition (1.2).

Corollary 3.6. Assume that f : [0, 1] × R → R is a Carathéodory function satisfying f(t,u)/u is
essentially bounded for |u| ≥ M, whereM is a constant large enough. Assume further that h ∈ L(0, 1)
and there exists a constant 0 <

√
A < π/2 such that

lim sup
|u|→∞

max
t∈[0,1]

f(t, u)
u

≤ A. (3.19)

Then, problem (3.18) and (1.2) has at least one solution.
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Proof. By hypothesis, for any given ε > 0 small enough such that
√
A + ε ≤ π/2 and for

almost all t ∈ [0, 1], for any u large enough, we have

f(t, u) ≤ (A + ε)u. (3.20)

We now choose an upper solution β(t) of the form

β(t) = w(t) + sψ(t) ≥ 0. (3.21)

To this end, we compute

β′′ + f
(
t, β

)
+ h(t) ≤ β′′ + (A + ε)β + h(t)

= w′′ + (A + ε)w + h(t) + s
[
ψ ′′ + (A + ε)ψ

]
.

(3.22)

Clearly, one can choose w such that

w′′ + (A + ε)w + h(t) = 0,

w(0) = 0, w(1) = δw
(
η
)
,

(3.23)

that is,

w(t) =
sin

(√
A + εt

)

δ sin
(√

A + εη
)
− sin

(√
A + ε

)
∫1

0

sin
(√

A + ε(s − 1)
)

√
A + ε

h(s)ds

+
δ sin

(√
A + εt

)

δ sin
(√

A + εη
)
− sin

(√
A + ε

)
∫η

0

sin
(√

A + ε
(
η − s

))

√
A + ε

h(s)ds

+
∫ t

0

sin
(√

A + ε(s − t)
)

√
A + ε

h(s)ds,

(3.24)

and choose ψ(t) = l sin
√
A + εt, where l > 0, which is a positive solution of

ψ ′′ + (A + ε)ψ = 0,

ψ(0) = 0.
(3.25)

Hence, if s is large enough, we can show that β(0) = 0 and β(1) ≥ δβ(η), where δ ≤ 1, which
implies that β(t) is a positiveW2,1-upper solution. In the same way we construct aW2,1-lower
solution α = w(t) − sψ ≤ 0 on [0, 1].
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3.2. Nontangency Solution

In this subsection, we afford another stronger lower and upper solutions to get a strict
inequality of the solution between them.

Definition 3.7. A function α ∈ C[0, 1] is a strictW2,1-lower solution of problem (1.1) and (1.2),
if it is not a solution of problem (1.1) and (1.2), α(0) < 0, α(1) ≤ δα(η) and for any t0 ∈ (0, 1),
one of the following is satisfied:

(i) D−α(t0) < D+α(t0);

(ii) there exist an interval I0 ⊆ [0, 1] and ε > 0 such that t0 ∈ int(I0), α ∈ W2,1(I0) and
for almost every t ∈ I0, for all u ∈ [α(t), α(t) + ε]we have

α′′(t) + f(t, u) ≥ 0. (3.26)

Definition 3.8. A function β ∈ C[0, 1] is a strictW2,1-upper solution of problem (1.1) and (1.2),
if it is not a solution of problem (1.1) and (1.2), β(0) > 0, β(1) ≥ δβ(η) and for any t0 ∈ (0, 1),
one of the following is satisfied:

(i) D−β(t0) > D+β(t0),

(ii) there exist an interval I0 ⊆ [0, 1] and ε > 0 such that t0 ∈ int(I0), β ∈ W2,1(I0) and
for almost every t ∈ I0, for all u ∈ [β(t) − ε, β(t)]we have

β′′(t) + f(t, u) ≤ 0. (3.27)

Remark 3.9. Every strict W2,1-lower(upper) solution of problem (1.1) and (1.2) is a W2,1-
lower(upper) solution.

Now we are going to show that the solution curve of problem (1.1) and (1.2) cannot
be tangent to upper or lower solutions from below or above.

Proposition 3.10. Let α(t) and β(t) be respective strict W2,1-lower and upper solutions of problem
(1.1) and (1.2) with α(t) ≤ β(t) on [0, 1]. If u ∈ W2,1(0, 1) is a solution of problem (1.1) and (1.2)
with α ≤ u ≤ β on [0, 1], then α(t) < u(t) < β(t), for any t ∈ [0, 1].

Proof. As α is not a solution, u is not identical to α. Assume, the conclusion does not hold,
then

t0 := inf{t ∈ [0, 1] | u(t) = α(t)} (3.28)

exists. Hence, u − α has minimum at t0, that is, u(t0) − α(t0) = 0.

Case 1. Set t0 ∈ (0, 1). Since u−α has minimum at t0, we haveD−α(t0) ≥ D+α(t0). According to
the Definition 3.7, there exist I0, ε0 > 0 and t1 ∈ I0 with t1 < t0 such that, for every t ∈ (t1, t0),
u(t) ≤ α(t) + ε0, u′(t1) − α′(t1) < 0 and for a.e. t ∈ (t1, t0)

α′′(t) + f(t, u(t)) ≥ 0. (3.29)
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Hence, we have the contradiction since

0 <
(
u′ − α′)(t0) −

(
u′ − α′)(t1) = −

∫ t0

t1

[
f(t, u(t)) + α′′(t)

]
dt ≤ 0. (3.30)

Case 2. If t0 = 0, by the definition of strict W2,1-lower solution that α(0) < 0, we then have

0 = u(0) − α(0) > 0. (3.31)

And we get a contradiction.

Case 3. If t0 = 1, repeat the same arguments in Case 3 of the proof of Proposition 3.4.
Therefore, we obtain α(t) < u(t) on [0, 1]. The inequality u(t) < β(t) on [0, 1] can be proved
by the similar arguments as above.

Theorem 3.11. Let α(t) and β(t) be strictW2,1-lower and upper solutions of problem (1.1) and (1.2)
such that α(t) < β(t) on [0, 1] and let f : E → R be a Carathéodory function, where

E :=
{
(t, u) ∈ [0, 1] × R | α(t) ≤ u(t) ≤ β(t), t ∈ [0, 1]

}
. (3.32)

Then, problem (1.1) and (1.2) has at least one solution u ∈ W2,1(0, 1) such that, for any t ∈ [0, 1],

α(t) < u(t) < β(t). (3.33)

Proof. This is a consequence of Theorem 3.5 and Proposition 3.10 and hence, we omits this
proof.

4. Singular Case

In this section we give a more general existence result than Theorem 3.11 by assuming the
existence of W2,1-lower and upper solutions. This makes us to deal with problem (1.1) and
(1.2), where the function f is singular at the end point t = 0 and t = 1.

Theorem 4.1. Let α(t) and β(t) be W2,1-lower and upper solutions of problem (1.1) and (1.2) such
that α(t) ≤ β(t) on [0, 1] and let f : (0, 1) × R → R satisfy the following conditions:

(i) for almost every t ∈ (0, 1), f(t, ·) is continuous on R;

(ii) for any u ∈ R, the function f(·, u) is measurable on (0, 1);

(iii) there exists a function h ∈ A such that, for all (t, u) ∈ E,

∣∣f(t, u)
∣∣ ≤ h(t), (4.1)

where

E :=
{
(t, u) | t ∈ (0, 1), α(t) ≤ u(t) ≤ β(t)

} ⊆ (0, 1) × R. (4.2)
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Then problem (1.1) and (1.2) has at least one solution u ∈ W2,A(0, 1) such that, for all t ∈ [0, 1],

α(t) ≤ u(t) ≤ β(t). (4.3)

Proof. Consider the modified problem (3.3) and (1.2) with respect to the given α(t) and β(t)
and define T : C[0, 1] → C[0, 1] by (3.13). Note that by Lemma 2.2, T is well defined. Define

P := {u ∈ C[0, 1] | ‖u‖ ≤ N}, (4.4)

where

N := max
t∈[0,1]

∫1

0
|G(t, s)|[h(s) +M1]ds < ∞, (4.5)

and M1 is defined by (3.17). The rest arguments are similar to the proof of Theorem 3.5.

Remark 4.2. We have similar results of Theorems 3.5–4.1, respectively, for (1.1) equipped with

u(0) = A, u(1) = δu
(
η
)
, (4.6)

where A ∈ R is a constant and δ, η are given as (1.2).

Example 4.3. Consider the problem (4.7), for 0 < α < 1, 0 < βi < 2 − 2α, i = 1, 2,

u′′(t) +
1

tβ1(1 − t)β2
u(t)α + 1 = 0, 0 < t < 1,

u(0) = 0, u

(
1
2

)
= u(1).

(4.7)

Clearly, 0 is a W2,1-lower solution of (4.7) and

G(t, s) := 2t(1 − s) −U(t, s) − 2V (t, s), 0 ≤ t, s ≤ 1, (4.8)

where

U(t, s) =

⎧
⎨

⎩

t − s, s ≤ t,

0, t ≤ s,

V (t, s) =

⎧
⎪⎨

⎪⎩

t

(
1
2
− s

)
, s ≤ 1

2
,

0,
1
2
≤ s.

(4.9)
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From Lemma 2.1, we have max0≤t≤1
∫1
0 G(t, s)ds = 9/32 and define h1(t) := 1/tβ1/(1−α)(1 −

t)β2/(1−α). Since, for 2 − βi/(1 − α) > 0, i = 1, 2,

∫1

0
t(1 − t)h1(t)dt =

∫1

0
t(2−β1/(1−α))−1(1 − t)(2−β2/(1−α))−1 < ∞, (4.10)

that is, h1(t) ∈ A, we have, from Lemma 2.2,
∫1
0 G(t, s)(1 − α)h1(s)ds ∈ W2,A and

max0≤t≤1
∫1
0 G(t, s)(1 − α)h1(s)ds exists. Let

B :=
1

1 − (9/32)α
max
0≤t≤1

∫1

0
G(t, s)(1 − α)h1(s)ds + 1 (4.11)

and, by Lemma 2.2 again, choose β such that

β′′(t) + αB + (1 − α)h1(t) + 1 = 0,

β(0) = 0, β(1) = β

(
1
2

)
.

(4.12)

Note that according to the direct computation, we see that β is well-defined and is bounded
by B. Next, let f(t, u) := (1/tβ1(1 − t)β2)uα + 1. By Young’s inequality, it follows that

β′′(t) + f
(
t, β(t)

) ≤ β′′(t) + αβ(t) + (1 − α)
1

tβ1/(1−α)(1 − t)β2/(1−α)
+ 1

= β′′(t) + αβ(t) + (1 − α)h1(t) + 1.

≤ 0.

(4.13)

Hence, such β(t) is aW2,1-upper solution of (4.7) and β(t) ≥ 0 on [0, 1]. Clearly, f satisfies (i),
(ii) of Theorem 4.1. By using Young’s inequality again, for (t, u) ∈ E := {(t, u) | t ∈ (0, 1), 0 ≤
u(t) ≤ β(t)} ⊆ (0, 1) × R., we have

f(t, u) ≤ αu + h1(t)

≤ αB + h1(t) := h2(t).
(4.14)

and h2(t) ∈ A. Therefore, f satisfies the assumption (iii) of Theorem 4.1. Consequently, we
conclude that this problem has at least one solution u ∈ W2,A(0, 1) such that, for all t ∈ [0, 1],

0 ≤ u(t) ≤ β(t). (4.15)

Notice that in Theorem 4.1, one can only deal with the case that f is singular at end
points t = 0, t = 1. However, when f is singular at u = 0, there is no hope to obtain the
solutions directly from Theorem 4.1. We will establish the following theorem to deal with
this case by constructing upper and lower solutions to solve this problem.
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Theorem 4.4. Assume

(H1) the function f : (0, 1) × R
+ → R is continuous;

(H2) there exists k > π and for any compact set K ⊆ (0, 1), there is ε > 0 such that

f(t, u) ≥ k2u, ∀t ∈ K, u ∈ (0, ε]; (4.16)

(H3) for some M > 0 and 0 < γ <
√
Q, there is h ∈ A ∩ C(0, 1) such that

f(t, u) ≤ γ2u + h(t), ∀t ∈ (0, 1), u ∈ [M,∞); (4.17)

where Q−1 is defined as in Lemma 2.1.

(H4) for any compact set K ⊆ (0,∞), there is hK ∈ A such that

∣∣f(t, u)
∣∣ ≤ hK(t), ∀t ∈ (0, 1), u ∈ K. (4.18)

Then problem (1.1) and (1.2) with δ = 1 has at least one solution

u ∈ C([0, 1],R+ ∪ {0}) ∩ C2((0, 1),R+). (4.19)

Remark 4.5 (see [12, Remark 3.1]). Assumption (H2) is equivalent to the assumption that
there exists k > π and a function a1 ∈ C2

0([0, 1],R
+) such that:

(i) a1 > 0 for all t ∈ (0, 1),

(ii) f(t, u) ≥ k2u, for all t ∈ (0, 1), 0 < u ≤ a1(t),

(iii) a′′
1(t) > 0, for all t ∈ [0, 1/3] ∪ [2/3, 1],

where

C2
0([0, 1],R

+) :=
{
u ∈ C2([0, 1],R+) | u(0) = u(1) = 0

}
. (4.20)

Proof.

Step 1. Construction of lower solutions. Consider k2 such that π < k2 < min(k, 3π) and the
function

α2(t) = A2 cos k2
(
t − 1

2

)
, (4.21)

where A2 is chosen small enough so that

f(t, u) ≥ k2u, ∀t ∈
(
1
2
− π

2k2
,
1
2
+

π

2k2

)
, 0 < u ≤ α2(t). (4.22)
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Next, we choose a1 from the Remark 4.5, and let

α1(t) = A1a1(t), (4.23)

where A1 ∈ (0, 1] is small enough so that for some points t1 ∈ (0, 1/3), t2 ∈ (2/3, 1), we have:

α1(t) ≥ α2(t), ∀t ∈ [0, t1] ∪ [t2, 1], (4.24)

α2(t) ≥ α1(t), ∀t ∈ [t1, t2]. (4.25)

Notice that by (4.24) and (4.25), for any h : (0, 1) × R
+ → R such that

h(t, u) ≥ f(t, u), for any (t, u) ∈ (0, 1) × R
+, (4.26)

we have:

α′′
1(t) + h(t, α1(t)) ≥ α′′

1(t) + k2α1(t) > 0, for any t ∈ [0, t1] ∪ [t2, 1], (4.27)

α′′
2(t) + h(t, α2(t)) ≥ −k2

2α2(t) + k2α2(t) > 0, for any t ∈ [t1, t2]. (4.28)

Step 2. Approximation problems. We define for each n ∈ N, n ≥ 1,

ηn(t) = max
{

1
2n+1

,min
(
t, 1 − 1

2n+1

)}
, t ∈ (0, 1) (4.29)

and set

f̃n(t, u) = max
{
f
(
ηn(t), u

)
, f(t, u)

}
. (4.30)

We have that, for each index n, f̃n : (0, 1) × R
+ → R is continuous and

f̃n(t, u) = f(t, u), for any (t, u) ∈ Kn × R
+, (4.31)

where

Kn =
[

1
2n+1

, 1 − 1
2n+1

]
. (4.32)

Hence, the sequence of functions {f̃n} converges to f uniformly on any set K × R
+, where K

is an arbitrary compact subset of (0, 1). Next we define

fn(t, u) = min
{
f̃1(t, u), . . . , f̃n(t, u)

}
. (4.33)
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Each of the functions fi is a continuous function defined on (0, 1) × R
+, moreover

f1(t, u) ≥ f2(t, u) ≥ · · · ≥ fn(t, u) ≥ fn+1(t, u) ≥ · · · ≥ f(t, u) (4.34)

and the sequence {fn} converges to f uniformly on the compact subsets of (0, 1) × R
+ since

fn(t, u) = f(t, u), ∀t ∈ Kn, u ∈ R
+. (4.35)

Define now a decreasing sequence {εn} ⊆ R
+ such that

lim
n→∞

εn = 0,

f(t, u) ≥ k2u, ∀t ∈ Kn, u ∈ (0, εn],
(4.36)

and consider a sequence of the following approximation problems:

u′′(t) + fn(t, u(t)) = 0,

(BC)u(0) = εn, u(1) = u
(
η
)
,

(Pn)

where 0 < η < 1.

Step 3. A lower solution of (Pn). It is clear that for any c ∈ (0, εn],

f̃n(t, c) ≥ f
(
ηn(t), c

) ≥ k2c > 0. (4.37)

As the sequence {εn} is decreasing, we also have

fn(t, εn) = min
1≤k≤n

f̃k(t, εn) ≥ k2εn > 0. (4.38)

Clearly, α3(t) := εn satisfies

α′′
3(t) + fn(t, α3(t)) = fn(t, εn) > 0. (4.39)

It follows from (4.25) and (4.27) that α(t) := max(α1(t), α2(t), εn) is a lower solution of (Pn).

Step 4. Existence of a solution u1 of (4.7) such that

max(α1(t), α2(t), ε1) ≤ u1(t). (4.40)

From assumption (H3), we can find M ≥ max(α1(t), α2(t), ε1) and h ∈ A such that, for all
t ∈ (0, 1), u ∈ [M,∞),

f(t, u) ≤ γ2u + h(t). (4.41)
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Also, one has

f
(
η1(t), u

) ≤ γ2u + h
(
η1(t)

) ≤ γ2u + R, (4.42)

where R > 0 is a suitable constant. Hence, we obtain, for such t and u,

f1(t, u) = max
{
f
(
η1(t), u

)
, f(t, u)

} ≤ γ2u + h(t) + R. (4.43)

Let C be a constant such that

C >
1

1 − γ2Q−1

{

M +max
0≤t≤1

∫1

0
G(t, s)(h(s) + R)ds

}

. (4.44)

Choose β such that

β′′(t) + γ2C + h(t) + R = 0,

β(0) = M, β(1) = β
(
η
)
,

(4.45)

that is,

β(t) = M +
∫1

0
G(t, s)

(
γ2C + h(s) + R

)
ds, (4.46)

where G(t, s) is defined by (2.1). Note that β is well-defined and M ≤ β(t) ≤ C on[0, 1] since
h ∈ A. It is easy to see that

β′′ + f1
(
t, β

) ≤ β′′ + γ2β + h(t) + R

= γ2
(
β − C

)

≤ 0.

(4.47)

So by Remark 4.2, there is a solution u1 of (4.7) such that

max(α1(t), α2(t), ε1) ≤ u1(t) ≤ β(t). (4.48)

Step 5. The problem (Pn) has at least one solution un such that

max(α1(t), α2(t), εn) ≤ un(t) ≤ un−1(t). (4.49)

Notice that un−1 is an upper solution of (Pn), since

0 = u′′
n−1(t) + fn−1(t, un−1(t)) ≥ u′′

n−1 + fn(t, un−1(t)),

un−1(0) = εn−1 ≥ εn.
(4.50)
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Step 6. Existence of a solution. Consider the pointwise limit

ũ(t) = lim
n→∞

un(t), on (0, 1). (4.51)

It is clear that, for any n ≥ 1,

max(α1(t), α2(t)) ≤ ũ(t) ≤ un(t), for any t ∈ (0, 1) (4.52)

and therefore ũ(t) > 0 on (0, 1). Let K ⊆ (0, 1) be a compact interval. There is an index n∗ =
n∗(K) such that K ⊆ Kn for all n ≥ n∗ and therefore for these n ≥ n∗,

0 = u′′
n(t) + fn(t, un(t)) = u′′

n(t) + f(t, un(t)), ∀t ∈ K. (4.53)

Moreover, we have

sup
{∣∣f(t, u)

∣∣ | t ∈ K, max(α1(t), α2(t)) ≤ u ≤ un∗(t)
}
< ∞. (4.54)

By Arzelá-Ascoli theorem it is standard to conclude that ũ is a solution of problem (1.1) and
(1.2) on the intervalK. SinceK is arbitrary, we find that ũ ∈ C2((0, 1),R+) and for all t ∈ (0, 1),

ũ′′(t) + f(t, ũ(t)) = 0. (4.55)

Since

ũ(0) = lim
n→∞

εn = 0, (4.56)

it remains only to check the continuity of ũ at t = 0. This can be deduced from the continuity
of un and the fact that un(0) = εn → 0 as n → ∞.

Example 4.6. Consider the following problem (P2), for α > 0, 0 < β1, β2 < 2,

u′′(t) +
1

tβ1(1 − t)β2(u(t))α
= 0, 0 < t < 1,

u(0) = 0, u

(
1
2

)
= u(1).

(4.57)

Let f(t, u) = 1/tβ1(1 − t)β2uα, where (t, u) ∈ (0, 1) × R
+. Obviously, f satisfies (H1) and (H4).

Moreover, for any given k > π and for any compact setK ⊆ (0, 1), for ε > 0 small enough, we
have

f(t, u) ≥ 1
uα

= u
1

uα+1
≥ k2u, ∀t ∈ K, u ∈ (0, ε], (4.58)
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Hence, (H2) holds. Furthermore, for M > 0 large enough, 0 < γ < 4/
√
3, we have, from

Young’s inequality by choosing 1 < p < min{1/β1, 1/β2} and 1/p + 1/q = 1,

f(t, u) ≤ 1
p
t−β1p(1 − t)−β2p +

1
q
u−αq

= h1(t) +
1
q
uu−αq−1

≤ h1(t) + γ2u, ∀t ∈ (0, 1), u ∈ [M,∞),

(4.59)

where h1 := (1/p)t−β1p(1− t)−β2p ∈ A∩C(0, 1). Hence, (H3) holds. By Theorem 4.4, (P2) has at
least one solution

u ∈ C([0, 1],R+ ∪ {0}) ∩ C2((0, 1),R+). (4.60)
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