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A transmission problem involving two Euler-Bernoulli equationsmodeling the vibrations
of a composite beam is studied. Assuming that the beam is clamped at one extremity,
and resting on an elastic bearing at the other extremity, the existence of a unique global
solution and decay rates of the energy are obtained by adding just one damping device at
the end containing the bearing mechanism.
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1. Introduction

In this paper we consider the existence of a global solution and decay rates of the en-
ergy for a transmission problem involving two Euler-Bernoulli equations with nonlinear
boundary conditions. More precisely, we are concerned with the system of equations

ρ1utt +β1uxxxx = 0 in
]
0,L0

[×R+, (1.1)

ρ2vtt +β2vxxxx = 0 in
]
L0,L

[×R+, (1.2)

coupled by the “transmission” conditions

u
(
L0, t

)− v
(
L0, t

)= 0, ux
(
L0, t

)− vx
(
L0, t

)= 0,

β1uxx
(
L0, t

)−β2vxx
(
L0, t

)= 0, β1uxxx
(
L0, t

)−β2vxxx
(
L0, t

)= 0.
(1.3)

To the system we add the nonlinear boundary conditions

u(0, t)= 0, ux(0, t)= 0, (1.4)

vxx(L, t)= 0, β2vxxx(L, t)= f
(
v(L, t)

)
+ g
(
vt(L, t)

)
, (1.5)
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Figure 1.1. A composite beam on an elastic bearing.

and the initial data

u(x,0)= u0(x), ut(x,0)= u1(x) in
[
0,L0

]
,

v(x,0)= v0(x), vt(x,0)= v1(x) in
[
L0,L

]
.

(1.6)

The system (1.1)–(1.6) models the transverse vibrations of a composite beam of length
L, constituted by two types of materials of different mass densities ρ1, ρ2 > 0 and flexural
rigidities β1,β2 > 0. Because of the boundary condition (1.4), the beam is clamped at
the left end x = 0. On the other extremity, the condition (1.5) implies that the bending
moment is zero and that the shear force is equal to f (v(L, t)) + g(vt(L, t)). This means
that, at the end x = L, the beam is resting on a kind of bearing, described by the function
f , and subjected to a frictional dissipation described by the function g (see Figure 1.1).

We notice that stabilization of transmission problems has been considered by some
authors. In the beginning, Lions [8] studied the exact controllability of the transmission
problem for the wave equation. Later, Liu and Williams [10] studied the boundary sta-
bilization of transmission problems for linear systems of wave equations. In the case of
beam equations, which involve fourth-order derivatives, there are more possibilities in
the problem modeling and boundary conditions. For instance, Muñoz Rivera and Por-
tillo Oquendo [14] studied a transmission problem for viscoelastic beams, by exploiting
the dissipations due to the memory effects of the material. On the other hand, there are
a few results on fourth-order equations with nonlinear boundary conditions involving
third-order derivatives. That class of problems models elastic beams on elastic bearings,
and one of the first results, with nonlinearities, was given by Feireisl [2], who studied
the periodic solutions for a superlinear problem. Some related stationary problems were
considered by Grossinho and Ma [3] and Ma [11]. We refer the reader to [1, 4–7, 12–16]
for other interesting related works.

Our objective is to show that under suitable assumptions, the sole dissipation g(vt),
acting on the boundary point x = L, will be sufficient to stabilize the whole system. The
dissipation effect on the boundary x = L will be transmitted to (1.1) through (1.2). The
proof of the boundary stabilization is based on the arguments from Lagnese [6] and
Lagnese and Leugering [7].

The paper is organized as follows. In Section 2 we define some notations and establish
the global existence and uniqueness results (see Theorem 2.2). Weak solutions are also
considered (see Theorem 2.6). In Section 3 we prove the decay of the energy of the system,
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which is defined by

E(t)= E(t,u,v)= 1
2

∫ L0

0

{
ρ1
∣
∣ut
∣
∣+β1

∣
∣uxx

∣
∣}dx

+
1
2

∫ L

L0

{
ρ2
∣
∣vt
∣
∣+β2

∣
∣vxx

∣
∣}dx+ f̂

(
v(L, t)

)
,

(1.7)

where f̂ (w)= ∫ w0 f (s)ds (see Theorem 3.1).

2. Global existence

In our study we assume that f is a C1 function satisfying the sign condition

f (w)w ≥ 0, ∀w ∈R, (2.1)

and that g is a C1 for which there exists a constant c0 > 0 such that

g(0)= 0,
(
g(r)− g(s)

)
(r− s)≥ c0|r− s|2, ∀r,s∈R. (2.2)

In particular it follows that g(w)w ≥ c0w2 for all w ∈ R. In order to deal with the trans-
mission conditions (1.3) and the boundary condition (1.4), we define the Sobolev space

X = {(ϕ,ψ)∈H2 | (ϕ,ψ) satisfies (2.4)}, (2.3)

where

ϕ(0)= ϕx(0)= ϕ
(
L0
)−ψ

(
L0
)= ϕx

(
L0
)−ψx

(
L0
)= 0, (2.4)

Hk =Hk
(
0,L0

)×Hk
(
L0,L

)
. (2.5)

We also write L2 = L2(0,L0)×L2(L0,L). Our study is based on the space

V = {(ϕ,ψ)∈ (H2(0,L0
)×H3(L0,L

))∩X | ψxx(L)= 0
}
, (2.6)

so that the first part of condition (1.5) is also recovered. As a simple consequence of the
trace theorem and (2.4) one has the following useful boundary estimate.

Lemma 2.1. Given (u,v)∈ C1([0,T],X), there exists a constant C > 0 such that

∣
∣v(L, t)

∣
∣≤ C

{∥∥uxx
∥
∥
2 +
∥
∥vxx

∥
∥
2

}
, ∀t ∈ [0,T],

∣
∣vt(L, t)

∣
∣≤ C

{∥∥uxxt
∥
∥
2 +
∥
∥vxxt

∥
∥
2

}
, ∀t ∈ [0,T],

(2.7)

where ‖ · ‖2 denotes either L2(0,L0) or L2(L0,L) norms.

Now we prove the existence of global regular solutions.
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Theorem 2.2. Assume that conditions (2.1)-(2.2) hold. Then for any initial data (u0,v0)∈
H4∩V and (u1,v1)∈V , satisfying the compatibility condition,

v0xxx(L)− f
(
v0(L)

)− g
(
v1(L)

)= 0,

β1u
0
xx

(
L0, t

)−β2v
0
xx

(
L0, t

)= 0,

β1u
0
xxx

(
L0, t

)−β2v
0
xxx

(
L0, t

)= 0,

(2.8)

problem (1.1)–(1.6) has a unique strong solution (u,v) such that

(u,v)∈ L∞
(
R+;H4),

(
ut,vt

)∈ L∞
(
R+;X

)
,

(
utt,vtt

)∈ L∞
(
R+;L2). (2.9)

The proof of Theorem 2.2 is given in several steps, by using the Galerkin method.

Approximate problem. Let {(ϕn,ψn)}n∈N be a Galerkin basis of V , which for convenience
is chosen to satisfy

{(
u0,v0

)
,
(
u1,v1

)}⊂V2, (2.10)

where

Vm = span
{(
ϕ1,ψ1), . . . ,

(
ϕm,ψm

)}
. (2.11)

Then the corresponding approximate variational problem to problem (1.1)–(1.6) reads
as follows: find (um(t),vm(t))∈Vm of the form

(
um(t),vm(t)

)=
m∑

j=1
hmj (t)

(
ϕj ,ψ j

)
(2.12)

such that

∫ L0

0

{
ρ1u

m
tt ϕ

j +β1u
m
xxϕ

j
xx
}
dx+

∫ L

L0

{
ρ2v

m
tt ψ

j +β2v
m
xxψ

j
xx
}
dx

+
{
β2 f

(
vm(L, t)

)
+ g
(
vmt (L, t)

)}
ψ j(L)= 0,

(2.13)

(
um(0),vm(0)

)= (u0,v0), (
umt (0),v

m
t (0)

)= (u1,v1). (2.14)

As a matter of fact, (2.13) is an m-dimensional system of ODEs in hmj (t) and has a local
solution (um(t),vm(t)) in an interval [0, tm]. In the following, we derive uniform esti-
mates, so that local solutions can be extended to the interval [0,T] for any T > 0. Note
that initial conditions in (2.14) are well defined because of (2.10).

Estimate 2.3. Replacing ϕi by umt and ψi by vmt in (2.13), one concludes that

d

dt
E
(
t,um,vm

)=−β2g
(
vmt (L, t)

)
vmt (L, t). (2.15)



T. F. Ma and H. Portillo Oquendo 5

Then from condition (2.2) we see that E(t,um,vm) is decreasing and therefore there exists
M1 > 0 such that

∥
∥umt (t)

∥
∥2
2 +
∥
∥vmt (t)

∥
∥2
2 +
∥
∥umxx(t)

∥
∥2
2 +
∥
∥vmxx(t)

∥
∥2
2 ≤M1 (2.16)

for allm∈N, t > 0, whereM1 depends on E(0,u0,v0).

Estimate 2.4. Let us obtain an estimate for umtt (0) and v
m
tt (0) in L2 norms. Replacing ϕi by

umtt (0) and ψi by vmtt (0) in (2.13), one concludes from the compatibility condition (2.8)
that for some constant C > 0,

∥
∥umtt (0)

∥
∥2
2 +
∥
∥vmtt (0)

∥
∥2
2 ≤ C

(∥
∥u0xxxx

∥
∥2
2 +
∥
∥v0xxxx

∥
∥2
2

)
. (2.17)

Therefore, there existsM =M(u0,v0) > 0 such that

∥
∥umtt (0)

∥
∥2
2 +
∥
∥vmtt (0)

∥
∥2
2 ≤M (2.18)

for allm∈N.

Estimate 2.5. Here we use a finite-difference argument as in [12]. Let us fix t, ξ > 0 such
that ξ < T − t, and take the difference of (2.13) with t = t+ ξ and t = t. Then replacing ϕj

by umt (t+ ξ)−umt (t) and ψ j by vmt (t+ ξ)− vmt (t), and putting

P̂m(t,ξ)= ρ1
∥
∥umt (t+ ξ)−umt (t)

∥
∥2
2 + ρ2

∥
∥vmt (t+ ξ)− vmt (t)

∥
∥2
2

+β1
∥
∥umxx(t+ ξ)−umxx(t)

∥
∥2
2 +β2

∥
∥vmxx(t+ ξ)− vmxx(t)

∥
∥2
2,

(2.19)

one infers that

1
2
d

dt
P̂m(t,ξ)≤A+B, (2.20)

where

A=−(g(vm(L, t+ ξ)
)− g

(
vm(L, t)

))(
vmt (L, t+ ξ)− vmt (L, t)

)
,

B =−β2
(
f
(
vm(L, t+ ξ)

)− f
(
vm(L, t)

))(
vmt (L, t+ ξ)− vmt (L, t)

)
.

(2.21)

Taking 0 < ε < c0, and using the mean value theorem and Lemma 2.1, there exists Cε > 0
such that

B ≤ Cε

(∥
∥umxx(t+ ξ)−umxx(t)

∥
∥2
2 +
∥
∥vmxx(t+ ξ)− vmxx(t)

∥
∥2
2

)

+ ε
∣
∣vmt (L, t+ ξ)− vmt (L, t)

∣
∣2.

(2.22)

Then from condition (2.2), we conclude that for a constant C > 0,

1
2
d

dt
P̂m(t,ξ)= CP̂m(t,ξ), (2.23)
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and therefore P̂m(t,ξ)≤ P̂m(0,ξ)e2CT . So, dividing the inequality by ξ2 and making ξ → 0,
we see that

ρ1
∥
∥umtt (t)

∥
∥2
2 + ρ2

∥
∥vmtt (t)

∥
∥2
2 +β1

∥
∥umxxt(t)

∥
∥2
2 +β2

∥
∥vmxxt(t)

∥
∥2
2

≤
(
ρ1
∥
∥umtt (0)

∥
∥2
2 + ρ2

∥
∥vmtt (0)

∥
∥2
2 +β1

∥
∥u1xx

∥
∥2
2 +β2

∥
∥v1xx

∥
∥2
2

)
eCT .

(2.24)

Hence there existsM2 > 0 such that

∥
∥umtt (t)

∥
∥2
2 +
∥
∥vmtt (t)

∥
∥2
2 +
∥
∥umxxt(t)

∥
∥2
2 +
∥
∥vmxxt(t)

∥
∥2
2 ≤M2 (2.25)

for allm∈N and t ∈ [0,T].

Existence result. From Estimates 2.3 and 2.5, we can apply Aubin-Lions compactness the-
orem to pass to the limit the approximate problem. Then the proof of the existence result
is complete.

Uniqueness. Let (u1,v1) and (u2,v2) be two solutions of problem (1.1)–(1.6). Writing
U = u1−u2 and V = v1− v2, we see that (U ,V) satisfies

1
2
d

dt

{
ρ1
∥
∥Ut(t)

∥
∥2
2 + ρ2

∥
∥Vt(t)

∥
∥2
2 +β1

∥
∥Uxx(t)

∥
∥2
2 +β2

∥
∥Vxx(t)

∥
∥2
2

}

≤−β2
[
f
(
v1(L, t)

)− f
(
v2(L, t)

)]
Vt(L, t)

−β2
[
g
(
v1t(L, t)

)− g
(
v2t(L, t)

)]
Vt(L, t).

(2.26)

Then using (2.2) and Lemma 2.1, as in Estimate 2.5, we deduce the existence of C > 0
such that

d

dt
P(t)≤ C

(∥
∥Uxx(t)

∥
∥2
2 +
∥
∥Vxx(t)

∥
∥2
2

)
, t ∈ [0,T], (2.27)

where now P(t)= P(U ,V , t). Since we have P(0)= 0, from Gronwall lemma we get U =
V = 0.

Weak solutions. We say that a pair (u,v) is a weak solution of problem (1.1)–(1.6) if

(u,v)∈ L∞
(
R+,X

)
,

(
ut,vt

)∈ L∞
(
R+,L2),

(
utt,vtt

)∈ L∞
(
R+,H−2)

(2.28)

satisfy the initial conditions (1.6), the compatibility conditions (2.8), and the variational
identity

d

dt

{∫ L0

0
ρ1utϕdx+

∫ L

L0
ρ2vtψ dx

}

+
∫ L0

0
β1uxxϕxx dx+

∫ L

L0
β2vxxψxx dx+

{
β2 f

(
v(L, t)

)
+ g
(
vt(L, t)

)}
ψ(L)= 0

(2.29)
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for all (ϕ,ψ)∈ X . In order to study the existence of weak solutions let us denote by � the
set of all acceptable initial data for the existence of strong solutions, that is,

� := {((u0,v0),(u1,v1))∈ (H4∩V
)×V | (2.8) holds}. (2.30)

Then we have the following existence result for weak solutions.

Theorem 2.6. Assume that conditions (2.1)-(2.2) hold. Then for any initial data satisfying

((
u0,v0

)
,
(
u1,v1

))∈�
H2×L2

, (2.31)

problem (1.1)–(1.6) has a unique weak solution.

This theorem is proved using density arguments, similar to those used by Cavalcanti
et al. [1]. In fact, from the assumption on the initial data, there exists a sequence ((u0ν,v

0
ν),

(u1ν,v
1
ν))∈� such that

(
u0ν,v

0
ν

)−→ (u0,v0) inH2,
(
u1ν,v

1
ν

)−→ (u1,v1) in L2. (2.32)

Now, for each ν∈N, the initial conditions (u0ν,v
0
ν) and (u

1
ν,v

1
ν) give a unique regular solu-

tion (uν,vν) of problem (1.1)–(1.6). From the estimates used in the proof of Theorem 2.2
it can be shown that (uν,vν) converges to a weak solution (u,v) of (1.1)–(1.6). The unique-
ness is then proved by means of the regularization techniques as by Lions and Visik (see
e.g. [9]).

3. Decay of the energy

In this section we study decay rates for the first-order energy (1.7) associated to system
(1.1)–(1.6). Here we assume that the bearing device has a superlinear behavior, charac-
terized by the condition

∃ρ ≥ 2 such that ρ f̂ (w)− f (w)w ≤ 0, ∀w ∈R, (3.1)

and that the material of the beam occupying [L0,L] is more dense and stiff than that in
[0,L0], that is,

ρ1 ≤ ρ2, β1 ≥ β2. (3.2)

Then the rate of decay will depend on the behavior of the nonlinear dissipation g in
a neighborhood of the origin, which is related to the following assumption: there exist
c1,c2 > 0 and q ≥ 1 such that

c1min
{|w|,|w|q}≤ |g(w)| ≤ c2max

{|w|,|w|1/q}. (3.3)

Our main result is given by the following theorem.

Theorem 3.1. Suppose that

(
u0,v0

)∈H2∩X ,
(
u1,v1

)∈ L2. (3.4)
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Suppose in addition that conditions (3.1)–(3.3) also hold. Then if (u,v) is the solution of
problem (1.1)–(1.6), one has the following decay rates:

(1) if q > 1, then there exists a positive constant C = C(E(0)) such that

E(t)≤ C(1+ t)−2/(q−1); (3.5)

(2) if q = 1, then there exist positive constants C and μ such that

E(t)≤ CE(0)e−μt. (3.6)

We will prove this theorem for strong solutions. Our conclusion follows by a standard
density argument.

In order, we establish some auxiliary results related to the multipliers method. Let us
introduce the functional

R1(t) :=
∫ L0

0
ρ1utxuxdx+

∫ L

L0
ρ2vtxvxdx. (3.7)

In the following lemma we retrieve a part of the energy.

Lemma 3.2. There exists a positive constant C1 = C1(E(0)) such that

d

dt
R1(t)≤ ρ2L

2

∣
∣vt(L, t)

∣
∣+C1

{
f
(
v(L, t)

)
v(L, t) +

∣
∣g
(
vt(L, t)

)∣∣}

− 1
2

∫ L0

0
ρ1
∣
∣ut
∣
∣+β1

∣
∣uxx

∣
∣− 1

2

∫ L

L0
ρ2
∣
∣vt
∣
∣+β2

∣
∣vxx

∣
∣dx

(3.8)

for any strong solution of (1.1)–(1.6).

Proof. Multiplying (1.1) by xux, (1.2) by xvx, integrating by parts, and using the bound-
ary conditions (1.4)-(1.5) and (1.3), we arrive at the following identity:

d

dt
R1(t)= L0

2

(
ρ1− ρ2

)∣∣ut
(
L0, t

)∣∣2 +
L0
2
β1
β2

(
β2−β1

)∣∣uxx
(
L0, t

)∣∣2

+
ρ2L

2

∣
∣vt(L, t)

∣
∣2−L

(
f
(
v(L, t)

)
+ g
(
vt(L, t)

))
vx(L, t)

− 1
2

∫ L0

0
ρ1
∣
∣ut
∣
∣2 + 3β1

∣
∣uxx

∣
∣2dx− 1

2

∫ L

L0
ρ2
∣
∣vt
∣
∣2 + 3β2

∣
∣vxx

∣
∣2dx.

(3.9)

In view of the inequalities (3.2), the above equation reduces to

d

dt
R1(t)≤ ρ2L

2

∣
∣vt(L, t)

∣
∣2−L( f (v(L, t))+ g

(
vt(L, t)

))
vx(L, t)

︸ ︷︷ ︸
:=I1

− 1
2

∫ L0

0
ρ1
∣
∣ut
∣
∣2 + 3β1

∣
∣uxx

∣
∣2dx− 1

2

∫ L

L0
ρ2
∣
∣vt
∣
∣2 + 3β2

∣
∣vxx

∣
∣2dx.

(3.10)
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Nowwe will estimate I1. Lemma 2.1 implies that |v(L, t)| ≤ CE1/2(0) for someC > 0, thus,
as f ∈ C1(R) we have that | f (v(L, t))| ≤ C|v(L, t)| for some other positive constant C =
C(E1/2(0)). Applying Young’s inequality and taking into account the preceding estimates,
we get for η > 0,

I1 ≤ η
∣
∣vx(L, t)

∣
∣2 +Cη

{∣
∣ f
(
v(L, t)

)∣∣2 +
∣
∣g(vt(L, t))

∣
∣2
}

≤ η
∣
∣vx(L, t)

∣
∣2 +Cη

{
f
(
v(L, t)

)
v(L, t) +

∣
∣g(vt(L, t))

∣
∣2
}
,

(3.11)

from where by Lemma 2.1 follows that

I1 ≤ ηC

{∫ L0

0
β1
∣
∣uxx

∣
∣2dx+

∫ L

L0
β2
∣
∣vxx

∣
∣2dx

}

+Cη

{
f
(
v(L, t)

)
v(L, t) +

∣
∣g
(
vt(L, t)

)∣∣2
}
.

(3.12)

Substitution of this inequality into (3.10) and fixing η > 0 small our conclusion follows.
�

Our next step is to retrieve the remainder part of the energy. Let (ϕ,ψ) be the solution
of the stationary problem

β1ϕxxxx = 0 on
]
0,L0

[×R+, (3.13)

β2ψxxxx = 0 on
]
L0,L

[×R+, (3.14)

satisfying the boundary conditions

ϕ(0, t)= ϕx(0, t)= 0,

ψxx(L, t)= 0, ψ(L, t)= v(L, t),

ϕ
(
L0, t

)−ψ
(
L0, t

)= 0,

ϕx
(
L0, t

)−ψx
(
L0, t

)= 0,

β1ϕxx
(
L0, t

)−β2ψxx
(
L0, t

)= 0,

β1ϕxxx
(
L0, t

)−β2ψxxx
(
L0, t

)= 0,

(3.15)

which depend clearly on v(L, t). We consider the following functional:

R2(t) :=
∫ L0

0
ρ1utϕdx+

∫ L

L0
ρ2vtψ dx. (3.16)

Lemma 3.3. Given ε > 0, there exists a positive constant Cε such that

d

dt
R2(t)≤ ε

{∫ L0

0
ρ1
∣
∣ut
∣
∣2 +β1

∣
∣uxx

∣
∣2dx+

∫ L

L0
ρ2
∣
∣vt
∣
∣2 +β2

∣
∣vxx

∣
∣2dx

}

+Cε
{∣
∣vt(L, t)

∣
∣2 +

∣
∣g
(
vt(L, t)

)∣∣2
}
− 1
2
f
(
v(L, t)

)
v(L, t)

(3.17)

for any strong solution of (1.1)–(1.6).
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Proof. Multiplying (1.1) by ϕ, (1.2) by ψ, integrating by parts and using boundary con-
ditions (1.3)–(1.5) and (3.15), we have the following identity:

d

dt
R2(t)=

∫ L0

0
ρ1utϕtdx+

∫ L

L0
ρ2vtψtdx−

∫ L0

0
β1uxxϕxxdx

−
∫ L

L0
β2vxxψxxdx−

(
f
(
v(L, t)

)
+ g
(
vt(L, t)

))
v(L, t).

(3.18)

On the other hand, multiplying (3.13) by u−ϕ, (3.14) by v−ψ, integrating by parts and
using boundary conditions (1.3)–(1.5) and (3.15), we obtain

∫ L0

0
β1uxxϕxxdx+

∫ L

L0
β2vxxψxxdx =

∫ L0

0
β1
∣
∣ϕxx

∣
∣2dx+

∫ L

L0
β2
∣
∣ψxx

∣
∣2dx. (3.19)

Since the right-hand side of this equality is positive, by substitution of this into (3.18) we
arrive at

d

dt
R2(t)≤

∫ L0

0
ρ1utϕtdx+

∫ L

L0
ρ2vtψtdx− f

(
v(L, t)

)
v(L, t)− g

(
vt(L, t)

)
v(L, t).

(3.20)

Now, we will estimate the last term of the above inequality. Using Young’s inequality and
Lemma 2.1, we have for η > 0,

∣
∣g
(
vt(L, t)

)
v(L, t)

∣
∣≤ η

∣
∣v(L, t)

∣
∣2 +Cη

∣
∣g
(
vt(L, t)

)∣∣2

≤ ηC

{∫ L0

0
β1
∣
∣uxx

∣
∣2dx+

∫ L

L0
β2
∣
∣vxx

∣
∣2dx

}

+Cη

∣
∣g
(
vt(L, t)

)∣∣2.

(3.21)

On the other hand, from the elliptic regularity of the system (3.13)–(3.15) there exists a
constant C > 0 such that

∫ L0

0
|ϕ|2dx+

∫ L

L0
|ψ|2dx ≤ C

∣
∣v(L, t)

∣
∣2, (3.22)

and since the system (3.13)–(3.15) is linear we also have

∫ L0

0

∣
∣ϕt

∣
∣2dx+

∫ L

L0

∣
∣ψt

∣
∣2dx ≤ C

∣
∣vt(L, t)

∣
∣2. (3.23)

Applying Young’s inequality to the two first terms of the right-hand side of (3.20) and
using the above estimate we have for η > 0,

∫ L0

0
ρ1utϕtdx ≤ η

∫ L0

0
ρ1
∣
∣ut
∣
∣2dx+Cη

∣
∣vt(L, t)

∣
∣2,

∫ L

L0
ρ2vtψtdx ≤ η

∫ L

L0
ρ2
∣
∣vt
∣
∣2dx+Cη

∣
∣vt(L, t)

∣
∣2.

(3.24)
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By substitution of the estimates (3.21)–(3.24) into (3.20) and taking ε =max{η,ηC} we
arrive at the desired result. This completes the proof of the lemma. �

Now, we will summarize the results of the previous lemmas. Let us consider the fol-
lowing functional:

R(t) := R1(t) + 2
(
C1 + 1

)
R2(t), (3.25)

where C1 is the constant considered in Lemma 3.2.

Lemma 3.4. There exists a positive constant C such that

d

dt
R(t)≤−1

2
E(t) +C

{
g
(
vt(L, t)

)
vt(L, t) +

[
g
(
vt(L, t)

)
vt(L, t)

]2/(q+1)}
(3.26)

for any strong solution of (1.1)–(1.6).

Proof. First, let ε0 be the solution of

2
(
C1 + 1

)
ε0 = 1

4
. (3.27)

Combining Lemmas 3.2 and 3.3 with ε = ε0 and using the superlinearity of the function
f (see (3.1)) we arrive at

d

dt
R(t)≤−1

2
E(t) +C

{∣
∣vt(L, t)

∣
∣2 +

∣
∣g
(
vt(L, t)

)∣∣2
}
. (3.28)

Now, we will estimate the second term of the right-hand side of (3.28). From the hypoth-
esis (3.3) we have the following estimates:

∣
∣vt(L, t)

∣
∣≥ 1 then

∣
∣vt(L, t)

∣
∣2 +

∣
∣g
(
vt(L, t)

)∣∣2 ≤ Cg
(
vt(L, t)

)
vt(L, t),

∣
∣vt(L, t)

∣
∣≤ 1 then

∣
∣vt(L, t)

∣
∣2 +

∣
∣g
(
vt(L, t)

)∣∣2 ≤ C
[
g
(
vt(L, t)

)
vt(L, t)

]2/(q+1)
.

(3.29)

Therefore, for any value of vt(L, t), we conclude that

∣
∣vt(L, t)

∣
∣2 +

∣
∣g
(
vt(L, t)

)∣∣2 ≤ C
{
g
(
vt(L, t)

)
vt(L, t) +

[
g
(
vt(L, t)

)
vt(L, t)

]2/(q+1)}
.

(3.30)

In view of (3.28) the proof is complete. �

Proof of Theorem 3.1. Now Lemma 3.4 plays an essential role. To prove the polynomial
decay of the energy, we assume that q > 1. Using Young’s inequality is not difficult to
show that there exists a positive constant C such that

∣
∣R(t)

∣
∣≤ CE(t). (3.31)

Let us denote σ := (q− 1)/2. Since

d

dt
E(t)=−g(vt(L, t)

)
vt(L, t), (3.32)
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we get from estimate (3.31) that

d

dt

[
EσR

]
(t)≤ σR(t)Eσ−1(t)

d

dt
E(t) +Eσ(t)

d

dt
R(t)

≤ CEσ(t)g
(
vt(L, t)

)
vt(L, t) +Eσ(t)

d

dt
R(t).

(3.33)

Using Lemma 3.4 and estimate E(t)≤ E(0), the above inequality can be written as

d

dt

[
EσR

]
(t)≤−1

2
Eσ+1(t) +CEσ(0)g

(
vt(L, t)

)
vt(L, t)

+CE(q+1)/2(0)E(q−1)/(q+1)(t)
[
g
(
vt(L, t)

)
vt(L, t)

]2/(q+1)
.

(3.34)

Using Young’s inequality, the last term of the above inequality can be estimated by

CE(q+1)/2(0)E(q−1)/(q+1)(t)
[
g
(
vt(L, t)

)
vt(L, t)

]2/(q+1)

≤ ηEσ+1(t) +CηE
(q+1)2/4(0)g

(
vt(L, t)

)
vt(L, t).

(3.35)

Taking η = 1/4, inequality (3.34) becomes

d

dt

[
EσR

]
(t)≤−1

4
Eσ+1(t) +Cg

(
vt(L, t)

)
vt(L, t), (3.36)

where C is a constant which depends continuously on E(0). Now, let us define the Lya-
punov functional

F(t) :=NE(t) +
[
EσR

]
(t). (3.37)

Combining identity (3.32) with inequality (3.36) and taking N large, we get

d

dt
F(t)≤−1

4
Eσ+1(t). (3.38)

On the other hand, in view of (3.31) we have that for N large,

N

2
E(t)≤ F(t)≤ 2NE(t). (3.39)

These two last inequalities imply that

d

dt
F(t)≤−αFσ+1(t), α= (2N)−(σ+1), (3.40)

from where follows that

F(t)≤ 1
(
F−σ(0)+ασt

)1/σ . (3.41)

Finally, the equivalence relation (3.39) implies the polynomial decay of the energy E. This
proves the first part of Theorem 3.1.
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It remains to prove the exponential decay of the energy. To this end, we assume that
q = 1. From identity (3.32) and inequality (3.36) we have that the Lyapunov functional

F(t) :=NE(t) +R(t) (3.42)

satisfies

d

dt
F(t)≤−1

2
E(t), (3.43)

from where in view of (3.39) follows that for N large,

d

dt
F(t)≤− 1

4N
F(t)=⇒ F(t)≤ F(0)e−t/4N . (3.44)

Finally, using equivalence relation (3.39) we have the exponential decay of the energy E.
This completes the proof of Theorem 3.1. �

Remarks 3.5. When considering 2-dimensional plates instead of 1-dimensional beams,
there are mainly two kinds of difficulties. Firstly, the control of some unwanted tangential
derivatives on the boundary where the support f is acting. However, it seems that a com-
pacity argument similar to the one in [14] may be used to show exponential decay for
q = 1. But polynomial decay for q > 1 seems to be a harder question. The second kind
of difficulties lies in the lack of formal results on the existence and regularity for station-
ary plate equations with transmission conditions similar to (1.3), which is essential when
using multipliers techniques.
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