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1. Introduction and statements of main results

Let H(t, z) be a C2 function defined on R1 × R2n which is 2π-periodic with respect to the first
variable t.In this paper, we investigate the number of 2π-periodic nontrivial solutions of the
following nonlinear Hamiltonian system

ż = J
(
Hz(t, z(t))

)
, (1.1)

where z : R → R2n, ż = dz/dt,

J =

(
0 −In
In 0

)

, (1.2)

In is the identity matrix on Rn, H : R1 × R2n → R, and Hz is the gradient of H. Let z = (p, q),
p = (z1, . . . , zn), q = (zn+1, . . . , z2n) ∈ Rn. Then (1.1) can be rewritten as

ṗ = −Hq(t, p, q),

q̇ = Hp(t, p, q).
(1.3)

We assume thatH ∈ C2(R1 × R2n, R1) satisfies the following conditions.
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(H1) There exist constants α < β such that

αI ≤ d2
zH(t, z) ≤ βI ∀(t, z) ∈ R1 × R2n. (1.4)

(H2) Let j1, j2 = j1 + 1 and j3 = j2 + 1 be integers and α, β be any numbers (without loss of
generality, we may assume α, β /∈ Z) such that j1 − 1 < α < j1 < j2 < β < j2 + 1 = j3.
Suppose that there exist γ > 0 and τ > 0 such that j2 < γ < β and

H(t, z) ≥ 1
2
γ‖z‖2L2 − τ ∀(t, z) ∈ R1 × R2n. (1.5)

(H3) H(t, 0) = 0, Hz(t, 0) = 0, and j ∈ [j1, j2) ∩ Z such that

jI < d2
zH(t, 0) < (j + 1)I ∀t ∈ R1. (1.6)

(H4) H is 2π-periodic with respect to t.

We are looking for the weak solutions of (1.1). Let E = W1/2,2((0, 2π), R2n). The 2π-
periodic weak solution z = (p, q) ∈ E of (1.3) satisfies

∫2π

0

[(
ṗ +Hq(t, z(t))

) · ψ − (
q̇ −Hp(t, z(t))

) · φ]dt = 0 ∀ζ = (φ, ψ) ∈ E (1.7)

and coincides with the critical points of the induced functional

I(z) =
∫2π

0
pq̇ dt −

∫2π

0
H(t, z(t))dt = A(z) −

∫2π

0
H(t, z(t))dt, (1.8)

where A(z) = (1/2)
∫2π
0 ż · Jz dt.

Our main results are the following.

Theorem 1.1. Assume that H satisfies conditions (H1)–(H4). Then there exists a number δ > 0 such
that for any α and β with j1 − 1 < α < j1 < j2 < β < j2 + δ < j2 + 1 = j3, α > 0, system (1.1) has at least
four nontrivial 2π-periodic solutions.

Theorem 1.2. Assume that H satisfies conditions (H1)–(H4). Then there exists a number δ > 0 such
that for any α and β, and j1 − 1 < α < j1 < j2 < β < j2 + δ < j2 + 1 = j3, β < 0,system (1.1) has at least
four nontrivial 2π-periodic solutions.

Chang proved in [1] that, under conditions (H1)–(H4), system (1.1) has at least two non-
trivial 2π-periodic solutions. He proved this result by using the finite dimensional variational
reduction method. He first investigate the critical points of the functional on the finite dimen-
sional subspace and the (P.S.) condition of the reduced functional and find one critical point
of the mountain pass type. He also found another critical point by the shape of graph of the
reduced functional.
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For the proofs of Theorems 1.1 and 1.2, we first separate the whole space E into the four
mutually disjoint four subspaces X0, X1, X2, X3 which are introduced in Section 3 and then we
investigate two pairs of sphere-torus variational linking inequalities of the reduced functional
Ĩ and Ǐ of I on the submanifold with boundary C̃ and Č, respectively, and translate these two
pairs of sphere-torus variational links of Ĩ and Ǐ into the two pairs of torus-sphere variational
links of −Ĩ and −Ǐ, where Ĩ and Ǐ are the restricted functionals of I to the manifold with bound-
ary C̃ and Č, respectively. Since Ĩ and Ǐ are strongly indefinite functinals, we use the notion of
the (P.S.)∗c condition and the limit relative category instead of the notion of (P.S.)c condition
and the relative category, which are the useful tools for the proofs of the main theorems. We
also investigate the limit relative category of torus in (torus, boundary of torus) on C̃ and Č,
respectively. By the critical point theory induced from the limit relative category theory we
obtain two nontrivial 2π-periodic solutions in each subspace X1 and X2, so we obtain at least
four nontrivial 2π-periodic solutions of (1.1).

In Section 2, we introduce some notations and some notions of (P.S.)∗c condition and the
limit relative category and recall the critical point theory on the manifold with boundary. We
also prove some propositions. In Section 3, we prove Theorem 1.1 and in Section 4, we prove
Theorem 1.2.

2. Recall of the critical point theory induced from the limit relative category

Let E = W1/2,2((0, 2π), R2n). The scalar product in L2 naturally extends as the duality pairing
between E and E′ = W−1/2,2([0, 2π], R2n). It is known that if z ∈ C∞(R,R2n) is 2π-periodic, then
it has a Fourier expansion z(t) =

∑ k=+∞
k=−∞ake

ikn with ak ∈ C2n and a−k = ak: E is the closure of
such functions with respect to the norm

‖z‖ =

(
∑

k∈Z
(1 + |k|)|ak|2

)1/2

. (2.1)

Let us set the functional

A(z) =
1
2

∫2π

0
ż · Jz dt =

∫2π

0
pq̇ dt, z = (p, q) ∈ E, p, q ∈ Rn, (2.2)

so that

I(z) = A(z) −
∫2π

0
H(t, z(t))dt. (2.3)

Let e1, . . . , e2n denote the usual bases in R2n and set

E0 = span
{
e1, . . . , e2n

}
,

E+ = span
{
(sin jt)ek − (cos jt)ek+n, (cos jt)ek + (sin jt)ek+n | j ∈ N, 1 ≤ k ≤ n

}
,

E− = span
{
(sin jt)ek + (cos jt)ek+n, (cos jt)ek − (sin jt)ek+n | j ∈ N, 1 ≤ k ≤ n

}
.

(2.4)



4 Boundary Value Problems

Then E = E0⊕E+⊕E− and E0, E+, E− are the subspaces of E onwhichA is null, positive definite
and negative definite, and these spaces are orthogonal with respect to the bilinear form

B[z, ζ] ≡
∫2π

0
p · ψ̇ + φ · q̇ dt (2.5)

associated withA. Here, z = (p, q) and ζ = (φ, ψ). If z ∈ E+ and ζ ∈ E−, then the bilinear form is
zero and A(z + ζ) = A(z) +A(ζ). We also note that E0, E+, and E− are mutually orthogonal in
L2((0, 2π), R2n). Let P+ be the projection from E onto E+ and P− the one from E onto E−. Then
the norm in E is given by

‖z‖2 = ∣∣z0
∣∣2 +A

(
z+

) −A
(
z−

)
=
∣∣z0

∣∣2 +
∥∥P+z

∥∥2 +
∥∥P−z

∥∥2 (2.6)

which is equivalent to the usual one. The space E with this norm is a Hilbert space.
We need the following facts which are proved in [2].

Proposition 2.1. For each s ∈ [1,∞), E is compactly embedded in Ls((0, 2π), R2n). In particular,
there is an αs > 0 such that

‖z‖Ls ≤ αs‖z‖ (2.7)

for all z ∈ E.

Proposition 2.2. Assume thatH(t, z) ∈ C2(R1 ×R2n, R). Then I(z) is C1, that is, I(z) is continuous
and Fréchet differentiable in E with Fréchet derivative

DI(z)ω =
∫2π

0

(
ż − J(Hz(t, z))

) · Jω =
∫2π

0

[(
ṗ +Hq(t, z)

) · ψ − (
q̇ −Hp(t, z)

) · φ]dt, (2.8)

where z = (p, q) and ω = (φ, ψ) ∈ E. Moreover, the functional z �→ ∫2π
0 H(t, z)dt is C1.

Proof. For z,w ∈ E,

∣∣I(z +w) − I(z) −DI(z)w
∣∣

=
∣∣∣∣
1
2

∫2π

0
(ż+ẇ) · J(z+w) −

∫2π

0
H(t, z+w)− 1

2

∫2π

0
ż · Jz+

∫2π

0
H(t, z) −

∫2π

0

(
ż−J(Hz(t, z)

)) · Jw
∣∣∣∣

=
∣∣∣∣
1
2

∫2π

0

[
ż · Jw + ẇ · Jz + ẇ · Jw] −

∫2π

0

[
H(t, z +w) −H(t, z)

] −
∫2π

0

[
ż − J

(
Hz(t, z)

) · Jw]
∣∣∣∣.

(2.9)

We have

∣
∣∣∣

∫2π

0
[H(t, z +w) −H(t, z)]

∣
∣∣∣ ≤

∣
∣∣∣

∫2π

0
[Hz(t, z) ·w + o(|w|)]dt

∣
∣∣∣ = O(|w|). (2.10)
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Thus, we have

∣∣I(z +w) − I(z) −DI(z)w
∣∣ = O(|w|2). (2.11)

Next, we prove that I(z) is continuous. For z,w ∈ E,

∣∣I(z +w) − I(z)
∣∣ =

∣∣∣
∣
1
2

∫2π

0
(ż + ẇ) · J(z +w) −

∫2π

0
H(t, z +w) − 1

2

∫2π

0
ż · Jz +

∫2π

0
H(t, z)

∣∣∣
∣

=
∣
∣
∣
∣
1
2

∫2π

0

[
ż · Jw + ẇ · Jz + ẇ · Jw] −

∫2π

0

[
H(t, z +w) −H(t, z)

]
∣
∣
∣
∣

= O(|w|).
(2.12)

Similarly, it is easily checked that I is C1.

Now, we consider the critical point theory on the manifold with boundary induced from
the limit relative category. Let E be a Hilbert space and X be the closure of an open subset of E
such that X can be endowed with the structure of C2 manifold with boundary. Let f : W → R
be a C1,1 functional, where W is an open set containing X. The (P.S.)∗c condition and the limit
relative category (see [3]) are useful tools for the proof of the main theorem.

Let (En)n be a sequence of a closed finite dimensional subspace of E with the following
assumptions: En = E−

n ⊕ E+
n where E+

n ⊂ E+, E−
n ⊂ E− for all n (E+

n and E−
n are subspaces of E),

dimEn < +∞, En ⊂ En+1,
⋃

n∈NEn are dense in E. Let Xn = X ∩ En, for any n, be the closure of
an open subset of En and has the structure of a C2 manifold with boundary in En. We assume
that for any n there exists a retraction rn : X → Xn. For a given B ⊂ E, we will write Bn = B∩En.
Let Y be a closed subspace of X.

Definition 2.3. Let B be a closed subset of X with Y ⊂ B. Let cat(X,Y )(B) be the relative category
of B in (X,Y ). We define the limit relative category of B in (X,Y ), with respect to (Xn)n, by

cat∗(X,Y )(B) = lim sup
n→∞

cat(Xn,Yn)(Bn). (2.13)

We set

Bi =
{
B ⊂ X | cat∗(X,Y )(B) ≥ i

}
,

ci = inf
B∈Bi

sup
x∈B

f(x).
(2.14)

We have the following multiplicity theorem (for the proof, see [4]).

Theorem 2.4. Let i ∈ N and assume that

(1) ci < +∞,

(2) sup x∈Yf(x) < ci,

(3) the (P.S.)∗ci condition with respect to (Xn)n holds.



6 Boundary Value Problems

Then there exists a lower critical point x such that f(x) = ci. If

ci = ci+1 = · · · = ci+k−1 = c, (2.15)

then

catX
({

x ∈ X | f(x) = c, grad−
Xf(x) = 0

}) ≥ k. (2.16)

Now, we state the following multiplicity result (for the proof, see [4, Theorem 4.6])
which will be used in the proofs of our main theorems.

Theorem 2.5. Let H be a Hilbert space and let H = X1 ⊕ X2 ⊕ X3, where X1, X2, X3 are three closed
subspaces of H with X1, X2 of finite dimension. For a given subspace X of H, let PX be the orthogonal
projection fromH onto X. Set

C =
{
x ∈ H | ∥∥PX2x

∥∥ ≥ 1
}
, (2.17)

and let f : W → R be a C1,1 function defined on a neighborhood W of C. Let 1 < ρ < R, R1 > 0. One
defines

Δ =
{
x1 + x2 | x1 ∈ X1, x2 ∈ X2,

∥∥x1
∥∥ ≤ R1, 1 ≤ ∥∥x2

∥∥ ≤ R
}
,

Σ =
{
x1 + x2 | x1 ∈ X1, x2 ∈ X2,

∥∥x1
∥∥ ≤ R1,

∥∥x2
∥∥ = 1

}

∪ {
x1 + x2 | x1 ∈ X1, x2 ∈ X2,

∥
∥x1

∥
∥ ≤ R1,

∥
∥x2

∥
∥ = R

}

∪ {
x1 + x2 | x1 ∈ X1, x2 ∈ X2,

∥∥x1
∥∥ = R1, 1 ≤ ∥∥x2

∥∥ ≤ R
}
,

S =
{
x ∈ X2 ⊕X3 | ‖x‖ = ρ

}
,

B =
{
x ∈ X2 ⊕X3 | ‖x‖ ≤ ρ

}
.

(2.18)

Assume that

sup f(Σ) < inf f(S) (2.19)

and that the (P.S.)c condition holds for f on C, with respect to the sequrnce (Cn)n, for all c ∈ [a, b],
where

a = inf f(S), b = sup f(Δ). (2.20)

Moreover, one assumes b < +∞ and f |X1⊕X3 has no critical points z in X1 ⊕ X3 with a ≤ f(z) ≤ b.
Then there exist two lower critical points z1, z2 for f on C such that a ≤ f(zi) ≤ b, i = 1.2.

3. Proof of Theorem 1.1

We assume that 0 < α < β. Let e1, . . . , e2n denote the usual bases in R2n and set

X0 ≡ span
{
(sin jt)ek − (cos jt)ek+n, (cos jt)ek + (sin jt)ek+n, (sin jt)ek + (cos jt)ek+n,

(cos jt)ek − (sin jt)ek+n, e1, e2, . . . , e2n | j ≤ j1 − 1, j ∈ N, 1 ≤ k ≤ n
}
,

X1 ≡ span
{
(sin jt)ek − (cos jt)ek+n, (cos jt)ek + (sin jt)ek+n | j = j1, 1 ≤ k ≤ n

}
,

X2 ≡ span
{
sin jt)ek − (cos jt)ek+n, (cos jt)ek + (sin jt)ek+n | j = j2, 1 ≤ k ≤ n

}
,

X3 ≡ span
{
(sin jt)ek − (cos jt)ek+n, (cos jt)ek + (sin jt)ek+n | j ≥ j2 + 1 = j3, j ∈ N, 1 ≤ k ≤ n

}
.

(3.1)
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Then E is the topological direct sum of subspaces X0, X1, X2, and X3, where X1 and X2 are
finite dimensional subspaces. We also set

S1(ρ) =
{
z ∈ X1 | ‖z‖ = ρ

}
,

Sr(1)
(
X0 ⊕X1

)
=
{
z ∈ X0 ⊕X1 | ‖z‖ = r(1)

}
,

Br(1)
(
X0 ⊕X1

)
=
{
z ∈ X0 ⊕X1 | ‖z‖ ≤ r(1)

}
,

ΣR(1)
(
S1(ρ), X2 ⊕X3

)
=
{
z = z1 + z2 + z3 ∈ X1 ⊕X2 ⊕X3 | z1 ∈ S1(ρ),

∥
∥z1 + z2 + z3

∥
∥ = R(1)},

ΔR(1)
(
S1(ρ), X2 ⊕X3

)
=
{
z = z1 + z2 + z3 ∈ X1 ⊕X2 ⊕X3 | z1 ∈ S1(ρ),

∥∥z1 + z2 + z3
∥∥ ≤ R(1)},

S2(ρ) = {z ∈ X2 | ‖z‖ = ρ},

Sr(2)
(
X0 ⊕X1 ⊕X2

)
=
{
z ∈ X0 ⊕X1 ⊕X2 | ‖z‖ = r(2)

}
,

Br(2)
(
X0 ⊕X1 ⊕X2

)
=
{
z ∈ X0 ⊕X1 ⊕X2 | ‖z‖ ≤ r(2)

}
,

ΣR(2)
(
S2(ρ), X3

)
=
{
z = z2 + z3 ∈ X2 ⊕X3 | z2 ∈ S2(ρ),

∥∥z2 + z3
∥∥ = R(2)},

ΔR(2)
(
S2(ρ), X3

)
=
{
z = z2 + z3 ∈ X2 ⊕X3 | z2 ∈ S2(ρ),

∥∥z2 + z3
∥∥ ≤ R(2)}.

(3.2)

We have the following two pairs of the sphere-torus variational linking inequalities.

Lemma 3.1 (first sphere-torus variational linking). Assume that H satisfies the conditions (H1),
(H3), (H4), and the condition

(H2)′ suppose that there exist γ > 0 and τ > 0 such that j1 < γ < β and

H(t, z) ≥ 1
2
γ‖z‖2 − τ ∀(t, z) ∈ R1 × R2n. (3.3)

Then there exist δ1 > 0, ρ > 0, r(1) > 0, and R(1) > 0 such that r(1) < R(1), and for any α and β with
j1 − 1 < α < j1 < β < j2 + δ1 < j2 + 1 = j3 and α > 0,

sup
z∈S

r(1) (X0⊕X1)
I(z) < 0 < inf

z∈Σ
R(1) (S1(ρ),X2⊕X3)

I(z),

inf
z∈Δ

R(1) (S1(ρ),X2⊕X3)
I(z) > −∞, sup

z∈B
r(1) (X0⊕X1)

I(z) < ∞.
(3.4)

Proof. Let z = z0 + z1 ∈ X0 ⊕X1. By (H2)′, we have

I(z) =
1
2

∫2π

0
ż · Jz dt −

∫2π

0
H(t, z(t))dt

≤ 1
2
‖z0 + z1‖2 −

γ

2
‖z0 + z1‖2L2 + τ

≤ 1
2
(j1 − γ)‖z0 + z1‖2L2 + τ

(3.5)
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for some τ > 0. Since j1 − γ < 0, there exists r(1) > 0 such that if z0 + z1 ∈ Sr(1)(X0 ⊕ X1),
then I(z) < 0. Thus, sup z∈S

r(1) (X0⊕X1)I(z) < 0. Moreover, if z ∈ Br(1)(X0 ⊕ X1), then I(z) ≤
(1/2)(j1 − γ)‖z0 + z1‖2L2 + τ < τ < ∞, so we have sup z∈B

r(1) (X0⊕X1)I(z) < ∞. Next, we will show

that there exist δ1 > 0, ρ > 0 and R(1) > 0 such that if j1 − 1 < α < j1 < β < j2 + δ1 < j2 + 1 = j3,
then inf z∈Σ

R(1) (S1(ρ),X2⊕X3)I(z) > 0. Let z = z1 + z2 + z3 ∈ X1 ⊕ X2 ⊕ X3 with z1 ∈ S1(ρ), z2 ∈ X2,
z3 ∈ X3, where ρ is a small number. Let j1 − 1 < α < j1 < β < j2 + δ < j2 + 1 = j3 for some δ > 0
and α > 0. Then X1 ⊕X2 ⊕X3 ⊂ E+ and P−(z1 +z2 +z3) = 0. By (H1), there exists d > 0 such that

I(z) =
1
2

∫2π

0
ż · Jz dt −

∫2π

0
H(t, z(t))dt

≥ 1
2
∥∥P+(z1 + z2 + z3)

∥∥2 − β

2
∥∥P+(z1 + z2 + z3)

∥∥2
L2 − d

≥ 1
2
(j1 − β)

∥∥P+z1
∥∥2
L2 +

1
2
(j2 − β)

∥∥P+z2
∥∥2
L2 +

1
2
(j3 − β)

∥∥P+z3
∥∥2
L2 − d

=
1
2
(j1 − β)ρ2 − 1

2
δ
∥∥P+z2

∥∥2
L2 +

1
2
(j3 − β)

∥∥P+z3
∥∥2
L2 − d.

(3.6)

Since j1 − β < 0, j2 − β > −δ, and j3 − β > 0, there exist a small number δ1 > 0 and R(1) > 0
with δ1 < δ and R(1) > r(1) such that if j1 − 1 < α < j1 < β < j2 + δ1 < j2 + 1 = j3 and
z ∈ ΣR(1) (S1(ρ), X2 ⊕ X3), then I(z) > 0. Thus, we have inf z∈Σ

R(1) (S1(ρ),X2⊕X3)I(z) > 0. Moreover,
if j1 − 1 < α < j1 < β < j2 + δ1 < j2 + 1 = j3 and z ∈ ΔR(1) (S1(ρ), X2 ⊕ X3), then we have
I(z) > (1/2)(j1 − β)ρ2 − (1/2)δ)1‖P+z2‖2L2 − d > −∞. Thus, inf Δ

R(1) (S1(ρ),X2⊕X3)I(z) > −∞. Thus,
we prove the lemma.

Lemma 3.2. Let δ1 be the number introduced in Lemma 3.1. Then for any α and β with j1 − 1 < α <
j1 < β ≤ j2 < j2 + 1 = j3 and α > 0, if u is a critical point for I|X0⊕(X2⊕X3), then I(u) = 0.

Proof. We notice that from Lemma 3.1, for fixed u0 ∈ X0, the functional u23 �→ I(u0 + u23) is
weakly convex in X2 ⊕ X3, while, for fixed u23 ∈ X2 ⊕ X3, the functional u0 �→ I(u0 + u23) is
strictly concave in X0. Moreover, 0 is the critical point in X0 ⊕ X2 ⊕ X3 with I(0) = 0. So if
u = u0 + u23 is another critical point for I|X0⊕(X2⊕X3), then we have

0 = I(0) ≤ I(u23) ≤ I(u0 + u23) ≤ I(u0) ≤ I(0) = 0. (3.7)

So we have I(u) = I(0) = 0.

Let PX1 be the orthogonal projection from E onto X1 and

C̃ =
{
z ∈ E | ∥∥PX1z

∥
∥ ≥ 1

}
. (3.8)

Then C̃ is the smooth manifold with boundary. Let C̃n = C̃ ∩ En. Let us define afunctional
Ψ̃ : E \ {X0 ⊕ (X2 ⊕X3)} → E by

Ψ̃(z) = z − PX1z∥∥PX1z
∥∥ = PX0⊕(X2⊕X3)z +

(

1 − 1
∥∥PX1z

∥∥

)

PX1z. (3.9)
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We have

∇Ψ̃(z)(w) = w − 1
∥
∥PX1z

∥
∥

(

PX1w −
〈

PX1z∥
∥PX1z

∥
∥ , w

〉
PX1z∥

∥PX1z
∥
∥

)

. (3.10)

Let us define the functional Ĩ : C̃ → R by

Ĩ = I ◦ Ψ̃. (3.11)

Then Ĩ ∈ C1,1
loc. We note that if z̃ is the critical point of Ĩ and lies in the interior of C̃, then z = Ψ̃(z̃)

is the critical point of I. We also note that

∥∥grad−
C̃
Ĩ(z̃)

∥∥ ≥ ∥∥PX0⊕(X2⊕X3)∇I(Ψ̃(z̃))
∥∥ ∀z̃ ∈ ∂C̃. (3.12)

Let us set

S̃r(1) = Ψ̃
−1(

Sr(1)
(
X0 ⊕X1

))
,

B̃r(1) = Ψ̃
−1(

Br(1)
(
X0 ⊕X1

))
,

Σ̃R(1) = Ψ̃
−1(

ΣR(1)
(
S1(ρ), X2 ⊕X3

))
,

˜ΔR(1) = Ψ̃
−1(

ΔR(1)
(
S1(ρ), X2 ⊕X3

))
.

(3.13)

We note that S̃r(1) , B̃r(1) , Σ̃R(1) , and ˜ΔR(1) have the same topological structure as Sr(1) , Br(1) , ΣR(1) ,
and ΔR(1) , respectively.

Lemma 3.3. −Ĩ satisfies the (P.S.)∗c̃ condition with respect to (C̃n)n for every real number c̃ such that

0 < inf
z̃∈Ψ̃−1

(S
r(1) (X0⊕X1))

(−Ĩ)(z̃) ≤ c̃ ≤ sup
z̃∈Ψ̃−1

(Δ
R(1) (S1(ρ),X2⊕X3))

(−Ĩ)(z̃). (3.14)

Proof. Let (kn)n be a sequence such that kn → +∞, (z̃n)n be a sequence in C such that z̃n ∈ Ckn ,
for all n, (−Ĩ)(z̃n) → c̃ and grad−

C(−Ĩ)|Ekn
(z̃n) → 0. Set zn = Ψ(z̃n) (and hence zn ∈ Ekn) and

(−I)(zn) → c̃. We first consider the case in which zn /∈ X0 ⊕ (X2 ⊕X3), for all n. Since for n large
PEn

◦ PX1 = PX1 ◦ PEn
= PX1 , we have

PEkn
∇(−Ĩ)(z̃n) = PEkn

Ψ′(z̃n)(∇(−I)(zn)) = Ψ′(z̃n)(PEkn
∇(−I)(zn)) −→ 0. (3.15)

By (3.9) and (3.10),

PEkn
∇(−I)zn −→ 0 or

PX0⊕(X2⊕X3)PEkn
∇(−I)(zn) −→ 0, PX1zn −→ 0.

(3.16)

In the first case, the claim follows from the limit Palais-Smale condition for −I. In the second
case, PX0⊕(X2⊕X3)PEkn

∇(−I)(zn) → 0. We claim that (zn)n is bounded. By contradiction, we sup-
pose that ‖zn‖ → +∞ and set wn = zn/‖zn‖. Up to a subsequence wn ⇀ w0 weakly for some
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w0 ∈ X0 ⊕ (X2 ⊕X3). By the asymptotically linearity of ∇(−I)(zn)we have

〈
∇(−I)(zn)∥∥zn

∥∥ , wn

〉

=

〈

PX0⊕(X2⊕X3)PEkn

∇(−I)(zn)∥∥zn
∥∥ , wn

〉

+

〈
∇(−I)(zn)
∥
∥zn

∥
∥2

, PX1zn

〉

−→ 0. (3.17)

We have
〈

∇(−I)(zn)∥∥zn
∥∥ , wn

〉

=
2(−I)(zn)
∥∥zn

∥∥2
+
∫2π

0

[

− 2H(t, zn)
∥∥zn

∥∥2
+
Hz(t, zn) ·wn∥∥zn

∥∥

]

dt, (3.18)

where zn = ((zn)1, . . . , (zn)2n). Passing to the limit, we get

lim
n→∞

∫2π

0

[
2H(t, zn)
∥∥zn

∥∥2
− Hz(t, zn) ·wn∥∥zn

∥∥

]

dt = 0. (3.19)

SinceH andHz(t, zn) ·zn are bounded and ‖zn‖ → ∞ inΩ,w0 = 0. On the other hand, we have

〈

PX0⊕(X2⊕X3)PEkn

∇(−I)(zn)∥∥zn
∥∥ , wn

〉

=
∫2π

0

[

− ẇn · Jwn +

(

PX0⊕(X2⊕X3)PEkn

Hz(t, zn)∥∥zn
∥∥

)

·wn

]

dt.

(3.20)

Moreover, we have

〈

PX0⊕(X2⊕X3)PEkn

∇(−I)(zn)∥∥zn
∥∥ , P+wn − P−wn

〉

= −∥∥PX2⊕X3P
+wn

∥∥2 − ∥∥PX0P
−wn

∥∥2 −
∫2π

0
PX0⊕(X2⊕X3)PEkn

Hz(t, zn)∥∥zn
∥∥ · (P+wn − P−wn

)
dt.

(3.21)

Since wn converges to 0 weakly and Hz(t, zn) · (P+wn − P−wn) is bounded, ‖PX2⊕X3P
+wn‖2 +

‖PX0P
−wn‖2 → 0. Since ‖PX1wn‖2 → 0, wn converges to 0 strongly, which is a contradiction.

Hence, (zn)n is bounded. Up to a subsequence, we can suppose that zn converges to z0 for
some z0 ∈ X0 ⊕ (X2 ⊕X3). We claim that zn converges to z0 strongly. We have

〈
PX0⊕(X2⊕X3)PEkn

∇(−I)zn, P+zn − P−zn
〉

= −∥∥PX2⊕X3PEkn
P+zn

∥
∥2 − ∥

∥PX0PEkn
P−zn

∥
∥2 + PX0⊕(X2⊕X3)PEkn

∫2π

0
Hz(t, zn) ·

(
P+zn − P−zn

)
.

(3.22)

By (H1) and the boundedness of Hz(t, zn)(P+zn − P−zn),

∥∥PX2⊕X3PEkn
P+zn

∥∥2 +
∥∥PX0PEkn

P−zn
∥∥2 −→ PX0⊕(X2⊕X3)PEkn

∫2π

0
Hz(t, z) ·

(
P+z − P−z

)
. (3.23)
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That is, ‖PX2⊕X3PEkn
P+zn‖2 + ‖PX0PEkn

P−zn‖2 converges. Since ‖PX1zn‖2 → 0, ‖zn‖2 converges,
so zn converges to z strongly. Therefore, we have

grad−
C(−Ĩ)(z̃) = grad−

C(−I)(z) = lim
n→∞

PEkn
grad−

C(−I)(zn) = lim
n→∞

PEkn
grad−

C(−Ĩ)(z̃n) = 0. (3.24)

So we proved the first case.
We consider the case PX1zn = 0, that is, zn ∈ X0⊕ (X2⊕X3). Then z̃n ∈ ∂C, for all n. In this

case, zn = Ψ(z̃n) ∈ X0 ⊕ (X2 ⊕ X3) and PX0⊕(X2⊕X3)∇(−I)(zn) → 0. Thus, by the same argument
as the first case, we obtain the conclusion. So we prove the lemma.

Proposition 3.4. Assume that H satisfies the conditions (H1), (H2)′, (H3), (H4). Then there exists a
number δ1 > 0 such that for any α and β with j1 − 1 < α < j1 < β < j2 + δ1 < j2 + 1 = j3 and α > 0,
there exist at least two nontrivial critical points zi, i = 1, 2, in X1 for the functional I such that

inf
z∈Δ

R(1) (S1(ρ),X2⊕X3)
I(z) ≤ I(zi) ≤ sup

z∈S
r(1) (X0⊕X1)

I(z) < 0 < inf
z∈Σ

R(1) (S1(ρ),X2⊕X3)
I(z), (3.25)

where ρ, r(1), and R(1) are introduced in Lemma 3.1.

Proof. First, we will find two nontrivial critical points for −Ĩ. By Lemma 3.1, −Ĩ satisfies the
torus-sphere variational linking inequality, that is, there exist δ1 > 0, ρ > 0, r(1) > 0, and R(1) > 0
such that r(1) < R(1), and for any α and β with j1 − 1 < α < j1 < β < j2 + δ1 < j2 + 1 = j3 and α > 0

sup
z̃∈Σ̃

R(1)

(−Ĩ)(z̃) = sup
z∈Σ

R(1) (S1(ρ),X2⊕X3)
(−I)(z) < 0 < inf

z∈S
r(1) (X0⊕X1)

(−I)(z) = inf
z̃∈S̃

r(1)

(−Ĩ)(z̃),

sup
z̃∈˜Δ

R(1)

(−Ĩ)(z̃) = sup
z∈Δ

R(1) (S1(ρ),X2⊕X3)
(−I)(z) = − inf

z∈Δ
R(1) (S1(ρ)X2⊕X3)

I(z) < ∞,

inf
z̃∈B̃

r(1)

(−Ĩ)(z̃) = inf
z∈B

r(1) (X0⊕X1)
(−I)(z) = − sup

z∈B
r(1) (X0⊕X1)

I(z) > −∞.

(3.26)

By Lemma 3.3, −Ĩ satisfies the (P.S.)∗c̃ condition with respect to (C̃n)n for every real number c̃
such that

0 < inf
z̃∈S̃

r(1)

(−Ĩ)(z̃) ≤ c̃ ≤ sup
z̃∈˜Δ

R(1)

(−Ĩ)(z̃). (3.27)

Thus by Theorem 2.5, there exist two critical points z̃1, z̃2 for the functional −Ĩ such that

inf
z̃∈S̃

r(1)

(−Ĩ)(z̃) ≤ (−Ĩ)(z̃i) ≤ sup
z̃∈˜Δ

R(1)

(−Ĩ)(z̃), i = 1, 2. (3.28)

Setting zi = Ψ̃(z̃i), i = 1, 2, we have

0 < inf
z∈S

r(1)

(−I)(z) = inf
z̃∈S̃

r(1)

(−Ĩ)(z̃) ≤ (−I)(z1) ≤ (−I)(z2) ≤ sup
z̃∈˜Δ

R(1)

(−Ĩ)(z̃) = sup
z∈Δ

R(1)

(−I)(z).

(3.29)
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We claim that z̃i /∈ ∂C̃, that is zi /∈ X0 ⊕ (X2 ⊕ X3), which implies that zi are the critical points
for −I in X1, so zi are the critical points for I in X1. For this we assume by contradiction that
zi ∈ X0 ⊕ (X2 ⊕ X3). From (3.12), PX0⊕(X2⊕X3)∇(−I)(zi) = 0, namely, zi, i = 1, 2, are the critical
points for (−I)|X0⊕(X2⊕X3). By Lemma 3.2, −I(zi) = 0, which is a contradiction for the fact that

0 < inf
z∈S

r(1) (X0⊕X1)
(−I)(z) ≤ (−I)(zi) ≤ sup

z∈Δ
R(1) (S1(ρ),X2⊕X3)

(−I)(z). (3.30)

Lemma 3.2 implies that there is no critical point z ∈ X0 ⊕ (X2 ⊕X3) such that

0 < inf
z∈S

r(1) (X0⊕X1)
(−I)(z) ≤ (−I)(z) ≤ sup

z∈Δ
R(1) (S1(ρ),X2⊕X3)

(−I)(z). (3.31)

Hence, zi /∈ X0 ⊕ (X2 ⊕X3), i = 1, 2. This proves Proposition 3.4.

Lemma 3.5 (second sphere-torus variational linking). Assume thatH satisfies the conditions (H1),
(H3), (H4), and the condition

(H2)′′ suppose that there exist γ > 0 and τ > 0 such that j2 < γ < β and

H(t, z) ≥ 1
2
γ‖z‖2 − τ ∀(t, z) ∈ R1 × R2n. (3.32)

Then there exist δ2 > 0, ρ > 0, r(2) > 0, and R(2) > 0 such that r(2) < R(2), and for any α and β with
j1 − 1 < α < j1 < j2 < β < j2 + δ2 < j2 + 1 = j3 and α > 0,

sup
z∈S

r(2) (X0⊕X1⊕X2)
I(z) < 0 < inf

Σ
R(2) (S2(ρ),X3)

I(z),

inf
z∈Δ

R(2) (S2(ρ),X3)
I(z) > −∞, sup

z∈B
r(2) (X0⊕X1⊕X2)

I(z) < ∞.
(3.33)

Proof. Let z = (z0 + z1) + z2 ∈ (X0 ⊕X1) ⊕X2. By (H2)′′, we have

I(z) =
1
2

∫2π

0
ż · Jz dt −

∫2π

0
H
(
t, z(t)

)
dt ≤ 1

2
‖z‖2 − γ

2
‖z‖2L2 + τ ≤ 1

2
(j2 − γ)‖z‖2L2 + τ (3.34)

for some τ . Since j2 − γ < 0, there exists r(2) > 0 such that if z ∈ Sr(2)(X0 ⊕X1 ⊕X2), then I(z) < 0.
Thus we have sup z∈S

r(2) (X0⊕X1⊕X2)I(z) < 0. Moreover, if z ∈ Br(2) (X0⊕X1⊕X2), then I(z) < τ < ∞,
so we have sup z∈B

r(2) (X0⊕X1⊕X2)I(z) < ∞. Next, let z = z2 + z3 ∈ X2 ⊕ X3 with z2 ∈ S2(ρ), where
ρ is a small number. We also let j1 − 1 < α < j1 < j2 < β < j2 + δ < j2 + 1 = j3 and α > 0. Then
X2 ⊕X3 ⊂ E+ and P−(z2 + z3) = 0. By (H1), there exists τ ′ > 0 such that

I(z) =
1
2

∫2π

0
ż · Jz dt −

∫2π

0
H(t, z(t))dt

≥ 1
2
∥∥P+(z2 + z3)

∥∥2 − β

2
∥∥P+(z2 + z3)

∥∥2
L2 − τ ′

=
1
2
∥∥P+z2

∥∥2 +
1
2
∥∥P+z3

∥∥2 − β

2
∥∥P+z2

∥∥2
L2 −

β

2
∥∥P+z3

∥∥2
L2 − τ ′

≥ 1
2

(
1 − β

j2

)
ρ2 +

1
2
(j3 − β)

∥∥P+z3
∥∥2
L2 − τ ′.

(3.35)
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Since 1 − β/j2 < 0 and j3 − β > 0, there exist a small number δ2 > 0 and R(2) > 0 with δ2 < δ and
R(2) > r(2) such that if j1−1 < α < j1 < j2 < β < j2+δ2 < j2+1 = j3 and z = z2+z3 ∈ ΣR(2) (S2(ρ), X3),
then I(z) > 0. Thus we have inf z∈Σ

R(2) (S2(ρ),X3)I(z) > 0.
Moreover, if z ∈ ΔR(2) (S2(ρ), X3), then I(z) ≥ (1/2)(1 − β/j2)ρ2 − τ ′ > −∞. Thus we have

inf Δ
R(2) (S2(ρ),X3)I(z) > −∞. Thus we prove the lemma.

Lemma 3.6. For any Λ ∈]j2, j3[ there exists a constant τ > 0 such that for any α and β with j1 − 1 <
α < j1 < j2 ≤ β ≤ Λ < j2 + 1 = j3 and α > 0, if z is a critical point for I|(X0⊕X1)⊕X3 with 0 ≤ I(z) ≤ τ ,
then z = 0.

Proof. By contradiction, we can suppose that there existΛ > 0, a sequence (αn)n, (βn)n such that
αn → α, βn → β with α ∈]j1 − 1, j1[, β ∈ [j2 ·Λ], and a sequence (zn)n in (X0 ⊕X1)⊕X3 such that
I(zn) → 0 and P(X0⊕X1)⊕X3∇I(zn) = 0. We claim that (zn)n is bounded. If we do not suppose that
‖zn‖ → +∞, let us set wn = zn/‖zn‖. We have up to a subsequence, that wn ⇀ w0 weakly for
some w0 ∈ (X0 ⊕X1) ⊕X3. Furthermore,

0 =
〈∇I(zn), PX0⊕X1zn

〉
=
∥∥P+PX0⊕X1zn

∥∥2 − ∥∥P−PX0⊕X1zn
∥∥2 − 〈

Hz(t, zn), PX0⊕X1zn
〉
, (3.36)

so we have
∥∥PX0⊕X1zn

∥∥2 =
〈
Hz(t, zn), PX0⊕X1zn

〉
. (3.37)

Moreover,

0 =
〈∇I(zn), PX3zn

〉
= ‖PX3zn‖2 −

〈
Hz(t, zn), PX3zn

〉
, (3.38)

so we have
∥∥PX3zn

∥∥2 =
〈
Hz(t, zn), PX3zn

〉
. (3.39)

Adding (3.37) and (3.39), we have
∥∥zn

∥∥2 =
〈
Hz(t, zn), zn

〉
. (3.40)

From (3.40) we have

‖w0‖2 = lim
n→∞

〈
Hz(t, zn), wn

〉
. (3.41)

We also have

0 =
〈
P(X0⊕X1)⊕X3∇I(zn), zn

〉
= 2I(zn) +

∫2π

0

[ − 2H(t, zn) +Hz(t, zn) · zn
]
dt. (3.42)

Dividing by ‖zn‖ and going to the limit, we have

lim
n→∞

∫2π

0
Hz(t, zn) ·wn = 0. (3.43)

Thus
∥∥w0

∥∥2 = 0, (3.44)

which is a contradiction since ‖w0‖ = 1. So (zn)n is bounded and we can suppose that zn ⇀ z
for z ∈ (X0 ⊕X1) ⊕X3. From (3.42), we have

〈
Hz(t, zn), zn

〉
=
∫2π

0
2H(t, zn)dt. (3.45)
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From (3.40),

lim
n→∞

‖zn‖2 = lim
n→∞

〈
Hz(t, zn), zn

〉
= lim

n→∞

∫2π

0
2H(t, zn)dt =

∫2π

0
2H(t, z)dt. (3.46)

Thus, zn converges to z strongly. We claim that z = 0. Assume that z/=0. By (H1) α‖z‖2L2 + c1 <

2
∫2π
0 H(t, z)dt < β‖z‖2L2 + c2, for some c1 and c2. If z ∈ X0 ⊕ X1 with ‖PX0⊕X1z‖2 ≥ |j|‖z‖2L2 for

j < 0 and |j| > β,

|j|∥∥PX0⊕X1z
∥
∥2
L2 ≤

∥
∥PX0⊕X1z

∥
∥2 ≤ β

∥
∥PX0⊕X1z

∥
∥2
L2 + c2. (3.47)

If z ∈ X3, ‖PX3z‖2 ≥ j3‖PX3z‖2L2 , and

j3
∥∥PX3z

∥∥2
L2 ≤

∥∥PX3z
∥∥2 ≤ β

∥∥PX3z
∥∥2
L2 + c2. (3.48)

Thus, we have

(|j| − β
)∥∥PX0⊕X1z

∥∥2
L2 + (j3 − β)

∥∥PX3z
∥∥2
L2 − 2c2 ≤ 0, (3.49)

which is absurd because of |j| > β and j3 > β. Thus z = 0. We proved the lemma.

Let PX2 be the orthogonal projection from E onto X2 and

Č =
{
z ∈ E | ∥∥PX2z

∥∥ ≥ 1
}
. (3.50)

Then Č is the smooth manifold with boundary. Let Čn = Č ∩ En. Let us define a functional
Ψ̌ : E \ {(X0 ⊕X1) ⊕X3} → E by

Ψ̌(z) = z − PX2z∥∥PX2z
∥∥ = P(X0⊕X1)⊕X3z +

(

1 − 1
∥∥PX2z

∥∥

)

PX2z. (3.51)

We have

∇Ψ̌(z)(w) = w − 1
∥∥PX2z

∥∥

(

PX2w −
〈

PX2z∥∥PX2z
∥∥ , w

〉
PX2z∥∥PX2z

∥∥

)

. (3.52)

Let us define the functional Ǐ : Č → R by

Ǐ = I ◦ Ψ̌. (3.53)

Then Ǐ ∈ C1,1
loc. We note that if ž is the critical point of Ǐ and lies in the interior of Č, then z = Ψ̌(ž)

is the critical point of I. We also note that

∥∥grad−
Č
Ǐ(ž)

∥∥ ≥ ∥∥P(X0⊕X1)⊕X3∇I
(
Ψ̌(ž)

)∥∥ ∀ž ∈ ∂Č. (3.54)
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Let us set

Šr(2) = Ψ̌
−1(

Sr(2)(X0 ⊕X1 ⊕X2)
)
,

B̌r(2) = Ψ̌
−1(

Br(2) (X0 ⊕X1 ⊕X2)
)
,

Σ̌R(2) = Ψ̌
−1(

ΣR(2) (S2(ρ), X3)
)
,

Δ̌R(2) = Ψ̌
−1(

ΔR(2) (S2(ρ), X3)
)
.

(3.55)

We note that Šr(2) , B̌r(2) , Σ̌R(2) , and Δ̌R(2) have the same topological structure as Sr(2) , Br(2) , ΣR(2) ,
and ΔR(2) , respectively.

We have the following lemma whose proof has the same arguments as that of
Lemma 3.5 except the space (X0 ⊕X1) ⊕X3, X0 ⊕X1, X3 instead of the space X0 ⊕ (X2 ⊕X3), X0,
X2 ⊕X3.

Lemma 3.7. −Ǐ satisfies the (P.S.)∗č condition with respect to (Čn)n for every real number č such that

0 < inf
ž∈Ψ̌−1

(S
r(2) (X0⊕X1⊕X2))

(−Ĩ)(ž) ≤ č ≤ sup
z̆∈Ψ̆−1(Δ

R(2) (S2(ρ),X3))

(−Ĩ)(ž), (3.56)

where ρ, r(2), and R(2) are introduced in Lemma 3.5.

Proposition 3.8. Assume thatH satisfies the conditions (H1), (H2)′′, (H3), and (H4). Then there exists
a small number δ2 > 0 such that for any α and β with j1 − 1 < α < j1 < j2 < β < j2 +δ < j2 + 1 = j3 and
α > 0, there exist at least two nontrivial critical pointswi, i = 1, 2, in X2 for the functional I such that

inf
z∈Δ

R(2) (S2(ρ),X3)
I(z) ≤ I(wi) ≤ sup

z∈S
r(2) (X0⊕X1⊕X2)

I(z) < 0 < inf
z∈Σ

R(2) (S2(ρ),X3)
I(z), (3.57)

where ρ, r(2), and R(2) are introduced in Lemma 3.5.

Proof. It suffices to find the critical points for −Ǐ. By Lemma 3.5, −Ǐ satisfies the torus-sphere
variational linking inequality, that is, there exist δ2 > 0, ρ > 0, r(2) > 0, and R(2) > 0 such that
r(2) < R(2), and for any α and β with j1 − 1 < α < j1 < j2 < β < j2 + δ2 < j2 + 1 = j3,

sup
ž∈Σ̌

R(2)

(−Ĩ)(ž) = sup
z∈Σ

R(2) (S2(ρ),X3)
(−I)(z) < 0 < inf

z∈S
r(2) (X0⊕X1⊕X2)

(−I)(z) = inf
ž∈Š

r(2)

(−Ĩ)(ž),

sup
ž∈Δ̌

R(2)

(−Ĩ)(ž) = sup
z∈Δ

R(2) (S2(ρ),X3)
(−I)(z) = − inf

z∈Δ
R(2) (S2(ρ),X3)

I(z) < ∞,

inf
ž∈B̌

r(2)

(−Ĩ)(ž) = inf
z∈B

r(2) (X0⊕X1⊕X2)
(−I)(z) = − sup

z∈B
r(2) (X0⊕X1⊕X2)

I(z) > −∞.

(3.58)

By Lemma 3.7, −Ǐ satisfies the (P.S.)∗č condition with respect to (Čn)n for every real number č
such that

0 < inf
ž∈Š

r(2)

(−Ĩ)(ž) ≤ č ≤ sup
ž∈Δ̌

R(2)

(−Ĩ)(ž). (3.59)
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Then by Theorem 2.5, there exist two critical points w̌1, w̌2 for the functional −Ǐ such that

inf
w̌∈Š

r(2)

(−Ĩ)(w̌) ≤ (−Ĩ)(w̌i

) ≤ sup
w̌∈Δ̌

R(2)

(−Ĩ)(w̌), i = 1, 2. (3.60)

Setting wi = Ψ̌(w̌i), i = 1, 2, we have

0 < inf
w∈S

r(2)

(−I)(w)= inf
w̌∈Š

r(2)

(−Ĩ)(w̌)≤(−I)(w1) ≤ − I(w2)≤ sup
w̌∈Δ̌

R(2)

(−Ĩ)(w̌) = sup
w∈Δ

R(2) (S2(ρ),X3)
(−I)(w).

(3.61)

We claim that w̌i /∈ ∂Č, that is wi /∈ (X0 ⊕X1) ⊕X3, which implies that wi are the critical points
for −I, so wi are the critical points for I. For this we assume by contradiction that wi ∈ (X0 ⊕
X1) ⊕ X3. From (3.54), P(X0⊕X1)⊕X3∇(−I)(wi) = 0, namely, wi, i = 1, 2, are the critical points for
(−I)|(X0⊕X1)⊕X3

. By Lemma 3.6, −I(wi) = 0, which is a contradiction for the fact that

0 < inf
w∈S

r(2) (X0⊕X1⊕X2)
(−I)(w) ≤ (−I)(wi) ≤ sup

w∈Δ
R(2) (S2(ρ),X3)

(−I)(w). (3.62)

It follows from Lemma 3.6 that there is no critical point w ∈ (X0 ⊕X1) ⊕X3 such that

0 < inf
w∈S

r(2) (X0⊕X1⊕X2)
(−I)(w) ≤ (−I)(w) ≤ sup

w∈Δ
R(2) (S2(ρ),X3)

(−I)(w). (3.63)

Hence, wi /∈ (X0 ⊕X1) ⊕X3, i = 1, 2. This proves Proposition 3.8.

Proof of Theorem 1.1. Assume that H satisfies conditions (H1)–(H4). By Proposition 3.4, there
exist δ1 > 0, ρ > 0, r(1) > 0, and R(1) > 0 such that for any α and β with j1 − 1 < α < j1 < β <
j2 + δ1 < j2 + 1 = j3, (1.1) has at least two nontrivial solutions zi, i = 1, 2, in X1 for the functional
I such that

inf
z∈Δ

R(1) (S1(ρ),X2⊕X3)
I(z) ≤ I(zi) ≤ sup

z∈S
r(1) (X0⊕X1)

I(z) < 0 < inf
z∈Σ

R(1) (S1(ρ),X2⊕X3)
I(z). (3.64)

By Proposition 3.8, there exist δ2 > 0, ρ > 0, r(2) > 0, and R(2) > 0 such that for any α and β with
j1 − 1 < α < j1 < j2 < β < j2 + δ2 < j2 + 1 = j3 and α > 0, (1.1) has at least two nontrivial solutions
wi, i = 1, 2, in X2 for the functional I such that

inf
z∈Δ

R(2) (S2(ρ),X3)
I(z) ≤ I(wi) ≤ sup

z∈S
r(2) (X0⊕X1⊕X2)

I(z) < 0 < inf
z∈Σ

R(2) (S2(ρ),X3)
I(z). (3.65)

Let

δ = min {δ1, δ2}. (3.66)

Then for any α and β with j1 − 1 < α < j1 < j2 < β < j2 + δ < j2 + 1 = j3 and α > 0, (1.1) has at
least four nontrivial solutions, two of which are in X1 and two of which are in X2.
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4. Proof of Theorem 1.2

Assume thatH satisfies conditions (H1)–(H4) with α < β < 0. Let us set

X0≡span{(sin jt)ek + (cos jt)ek+n, (cos jt)ek − (sin jt)ek+n|j ≥ − j1 + 1, j ∈ N, 1 ≤ k ≤ n},
X1≡span{(sin jt)ek + (cos jt)ek+n, (cos jt)ek − (sin jt)ek+n|j ≥ − j1, j ∈ N, 1 ≤ k ≤ n},
X2≡span{(sin jt)ek + (cos jt)ek+n, (cos jt)ek − (sin jt)ek+n|j = −j2, j ∈ N, 1 ≤ k ≤ n},
X3≡span

{{
e1, e2, . . . , e2n, (sin jt)ek − (cos jt)ek+n, (cos jt)ek + (sin jt)ek+n | j >0, j ∈N, 1≤k≤n}

∪ {
(sin jt)ek + (cos jt)ek+n, (cos jt)ek − (sin jt)ek+n | j ≤ − j2 − 1 = −j3, j ∈ N, 1 ≤ k ≤ n

}}
.

(4.1)

Then the space E is the topological direct sum of the subspacesX0,X1,X2, andX3, where
X1 and X2 are finite dimensional subspaces.

Proof of Theorem 1.2. By the same arguments as that of the proof of Theorem 1.1, there exist
δ > 0, ρ > 0, r(1) > 0, R(1), r(2) > 0, and R(2) > 0 such that for any α and β with j1 − 1 < α < j1 <
j2 < β < j2 + δ, (1.1) has at least four nontrivial solutions, two of which are nontrivial solutions
zi, i = 1, 2, in X1 with

inf
z∈Δ

R(1) (S12(ρ),X3)
I(z) ≤ I(zi) ≤ sup

z∈S
r(1) (X0⊕X1)

I(z) < 0 < inf
z∈Σ

R(1) (S12(ρ),X3)
I(z), (4.2)

and two of which are nontrivial solutions wi, i = 1, 2,in X2 with

inf
z∈Δ

R(2) (S2(ρ),X3)
I(z) ≤ I(wi) ≤ sup

z∈S
r(2) (X0⊕X1⊕X2)

I(z) < 0 < inf
z∈Σ

R(2) (S2(ρ),X3)
I(z). (4.3)
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