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We study parabolic differential equations with a discontinuous nonlinearity and subjected to a
nonlocal initial condition. We are concerned with the existence of solutions in the weak sense.
Our technique is based on the Green’s function, integral representation of solutions, the method of
upper and lower solutions, and fixed point theorems for multivalued operators.

1. Introduction

Let Ω be a an open bounded domain in R
N , N ≥ 2, with a smooth boundary ∂Ω. Let QT =

Ω × (0, T) and ΓT = ∂Ω × [0, T]where T is a positive real number. Then ΓT is smooth and any
point on ΓT satisfies the inside (and outside) strong sphere property (see [1]). For u : QT → R

we denote its partial derivatives in the distributional sense (when they exist) byDtu = ∂u/∂t,
Diu = ∂u/∂xi,DiDju = ∂2u/∂xi∂xj , i, j = 1, . . . ,N.

In this paper, we study the following parabolic differential equation with a nonlocal
initial condition

Dtu + Lu = f(x, t, u), (x, t) ∈ QT,

u(x, t) = 0, (x, t) ∈ ΓT ,

u(x, 0) =
∫T

0
k(x, t, u(x, t))dt, x ∈ Ω,

(1.1)
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where f : QT ×R → R is not necessarily continuous, but is such that for every fixed u ∈ R the
function (x, t) → f(x, t, u) is measurable and u → f(x, t, u) is of bounded variations over
compact interval in R and nondecreasing, and k : QT × R → R is continuous; L is a strongly
elliptic operator given by

Lu = −
N∑

i,j=1

Di

(
aij(x, t)Dju

)
+ c(x, t)u. (1.2)

Discontinuous parabolic problems have been studied by many authors, see for
instance [2–5]. Parabolic problems with integral conditions appear in the modeling of
concrete problems, such as heat conduction [6–10] and in thermoelasticity [11].

In order to investigate problem (1.1), we introduce some notations, function spaces,
and notions from set-valued analysis.

Let C(QT ) denote the Banach space of all continuous functions u : QT → R, equipped
with the norm |u|0 = max(x,t)∈QT |u(x, t)|. Let C2,1(QT ) = {u : QT → R; u(·, t) ∈ C2(Ω) for
each t ∈ (0, T) and u(x, ·) ∈ C1(0, T) for each x ∈ Ω}. For 1 < p < +∞,we say that u : QT → R

is in Lp(QT ) if u is measurable and
∫
QT

|u(x, t)|pdx dt < +∞, in which case we define its norm
by

|u|Lp =

(∫
QT

|u(x, t)|pdx dt

)1/p

. (1.3)

Let J = [0, T] and let H1(Ω) denote the Sobolev space of functions z ∈ L2(Ω)
having first generalized derivatives in L2(Ω) and let (H1(Ω))∗ be its corresponding dual
space. Then H1(Ω) ⊂ L2(Ω) ⊂ (H1(Ω))∗ and they form an evolution triple with all
embeddings being continuous, dense, and compact (see [2, 12]). The Bochner space W =
W2,2(J,H1(Ω), (H1(Ω))∗) (see [13]) is the set of functions u ∈ L2(J ;H1

0(Ω)) with generalized
derivative du/dt ∈ L2(J ; (H1(Ω))∗). For z ∈ W,we define its norm by

‖z‖W = ‖z‖L2(J ;H1
0 (Ω)) +

∥∥∥∥dzdt
∥∥∥∥
L2(J ;(H1(Ω))∗)

. (1.4)

Then (W, ‖ · ‖W) is a separable reflexive Banach space. The embedding of W0 =
W2,2(J,H1

0(Ω), (H1(Ω))∗) into C(J ;L2(Ω)) is continuous and the embedding W0 ⊂ L2(QT )
is compact.

Now, we introduce some facts from set-valued analysis. For complete details, we refer
the reader to the following books. [14–16]. Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be Banach spaces.
We will denote the set of all subsets, of X having property � by P�(X). For instance, Pn(X)
denotes the set of all nonempty subsets of X; V ∈ Pcl(X) means V closed in X; when � = b
we have the bounded subsets of X, � = cv for convex subsets, � = cp for compact subsets and
� = cp, cv for compact and convex subsets. The domain of a multivalued map R : X → Pn(Y )
is the set domR = {z ∈ X; R(z)/= ∅}. R is convex (closed) valued if R(z) is convex (closed)
for each z ∈ X. R is bounded on bounded sets if R(A) =

⋃
z∈A R(z) is bounded in Y for

all A ∈ Pb(X) (i.e., supz∈A{sup{‖y‖Y ;y ∈ R(z)}} < ∞). R is called upper semicontinuous
(u.s.c.) on X if for each z ∈ X the set R(z) ∈ Pcl(Y ) is nonempty, and for each open subset Λ
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of Y containing R(z), there exists an open neighborhood Π of z such that R(Π) ⊂ Λ. In terms
of sequences, R is usc if for each sequence (zn) ⊂ X, zn → z0, and B is a closed subset of Y
such that R(zn) ∩ B /= ∅ then R(z0) ∩ B /= ∅.

The set-valued map R is called completely continuous if R(A) is relatively compact in
Y for every A ∈ Pb(X). If R is completely continuous with nonempty compact values, then R
is usc if and only if R has a closed graph (i.e., zn → z, wn → w, wn ∈ R(zn) ⇒ w ∈ R(z)).
When X ⊂ Y then R has a fixed point if there exists z ∈ X such that z ∈ R(z). A multivalued
map R : J → Pcl(X) is called measurable if for every x ∈ X, the function θ : J → R defined
by θ(t) = dist(x,R(t)) = inf{|x − z|; z ∈ R(t)} is measurable. ‖R(z)‖Y denotes sup{‖y‖Y ;y ∈
R(z)}. The Kuratowski measure of noncompactness (see [15, page 113]) of A ∈ Pb(X) is
defined by

α(A) = inf

{
ε > 0; A ⊂

m⋃
i=1

Ai, diam(Ai) ≤ ε

}
. (1.5)

The Kuratowski measure of noncompactness satisfies the following properties.

(i) α(A) = 0 if and only if A is compact;

(ii) α(A) = α(A);

(iii) α(A + B) ≤ α(A) + α(B);

(iv) α(cA) = |c|α(A), c ∈ R;

(v) α(convA) = α(A),where conv(A) denotes the convex hull of A.

Definition 1.1 (see [17]). A function f : QT × R → R is called N-measurable on R if for every
measurable function u : QT → R the function (x, t) → f(x, t, u(x, t)) is measurable.

Examples of N-measurable functions are Carathéodory functions, Baire measurable
functions.

Let g(x, t, u) = lim infz→uf(x, t, u) and h(x, t, u) = lim supz→uf(x, t, u). Then (see [17,
Proposition 1]) the function u → g(x, t, u) is lower semicontinuous, that is, for every (x, t) ∈
QT the set {u : g(x, t, u) > r} is open for any r ∈ R, and the function u → h(x, t, u) is upper
semicontinuous, that is, for every (x, t) ∈ QT, the set {u : h(x, t, u) < r} is open for any r ∈ R.
Moreover, the functions u → g(x, t, u) and u → h(x, t, u) are nondecreasing.

Definition 1.2. The multivalued function F defined by F(x, t, u) = [g(x, t, u), h(x, t, u)] for all
(x, t) ∈ QT is called N-measurable on R if both functions g and h are N-measurable on R.

Definition 1.3. The operator NF : L2(QT ) → L2(QT ) defined by

NF(u) =
{
q ∈ L2(QT ); g(x, t, u) ≤ q(x, t) ≤ h(x, t, u), (x, t) ∈ QT

}
(1.6)

is called the Nemitskii operator of the multifunction F.

Since F is an N-measurable and upper semicontinuous multivalued function with
compact and convex values, we have the following properties for the operator NF (see [17,
Corollary 1.1]).
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Lemma 1.4. NF is N-measurable, compact and convex-valued, upper semicontinuous and maps
bounded sets into precompact sets.

We will consider solutions of problem (1.1) as solutions of the following parabolic
problem with multivalued right-hand side:

Dtu + Lu ∈ F(x, t, u), (x, t) ∈ QT,

u(x, t) = 0, (x, t) ∈ ΓT ,

u(x, 0) =
∫T

0
k(x, t, u(x, t))dt, x ∈ Ω,

(1.7)

where F(x, t, u) = [g(x, t, u), h(x, t, u)] for all (x, t) ∈ QT. As pointed out in [15, Example 1.3
page 5], this is the most general upper semicontinuous set-valued map with compact and
convex values in R.

Theorem 1.5 (see [18]). Let E be a Banach space and Υ : E → Pcp,cv(E) a condensing map. If the
set S := {z ∈ E;λz ∈ Υ(z) for some λ > 1} is bounded, then Υ has a fixed point.

We remark that a compact map is the simplest example of a condensing map.

2. The Linear Problem

We will assume throughout this paper that the functions aij , c : QT −→ R are Hölder
continuous, aij = aji and moreover, there exist positive numbers λ0, and λ1 such that

λ0‖ξ‖2 ≤
N∑

i,j=1

aij(x, t)ξiξj ≤ λ1‖ξ‖2, ∀ξ ∈ R
N, ∀(x, t) ∈ QT. (2.1)

Given a continuous function u0 : Ω → R, the linear parabolic problem

Dtu + Lu = f(x, t) (x, t) ∈ QT,

u(x, t) = 0 (x, t) ∈ ΓT ,

u(x, 0) = u0(x), x ∈ Ω

(2.2)

is well known and completely solved (see the books [1, 19, 20]).
The linear homogeneous problem

Dtu + Lu = 0, (x, t) ∈ QT,

u(x, t) = 0, (x, t) ∈ ΓT ,

u(x, 0) = 0, x ∈ Ω

(2.3)
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has only the trivial solution. There exists a unique function, G(x, t;y, s), called Green’s
function corresponding to the linear homogeneous problem. This function satisfies the
following (see [1, 20]):

(i) DtG + LG = δ(t − s)δ(x − y), s < t, x, y ∈ Ω;

(ii) G(x, t;y, s) = 0, s > t, x, y ∈ Ω;

(iii) G(x, t;y, s) = 0, (x, t), (y, s) ∈ ΓT ;

(iv) G(x, t;y, s) > 0 for (x, t) ∈ QT ;

(v) G, DtG, DiG, and DiDjG are continuous functions of (x, t), (y, s) ∈ QT, t − s > 0;

(vi) |G(x, t;y, s)| ≤ C(t − s)−N/2 exp(−a‖x − y‖2
Rn/(t − s)), for some positive constants

C, a (see [19]);

(vii) for any Hölder continuous function f : QT → R, the function u : QT → R, given
for (x, t) ∈ QT by u(x, t) =

∫
Ω G(x, t;y, 0) u0(y)dy +

∫ t
0

∫
Ω G(x, t;y, s)f(y, s)dy ds,is

the unique classical solution, that is, u ∈ C2,1(QT )∩C(QT ), of the nonhomogeneous
problem (2.2).

It is clear from property (vi) above that G ∈ L2(QT × QT ). Also, the integral
representation in (vii) implies that the function (x, t) → ∫

Ω G(x, t;y, 0)dy is continuous. Let
γ0 = max(x,t)∈QT

∫
Ω G(x, t;y, 0)dy.

Lemma 2.1. If f ∈ L2(QT ), then (2.2) has a unique weak solution u ∈ L2(QT ). Moreover, there
exists a positive constant M, depending only on u0, γ0, T, and Ω, such that

|u|L2(QT ) ≤ M + |G|L2(QT×QT )

∣∣f∣∣L2(QT )
. (2.4)

Proof. Consider the following representation (see property (vii) above):

u(x, t) =
∫
Ω
G
(
x, t;y, 0

)
u0
(
y
)
dy +

∫ t

0

∫
Ω
G
(
x, t;y, s

)
f
(
y, s

)
dy ds, (x, t) ∈ QT. (2.5)

Define an operator G : L2(QT ) → L2(QT ) by

Gf(x, t) =
∫ t

0

∫
Ω
G
(
x, t;y, s

)
f
(
y, s

)
dy ds, (x, t) ∈ QT. (2.6)

Then G is a bounded linear operator with

∣∣Gf
∣∣
L2(QT )

≤ |G|L2(QT×QT )

∣∣f∣∣L2(QT )
. (2.7)

Then for each (x, t) ∈ QT,

u(x, t) =
∫
Ω
G
(
x, t;y, 0

)
u0
(
y
)
dy +Gf(x, t). (2.8)
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This implies that for each (x, t) ∈ QT

|u(x, t)| ≤ γ0|u0|0 +
∣∣Gf(x, t)

∣∣. (2.9)

Minkowski’s inequality leads to

|u|L2(QT ) ≤ M + |G|L2(QT×QT )

∣∣f∣∣L2(QT )
. (2.10)

3. Problem with a Discontinuous Nonlinearity

In this section, we investigate the multivalued problem (1.7). We define the notion of a weak
solution.

Definition 3.1. A solution of (1.7) is a function u ∈ W0 such that

(i) there exists w ∈ L2(QT ) with g(x, t, u) ≤ w(x, t) ≤ h(x, t, u), (x, t) ∈ QT ;

(ii) Dtu + Lu = w(x, t), (x, t) ∈ QT ;

(iii) u(x, 0) =
∫T
0 k(x, t, u(x, t))dt, x ∈ Ω.

We introduce the notion of lower and upper solutions of problem (1.7).

Definition 3.2. U ∈ W0 is a weak lower solution of (1.7) if

(i) DtU + LU ≤ g(x, t,U), (x, t) ∈ QT ;

(ii) U(x, t) ≤ 0, (x, t) ∈ ΓT ;

(iii) U(x, 0) ≤ ∫T
0 k(x, t,U(x, t))dt, x ∈ Ω.

Definition 3.3. U ∈ W0 is a weak upper solution of (1.7) if

(j) DtU + LU ≥ h(x, t,U), (x, t) ∈ QT ;

(jj) U(x, t) ≥ 0, (x, t) ∈ ΓT ;

(jjj) U(x, 0) ≥ ∫T
0 k(x, t,U(x, t))dt, x ∈ Ω.

Wewill assume that the function f : QT ×R → R, generating the multivalued function
F, is N-measurable on R, which implies that F is an N-measurable, upper semicontinuous
multivalued function with nonempty, compact, and convex values. In addition, we will need
the following assumptions:

(H1) there exists p ∈ L2(QT ) such that |f(x, t, u)| ≤ p(x, t), (x, t) ∈ QT ;

(H2) there exist a lower solution U and an upper solution U of (1.7) such that U ≤ U;

(H3) k : QT×R → R is continuous, and u �→ k(x, t, u) is nondecreasing with k(x, t, 0) = 0.

We state and prove our main result.

Theorem 3.4. Assume that (H1), (H2), and (H3) are satisfied. Then the multivalued problem (1.7)
has at least one solution u ∈ [U,U].
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Proof. First, it is clear that the operator δ : L2(QT ) → [U,U] defined by

δ(u) = max
{
U,min

(
u,U

)}
(3.1)

is continuous and uniformly bounded. Consider the modified problem

Dtu + Lu ∈ F(x, t, δ(u)), (x, t) ∈ QT,

u(x, t) = 0, (x, t) ∈ ΓT ,

u(x, 0) =
∫T

0
k(x, t, δ(u)(x, t))dt, x ∈ Ω.

(3.2)

We show that possible solutions of (3.2) are a priori bounded. Let u ∈ L2(QT ) be a solution of
(3.2). It follows from the definition and the representation (2.5) that for each (x, t) ∈ QT,

u(x, t) =
∫T

0

∫
Ω
G
(
x, t;y, 0

)
k
(
y, s, δ(u)

(
y, s

))
dy ds +

∫ t

0

∫
Ω
G
(
x, t;y, s

)
w
(
y, s

)
dy ds, (3.3)

where w ∈ L2(QT ) with g(x, t, δ(u)) ≤ w(x, t) ≤ h(x, t, δ(u)), (x, t) ∈ QT. Since k is
continuous and δ is uniformly bounded there existsmk > 0 such that |k(x, t, δ(u))| ≤ mk.Also,
assumption (H1) implies that |w(x, t)| ≤ p(x, t). The relation (3.3) together with Lemma 2.1
yields

|u|L2(QT ) ≤ C := M1 + |G|L2(QT×QT )

∣∣p∣∣L2(QT )
, (3.4)

where M1 depends only onmk, T, γ0. Let V = {u ∈ L2(QT ); |u|L2(QT ) ≤ C}.
It is clear that solutions of (3.2) are fixed point of the multivalued operator � :

L2(QT ) → L2(QT ), defined by

�u = k(u) +GNF(u). (3.5)

Here, k : L2(QT ) → L2(QT ) is a single-valued operator defined by

k(u)(x, t) =
∫T

0

∫
Ω
G
(
x, t;y, 0

)
k
(
y, s, δ

(
u
(
y, s

)))
dy ds, (3.6)

and GNF : L2(QT ) → L2(QT ) is a multivalued operator defined by

GNF(u)(x, t) =
∫ t

0

∫
Ω
G
(
x, t;y, s

)
NF

(
δ
(
u
(
y, s

)))
dy ds. (3.7)

Claim 1. k(V ) is compact in L2(QT ). Since the function k is continuous and the operator δ
is uniformly bounded there exists mk > 0 such that |k(x, t, δ(u))| ≤ mk. Also, G(x, t;y, 0) is



8 Boundary Value Problems

continuous and has no singularity for t > 0. It follows that the operator k is continuous and
there exists ρ, depending only on T and Ω, such that ‖k(u)‖W0

≤ ρTγ0mk, so that k(V ) is
uniformly bounded inW0. Since the embeddingW0 ⊂ L2(QT ) is compact it follows that k(V )
is compact in L2(QT ).

Claim 2. GNF(V ) is also compact in L2(QT ). This follows from the continuity of the Green’s
function and the properties of the Nemitski operator NF. See Lemma 1.4.

Claim 3. α(�(V )) = 0, that is, it is a condensing multifunction.We have α(�(V )) = α(k(V ) +
GNF(V )) ≤ α(k(V )) + α(GNF(V )) = 0.

Also Lemma 1.4 implies that NF has nonempty, compact, convex values. Since k is
single-valued, the operator � has nonempty compact and convex values. We show that �

has a closed graph. Let vn → v∗, hn ∈ �(vn), and hn → h∗. We show that h∗ ∈ �(v∗). Now,
hn ∈ �(vn) implies that hn − k(vn) ∈ GNF(vn). It is clear that hn − k(vn) → h∗ − k(v∗) in
L2(QT ).We can use the last part of Lemma 4.1 in [13] to conclude that h∗ − k(v∗) ∈ GNF(v∗),
which, in turn, implies that h∗ ∈ k(v∗) + GNF(v∗) = �(v∗). This will imply that � is upper
semicontinuous.

Therefore, � : L2(QT ) → Pcp,cv(L2(QT )) is condensing. İt remains to show that the set
{z ∈ L2(QT ); λz ∈ �(z) for some λ > 1} is bounded; but this is a consequence of inequality
(3.4). Theorem 1.5 implies that the operator � has a fixed point z ∈ V , which is a solution of
(3.2).

We, now, show that z ∈ [U,U].We prove that z ≥ U. It follows from the definition of a
solution of (3.2) that there existsw ∈ L2(QT )with g(x, t, δ(z)) ≤ w(x, t) ≤ h(x, t, δ(z)), (x, t) ∈
QT , such that

z(x, t) =
∫T

0

∫
Ω
G
(
x, t;y, 0

)
k
(
y, s, δ(z)

(
y, s

))
dy ds +

∫ t

0

∫
Ω
G
(
x, t;y, s

)
w
(
y, s

)
dy ds. (3.8)

On the other hand, U satisfies

U(x, t) ≤
∫T

0

∫
Ω
G
(
x, t;y, 0

)
k
(
y, s,U

(
y, s

))
dy dt +

∫ t

0

∫
Ω
G
(
x, t;y, s

)
g
(
y, s,U

(
y, s

))
dy ds.

(3.9)

Let φ(x, t) =z(x, t) −U(x, t) for each (x, t) ∈ QT. Then

φ(x, t) ≥
∫T

0

∫
Ω
G
(
x, t;y, 0

)[
k
(
y, s, δ(z)

(
y, s

)) − k
(
y, s,U

(
y, s

))]
dy ds

+
∫ t

0

∫
Ω
G
(
x, t;y, s

)[
w
(
y, s

) − g
(
y, s,U

(
y, s

))]
dy ds.

(3.10)

Since δ(z) ≥ U and the functions u → k(y, s, u) and u → g(y, s, u) are nondecreasing, it
follows that φ(x, t) ≥ 0, so that z(x, t) ≥ U(x, t) for a.e. (x, t) ∈ QT. We can show in a similar
way that z(x, t) ≤ U(x, t) for a.e. (x, t) ∈ QT. In this case δ(z) = z, and (3.2) reduces to (1.7).
Therefore, problem (1.7) has a solution, and consequently, (1.1) has a solution.
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4. Example

Consider the problem

Dtu + Lu ∈ F(x, t, u) = [−1, 1], (x, t) ∈ QT,

u(x, t) = 0, (x, t) ∈ ΓT ,

u(x, 0) = μ

∫T

0
u(x, t)dt, x ∈ Ω.

(4.1)

Let ξ(x, t) =
∫ t
0

∫
Ω G(x, t;y, s)dy ds = −η(x, t). It is clear that ξ is a classical solution of

the problem

Dtu + Lu = 1, (x, t) ∈ QT,

u(x, t) = 0, (x, t) ∈ ΓT ,

u(x, 0) = 0, x ∈ Ω,

(4.2)

and η is a classical solution of the problem

Dtu + Lu = −1, (x, t) ∈ QT,

u(x, t) = 0, (x, t) ∈ ΓT ,

u(x, 0) = 0, x ∈ Ω.

(4.3)

Let U(x, t) = ξ(x, t) + a(x, t), where a is a solution of the problem Dtu + Lu = 0, u = 0
on ΓT , and u(x, 0) = 1. Then a(x, t) =

∫
Ω G(x, t;y, 0)dy andU is an upper solution of problem

(4.1) provided that μ supx∈Ω
∫T
0 (ξ(x, t) + a(x, t))dt < 1.

Similarly, let b be a solution of Dtu + Lu = 0, u = 0 on ΓT , and u(x, 0) = −1.Then
b(x, t) = −a(x, t) and U(x, t) = η(x, t) + b(x, t) is a lower solution of problem (4.1) provided
that 1 + μ infx∈Ω

∫T
0 (η(x, t) + b(x, t))dt ≥ 0.
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