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Abstract
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1 Introduction
The Duffing equation plays an important role in the study of mechanical systems.

There are multiple forms of the Duffing equation, ranging from dampening to forcing

terms. This equation possesses the qualities of a simple harmonic oscillator, a non-

linear oscillator, and has indeed an ability to exhibit chaotic behavior. Chaos can be

defined as disorder and confusion. In physics, chaos is defined as behavior so unpre-

dictable as to appear random, allowing great sensitivity to small initial conditions. The

chaotic behavior can emerge in a system as simple as the logistic map. In that case,

the “route to chaos” is called period-doubling. In practice, one would like to under-

stand the route to chaos in systems described by partial differential equations such as

flow in a randomly stirred fluid. This is, however, very complicated and difficult to

treat either analytically or numerically. The Duffing equation is found to be an appro-

priate candidate for describing chaos in dynamic systems. The advantage of a pseudo-

chaotic equation like the Duffing equation is that it allows control of the amount of

chaos it exhibits. Chaotic oscillators are important tools for creating and testing mod-

els that are more realistic. This is why the Duffing equation is of great interest. The

use of the Duffing equation aids in the dynamic behavior of chaos and bifurcation,

which studies how small changes in a function can cause a sudden change in behavior

[1]. Another important application of the Duffing equation is in the field of the predic-

tion of diseases. A careful measurement and analysis of a strongly chaotic voice has

the potential to serve as an early warning system for more serious chaos and possible

onset of disease. This chaos is with the help of the Duffing equation. In fact, the
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success at analyzing and predicting the onset of chaos in speech and its simulation by

equations such as the Duffing equation has enhanced the hope that we might be able

to predict the onset of arrhythmia and heart attacks someday [2].

The Duffing equation is a mathematical representation of the oscillator. Both the

equation and oscillator are prone to many output waveforms. One of the simplest

waveforms includes simple harmonic motion like a pendulum. Other waveforms are

considerably more complex and can quickly be described as shear oscillatory chaos.

The Duffing equation can be a forced or unforced damped chaotic harmonic oscillator.

Exact solutions of second-order nonlinear differential equations like the forced Duffing

equation are rarely possible due to the possible chaotic output. There do exist a num-

ber of powerful procedures for obtaining approximate solutions of nonlinear problems

such as Galerkin’s method, expansion methods, dynamic programming, iterative tech-

niques, the method of upper and lower bounds, and Chapligin method to name a few.

The monotone iterative technique coupled with the method of upper and lower solu-

tions [3] manifests itself as an effective and flexible mechanism that offers theoretical

as well as constructive existence results in a closed set, generated by the lower and

upper solutions. In general, the convergence of the sequence of approximate solutions

given by the monotone iterative technique is at most linear. To obtain a sequence of

approximate solutions converging quadratically, we use the method of quasilineariza-

tion. The origin of the quasilinearization lies in the theory of dynamic programming

[4,5]. Agarwal [6] discussed quasilinearization and approximate quasilinearization for

multipoint boundary value problems. In fact, the quasilinearization technique is a var-

iant of Newton’s method. This method applies to semilinear equations with convex

(concave) nonlinearities and generates a monotone scheme whose iterates converge

quadratically to a solution of the problem at hand. The nineties brought new dimen-

sions to this technique when Lakshmikantham [7,8] generalized the method of quasili-

nearization by relaxing the convexity assumption. This development was so significant

that it attracted the attention of many researchers, and the method was extensively

developed and applied to a wide range of initial and boundary value problems for dif-

ferent types of differential equations. A detailed description of the quasilinearization

method and its applications can be found in the monograph [9] and the papers [10-26]

and the references therein.

In this paper, we study a nonlinear nonlocal three-point boundary value problem of

the forced Duffing equation with mixed nonlinearities given by

x′′(t) + λx′(t) = N(t, x(t)), t ∈ J = [0, 1], λ ∈ R − {0}, (1:1)

px(0) − qx′(0) = g1(x(σ )), px(1) + qx′(1) = g2(x(σ )), 0 < σ < 1, p, q > 0, (1:2)

where N(t, x) Î C[J × ℝ, ℝ] is such that

N(t, x) = f (t, x) + k(t, x) +H(t, x), (1:3)

and gi: ℝ ® ℝ (i = 1,2) are given continuous functions. The details of such a decom-

position can be found in Section 1.5 of the text [9]. In (1.3), it is assumed that f(t,x) is

nonconvex, k(t,x) is nonconcave, and H(t,x) is a Lipschitz function:

H(t, x) − H(t, y) ≥ −L(x − y), x ≥ y, x, y ∈ R, L > 0.
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A quasilinearization technique due to Lakshmikantham [9] is applied to obtain an

analytic approximation of the solution of the problem (1.1-1.2). In fact, we obtain

sequences of upper and lower solutions converging monotonically and quadratically to

a unique solution of the problem at hand. It is worth mentioning that the forced Duff-

ing equation with mixed nonlinearities has not been studied so far.

2 Preliminaries
As argued in [12], the solution x(t) of the problem (1.1-1.2) can be written in terms of

the Green’s function as

x(t) = g1(x(σ ))
( (p − qλ)e−λ − p e−λt

p[(p − qλ)e−λ − (p + qλ)]

)

+ g2(x(σ ))
( p e−λt − (p + qλ)
p [(p − λq) e−λ − (p + λq)]

)
+

1∫
0

G(t, s)N(s, x(s))ds,

where

G(t, s) =
p eλs

λ[(p + qλ) eλ − (p − qλ)]

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
eλ(1−s) − (p − qλ)

p

)(
e−λt − (p + qλ)

p

)
, if 0 ≤ t ≤ s ≤ 1,

(
eλ(1−t) − (p − qλ)

p

)(
e−λs − (p + qλ)

p

)
, if 0 ≤ s ≤ t ≤ 1.

Observe that G(t,s) < 0 on [0,1] × [0,1].

Definition 2.1. We say that a Î C2[J, ℝ] is a lower solution of the problem (1.1-1.2)

if

α′′(t) + λα′(t) ≥ N(t,α), t ∈ J,

pα(0) − qα′(0) ≤ g1(α(σ )), pα(1) + qα′(1) ≤ g2(α(σ )),

and b Î C2[J, ℝ] will be an upper solution of the problem (1.1-1.2) if the inequalities

are reversed in the definition of lower solution.

Now we state some basic results that play a pivotal role in the proof of the main

result. We do not provide the proof as the method of proof is similar to the one

described in the text [9].

Theorem 2.1. Let a and b be lower and upper solutions of (1.1-1.2), respectively.

Assume that

(i) fx(t,x) + kx(t,x) - L > 0 for every (t,x) Î J × ℝ.

(ii) g1 and g2 are continuous on ℝ satisfying the one-sided Lipschitz condition:

gi(x) − gi(y) ≤ Li(x − y), 0 ≤ Li < 1, i = 1, 2.

Then a(t) ≤ b(t), t Î J.

Theorem 2.2. Let a and b be lower and upper solutions of (1.1-1.2), respectively,

such that a(t) ≤ b(t), t Î J. Then, there exists a solution x(t) of (1.1-1.2) such that a(t)
≤ x(t) ≤ b(t), t Î J.

3 Main result
Theorem 3.1. Assume that

(A1) a0, b0 Î C2[J, ℝ] are lower and upper solutions of (1.1-1.2), respectively.
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(A2) N Î C[J × ℝ, ℝ] be such that

N(t, x) = f (t, x) + k(t, x) +H(t, x),

where fx(t, x), kx(t, x), fxx(t, x), kxx(t, x) exist and are continuous, and for continuous

functions j, c,(fxx(t, x) + jxx(t, x)) ≥ 0, (kxx(t, x) + cxx(t, x)) ≤ 0 with jxx ≥ 0, cxx ≤
0 for every (t, x) Î S, where S = {(t, x) Î J × ℝ: a0(t) ≤ x(t) ≤ b0(t)}. H(t, x) satisfies
the one-sided Lipschitz condition:

H(t, x) − H(t, y) ≥ −L(x − y), x ≥ y, x, y ∈ R,

where L > 0 is a Lipschitz constant and fx(t, x) + kx(t, x) - L > 0 for every (t, x) Î S.

(A3) For i = 1, 2, gi, g
′
i, g

′′
i are continuous on ℝ satisfying 0 ≤ g

′
i ≤ 1 and

(g
′′
i (x) + ψ

′′
i (x)) ≤ 0 with ψ ii

i ≤ 0 on ℝ for some continuous functions ψi(x).

Then, there exist monotone sequences {an} and {bn} that converge in the space of

continuous functions on J quadratically to a unique solution x(t) of the problem (1.1-

1.2).

Proof. Let us define F: J × ℝ ® ℝ by F(t, x) = f(t, x) + j(t, x), K: J × ℝ ® ℝ by K(t,

x) = k(t, x) + c(t, x), Gi: ℝ ® ℝ by Gi(x) = gi(x) + ψi(x), i = 1, 2. By the assumption

(A2) and the generalized mean value theorem, we get

f (t, x) ≥ f (t, y) + Fx(t, y)(x − y) − φ(t, x) + φ(t, y). (3:1)

k(t, x) ≥ k(t, y) + Kx(t, x)(x − y) + ψ(t, y) − ψ(t, x), (3:2)

Interchanging x and y, (3.1) and (3.2) take the form

f (t, x) ≤ f (t, y) + Fx(t, x)(x − y) − φ(t, x) + φ(t, y), (3:3)

k(t, x) ≤ k(t, y) + Kx(t, y)(x − y) − χ(t, x) + χ(t, y). (3:4)

By the assumption (A3), we obtain

gi(x) ≥ gi(y) + G′
i(x)(x − y) + ψi(y) − ψi(x), i = 1, 2, (3:5)

which, on interchanging x and y yields

gi(x) ≤ gi(y) + G′
i(y)(x − y) + ψi(y) − ψi(x), i = 1, 2. (3:6)

We set

A(t, x;α0,β0) = f (t,α0) + k(t,α0) +H(t, x)

+ [Fx(t,β0) + Kx(t,α0) − φx(t,α0) − χx(t,β0)](x − α0),

B(t, x;α0,β0) = f (t,β0) + k(t,β0) +H(t, x)

+ [Fx(t,β0) + Kx(t,α0) − φx(t,α0) − χx(t,β0)](x − β0),
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and for i = 1,2,

hi(x(σ );α0,β0) = gi(α0(σ )) + G′
i(β0(σ ))(x(σ ) − α0(σ )) + ψi(α0(σ )) − ψi(x(σ )),

ĥi(x(σ );β0) = gi(β0(σ )) + G′
i(β0(σ ))(x(σ ) − β0(σ )) + ψi(β0(σ )) − ψi(x(σ )).

Observe that

A(t,α0;α0,β0) = N(t,α0), N(t, x) ≤ A(t, x;α0,β0), (3:7)

hi(α0(σ );α0,β0) = gi(α0(σ )), gi(x) ≥ hi(x(σ );α0,β0), i = 1, 2, (3:8)

and

B(t,β0;α0,β0) = N(t,β0), N(t, x) ≥ B(t, x;α0,β0), (3:9)

ĥi(β0(σ );β0) = gi(β0(σ )), gi(x) ≤ ĥi(x(σ );β0), i = 1, 2. (3:10)

Now, we consider the problem

x′′(t) + λx′(t) = A(t, x;α0,β0), t ∈ J, (3:11)

px(0) − qx′(0) = h1(x(σ );α0,β0), px(1) + qx′(1) = h2(x(σ );α0,β0). (3:12)

Using (A1), (3.7) and (3.8), we obtain

α′′
0(t) + λα′

0(t) ≥ N(t,α0(t)) = A(t,α0;α0,β0),

pα0(0) − qα′
0(0) ≤ g1(α0(σ )) = h1(α0(σ );α0,β0),

pα0(1) + qα′
0(1) ≤ g2(α0(σ )) = h2(α0(σ );α0,β0),

and

β ′′
0(t) + λβ ′

0 ≤ N(t,β0(t)) ≤ A(t,β0;β0,β0),

pβ0(0) − qβ ′
0(0) ≥ g1(β0(σ )) ≥ h1(β0(σ );α0,β0),

pβ0(1) + qβ ′
0(1) ≥ g2(β0(σ )) ≥ h2(β0(σ );α0,β0),

which imply that a0 and b0 are, respectively, lower and upper solutions of (3.11-

3.12). Thus, by Theorems 2.1 and 2.2, there exists a solution a1 for the problem (3.11-

3.12) such that

α0(t) ≤ α1(t) ≤ β0(t), t ∈ J. (3:13)

Next, consider the problem

x′′(t) + λx′(t) = B(t, x;α0,β0), t ∈ J, (3:14)

px(0) − qx′(0) = ĥ1(x(σ );β0), px(1) + qx′(1) = ĥ2(x(σ );β0). (3:15)

Using (A1), (3.9) and (3.10), we get

α′′
0(t) + λα′

0(t) ≥ N(t,α0(t)) ≥ B(t,α0;α0,β0),

pα0(0) − qα′
0(0) ≤ g1(α0(σ )) ≤ ĥ1(α0(σ );β0),

pα0(1) + qα′
0(1) ≤ g2(α0(σ )) ≤ ĥ2(α0(σ );β0),
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and

β ′′
0(t) + λβ ′

0 ≤ N(t,β0(t)) = B(t,β0;α0,β0),

pβ0(0) − qβ ′
0(0) ≥ g1(β0(σ )) = ĥ1(β0(σ );β0),

pβ0(1) + qβ ′
0(1) ≥ g2(β0(σ )) = ĥ2(β0(σ );β0),

which imply that a0 and b0 are, respectively, lower and upper solutions of (3.14-

3.15). Again, by Theorems 2.1 and 2.2, there exists a solution b1 of (3.14-3.15) satisfy-

ing

α0(t) ≤ β1(t) ≤ β0(t), t ∈ J. (3:16)

Now we show that a1(t) ≤ b1(t). For that, we prove that a1(t) is a lower solution and

b1(t) is an upper solution of (1.1-1.2). Using the fact that a1(t) is a solution of (3.11-

3.12) satisfying a0(t) ≤ a1(t) ≤ b0(t) and (3.7-3.8), we obtain

α′′
1(t) + λα′

1(t) = A(t,α1;α0,β0) ≥ N(t,α1(t)),

pα1(0) − qα′
1(0) = h1(α1(σ );α0,β0) ≤ g1(α1(σ )),

pα1(1) + qα′
1(1) = h2(α1(σ );α0,β0) ≤ g2(α1(σ )).

By the above inequalities, it follows that a1 is a lower solution of (1.1-1.2).

In view of the fact that b1(t) is a solution of (3.14-3.15) together with (3.9), we get

β ′′
1(t) + λβ ′

1(t) = B(t,β1;α0,β0) ≤ N(t,β1(t)),

and by virtue of (3.10), we have

pβ1(0) − qβ ′
1(0) = ĥ1(β1(σ );β0) ≥ g1(β1(σ )),

pβ1(1) + qβ ′
1(1) = ĥ2(β1(σ );β0) ≥ g2(β1(σ )).

Thus, b1 is an upper solution of (1.1-1.2). Hence, by Theorem 2.1, it follows that

α1(t) ≤ β1(t), t ∈ J. (3:17)

Combining (3.13, 3.16) and (3.17) yields

α0(t) ≤ α1(t) ≤ β1(t) ≤ β0(t), t ∈ J.

Now, by induction, we prove that

α0(t) ≤ α1(t) ≤ · · · ≤ αn(t) ≤ αn+1(t) ≤ βn+1(t) ≤ βn(t) ≤ · · ·. ≤ β1(t) ≤ β0(t).

For that, we consider the boundary value problems

x′′(t) + λx′(t) = A(t, x;αn,βn), t ∈ J, (3:18)

px(0) − qx′(0) = h1(x(σ );αn,βn), px(1) + qx′(1) = h2(x(σ );αn,βn), (3:19)

and

x′′(t) + λx′(t) = B(t, x;αn,βn), t ∈ J, (3:20)
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px(0) − qx′(0) = ĥ1(x(σ );βn), px(1) + qx′(1) = ĥ2(x(σ );βn). (3:21)

Assume that for some n > 1, a0(t) ≤ an(t) ≤ bn(t) ≤ b0(t) and we will show that an+1

(t) ≤ bn+1(t).
Using (3.7), we have

α′′
n(t) + λα′

n(t) = A(t,αn;αn−1,βn−1) ≥ N(t,αn) = A(t,αn;αn,βn).

By (3.8), we obtain

hi(αn(σ );αn−1,βn−1) ≤ gi(αn(σ )) = hi(αn(σ );αn,βn),

which yields

pαn(0) − qα′
n(0) ≤ h1(αn(σ );αn,βn), pαn(1) + qα′

n(1) ≤ h2(αn(σ );αn,βn).

Thus, an is a lower solution of (3.18-3.19). In a similar manner, we find that bn is an

upper solution of (3.18-3.19). Thus, by Theorems 2.1 and 2.2, there exists a solution

an+1(t) of (3.18-3.19) such that an(t) ≤ an+1(t) ≤ bn(t), t Î J. Similarly, it can be proved

that an(t) ≤ bn+1(t) ≤ bn(t), t Î J, where bn+1(t) is a solution of (3.20-3.21) and an(t), bn
(t) are lower and upper solutions of (3.20-3.21), respectively. Next, we show that an+1

(t) ≤ bn+1(t).
For that, we have to show that an+1(t) and bn+1(t) are lower and upper solutions of

(1.1-1.2), respectively. Using (3.7, 3.8) together with the fact that an+1(t) is a solution

of (3.18-3.19), we get

α′′
n+1(t) + λα′

n+1(t) = A(t,αn+1;αn,βn) ≥ N(t,αn+1),

pαn+1(0) − qα′
n+1(0) = hi(αn+1(σ );αn,βn) ≤ g1(αn+1(σ )),

pαn+1(1) + qα′
n+1(1) = hi(αn+1(σ );αn,βn) ≤ g2(αn+1(σ )),

which implies that an+1 is a lower solution of (1.1-1.2). Employing a similar proce-

dure, it can be proved that bn+1 is an upper solution of (1.1-1.2). Hence, by Theorem

2.1, it follows that an+1(t) ≤ bn+1(t). Therefore, by induction, we have

α0(t) ≤ α1(t) ≤ · · · ≤ αn(t) ≤ αn+1(t) ≤ βn+1(t) ≤ βn(t) ≤ · · · ≤ β1(t) ≤ β0(t), ∀n ∈ N.

Since [0,1] is compact and the monotone convergence is pointwise, it follows that

{an} and {bn} are uniformly convergent with

lim
n→∞ αn(t) = x(t), lim

n→∞ βn(t) = y(t),

such that a0(t) ≤ x(t) ≤ y(t) ≤ b0(t), where

αn(t) = h1(αn(σ );αn−1,βn−1)
(p − qλ)e−λ − p e−λt

p[(p − qλ)e−λ − (p + qλ)]

+ h2(αn(σ );αn−1,βn−1)
(p + qλ) − p e−λt

p[(p + λq) − (p − λq)e−λ]

+

1∫
0

G(t, s)A(s,αn(s);αn−1,βn−1)ds,
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and

βn(t) = ĥ1(βn(σ );βn−1)
(p − qλ)e−λ − p e−λt

p[(p − qλ)e−λ − (p + qλ)]

+ ĥ2(βn(σ );βn−1)
(p + qλ) − p e−λt

p[(p + λq) − (p − λq)e−λ]

+

1∫
0

G(t, s)B(s,βn(s);βn−1,βn−1)ds.

By the uniqueness of the solution (which follows by the hypotheses of Theorem 2.1),

we conclude that x(t) = y(t). This proves that the problem (1.1-1.2) has a unique solu-

tion x(t) given by

x(t) = g1(x(σ ))
(p − qλ)e−λ − pe−λt

p[(p − qλ)e−λ − (p + qλ)]
+ g2(x(σ ))

(p + qλ) − pe−λt

p[(p + λq) − (p − λq)e−λ]

+

1∫
0

G(t, s)N(s, x(s))ds.

In order to prove that each of the sequences {an}, {bn} converges quadratically, we
set zn(t) = bn(t) - x(t) and rn(t) = x(t) - an(t), and note that zn ≥ 0, rn ≥ 0. We will only

prove the quadratic convergence of the sequence {rn} as that of {zn} is similar. By the

mean value theorem, we find that

r′′n+1(t) + λr′n+1(t)
= x′′(t) − α′′

n+1(t) + λ[x′(t) − α′
n+1(t)]

= [x′′(t) + λx′(t)] − [α′′
n+1(t) + λα′

n+1(t))]

= N(t, x) − A(t,αn+1,αn,βn)

= F(t, x) + K(t, x) +H(t, x) − φ(t, x) − χ(t, x) − F(t,αn)

− K(t,αn) − H(t,αn+1) + φ(t,αn) + χ(t,αn)

− [Fx(t,βn) + Kx(t,αn) − φx(t,αn) − χx(t,βn)](αn+1 − αn)

= F(t, x) + K(t, x) +H(t, x) − φ(t, x) − χ(t, x) − F(t,αn)

− K(t,αn) − H(t,αn+1) + φ(t,αn) + χ(t,αn)

− [Fx(t,αn) + Kx(t,αn) − φx(t,αn) − χx(t,βn)](rn − rn+1)

≥ Fx(t, ξ1)rn + Kx(t, ξ2)rn − Lrn+1 − φx(t, ξ3)rn − χx(t, ξ4)rn
− [Fx(t,βn) + Kx(t,αn) − φx(t,αn) − χx(t,βn)](rn − rn+1)

≥ [Fx(t,αn) − Fx(t,βn)]rn + [Kx(t, x) − Kx(t,αn)]rn
− [φx(t, x) − φx(t,αn)]rn + [χx(t,βn) − χx(t,αn)]rn
+ [−L + Fx(t,βn) + Kx(t,αn) − φx(t,αn) − χx(t,βn)]rn+1
≥ [−Fxx(t, ζ5) + χxx(t, ζ8)]rn(βn − αn) + Kxx(t, ζ6)r2n − φxx(t, ζ7)r2n
+ [−L + Fx(t,αn) + Kx(t,αn) − φx(t,αn) − χx(t,αn)]rn+1
≥ [−Fxx(t, ζ5) + χxx(t, ζ8)]rn(zn + rn) + Kxx(t, ζ6)r2n − φxx(t, ζ7)r2n

≥ [Fxx(t, ζ5) − χxx(t, ζ8)]
(−3

2
r2n − 1

2
z2n

)
+ [Kxx(t, ζ6) − φxx(t, ζ7)]r2n

≥
[−3

2
Fxx(t, ζ5) +

3
2

χxx(t, ζ8) + Kxx(t, ζ6) − φxx(t, ζ7)
]
r2n

+
[−1

2
Fxx(t, ζ5) +

1
2

χxx(t, ζ8)
]
z2n

≥ −
[
3
2
C1 +

3
2
C4 + C2 + C3

]
‖rn‖2 − 1

2
[C1 + C4]‖zn‖2

≥ − (
M1‖rn‖2 +M2‖zn‖2

)
,
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where an ≤ ζ5, ζ8 ≤ bn, an ≤ ζ6, ζ7 ≤ x, and

|Fxx| ≤ C1, |Kxx| ≤ C2, |φxx| ≤ C3, |χxx| ≤ C4, M1 =
3
2
C1 +

3
2
C4 + C2 +C3 and

M2 =
1
2
(C1 + C2).

Now we define

N1(t) =
(p − qλ)e−λ − p e−λt

p[(p − qλ)e−λ − (p + qλ)]
, N2(t) =

(p + qλ) − p e−λt

p[(p + λq) − (p − λq)e−λ]

and obtain

rn+1(t) = x(t) − αn+1(t)

= N1(t)[g1(x(σ )) − h1(αn+1(σ );αn,βn)] +N2(t)[g2(x(σ )) − h2(αn+1(σ );αn,βn)]

+

1∫
0

G(t, s)[[N(s, x(s)) − A(s,αn+1(s);αn,βn)]ds

= N1(t)[g1(x(σ )) − h1(αn+1(σ );αn,βn)] +N2(t)[g2(x(σ )) − h2(αn+1(σ );αn,βn)]

+

1∫
0

G(t, s)[r′′n+1(s) + λr′n+1(s)]ds

≤ N1(t)[g1(x(σ )) − g1(αn(σ )) − G′
1(βn(σ ))(αn+1(σ ) − αn(σ ))

− ψ1(αn(σ )) + ψ1(αn+1(σ ))] +N2(t)[g2(x(σ )) − g2(αn(σ ))

− G′
2(βn(σ ))(αn+1(σ ) − αn(σ )) − ψ2(αn(σ )) + ψ2(αn+1(σ ))]

+ (M1‖rn‖2 +M2‖zn‖2)
1∫

0

|G(t, s)|ds

≤ N1(t)[g′
1(γ1)rn − G′

1(βn(σ ))(rn − rn+1) + ψ ′
1(γ2)(rn − rn+1)]

+ N2(t)[g′
2(δ1)rn − G′

2(βn(σ ))(rn − rn+1) + ψ ′
2(δ2)(rn − rn+1)]

+ M0(M1‖rn‖2 +M2‖zn‖2).
≤ N1(t)[G′

1(γ1)rn − ψ ′
1(γ1)rn − G′

1(βn(σ ))rn + G′
1(βn(σ ))rn+1)

+ ψ ′
1(γ2)rn − ψ ′

1(γ2)rn+1)] +N2(t)[G′
2(δ1)rn − ψ ′

2(δ1)rn
− G′

2(βn(σ ))rn + G′
2(βn(σ ))rn+1) + ψ ′

2(δ2)rn − ψ ′
2(δ2)rn+1)]

+ M0(M1‖rn‖2 +M2‖zn‖2).
≤ N1(t)[(G′

1(αn(σ )) − G′
1(βn(σ )))rn − (ψ ′

1(x(σ ))rn − ψ ′
1(un(σ ))rn)

+ (G′
1(βn(σ )) − ψ ′

1(αn(σ ))rn+1] +N2(t)[G′
2(αn(σ ))rn − G′

2(βn(σ ))rn
− ψ ′

2(x(σ ))rn + ψ ′
2(αn(σ ))rn + (G′

2(βn(σ )) − ψ ′
2(αn(σ )))rn+1)]

+ M0(M1‖rn‖2 +M2‖zn‖2)
≤ N1(t)[(−G′′

1(ρ1)rn(zn + rn) − ψ ′′
1 (ρ2)r2n + g′

1(αn(σ ))rn+1]

+ N2(t)[−G′′
2(σ1)rn(zn + rn) − ψ ′′

2 (σ2)r
2
n + g′

2(αn(σ ))rn+1)]

+ M0(M1‖rn‖2 +M2‖zn‖2)
≤ N1(t)[(−G′′

1(ρ1)
(
3
2
r2n +

1
2
z2n

)
− ψ ′′

1 (ρ2)r2n + rn+1)] +N2(t)
[
−G′′

2(σ1)
(
3
2
r2n +

1
2
z2n

)

− ψ ′′
2 (σ2)r

2
n + rn+1)

]
+M0

(
M1‖rn‖2 +M2‖zn‖2

)
.

where an ≤ g1, δ1, r1, s1 ≤ x, an ≤ g2 ≤ x, and an ≤ δ2, r2, s2 ≤ an+1. Letting

|G′′
i | < Di, |ψ ′′

i | < Ei,maxt∈[0,1] |Ni| = Ni(i = 1, 2) and M0 as an upper bound on

M
∫ 1
0 G(t, s)ds, we obtain

‖ rn+1(t) ‖ ≤ ‖rn‖2W1 + ‖zn‖2)W2

(1 − η)
,
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where η = (N1 +N2) < 1,W1 =
[
3
2
N1D1 +N1E1 +

3
2
N2D2N2E2 +M0M1

]
, and

W2 =
[
+
1
2
N1D1 +

1
2
N2D2 +M0M2

]
. This completes the proof.

4 Examples
Example 4.1. Consider the problem

x′′(t) + x′(t) = 2x − t cos(πx/2), (4:1)

3x(0) − 2x′(0) =
1
3
x(1/2) + 1, 3x(1) + 2x′(1) =

1
2
x(1/2) + 2. (4:2)

Here f(t, x) = 2x - tcos(πx/2), k(t, x) ≡ 0,

H(t, x) ≡ 0, g1

(
x
(
1
2

))
=
1
3
x(1/2) + 1, g2

(
x
(
1
2

))
=
1
2
x(1/2) + 2. Let a0 = 0 and b0

= 1 be lower and upper solutions of (4.1-4.2), respectively. We note that

fx(t, x) = 2 − π

2
t sin(πx/2) > 0, g′

1

(
x
(
1
2

))
= 1/3, g′

2

(
x
(
1
2

))
= 1/2. Further, we

choose φ(t, x) = 3x2,ψi(x) = −M̂i(x + 1)2, M̂i > 0, i = 1, 2. We note that

fxx(t, x) + φxx(t, x) = −π2

4
t cos(πx/2) + 6 ≥ 0, g′′

i (x) + ψ ′′
i (x) ≤ 0. Thus, all the condi-

tions of Theorem (3.1) are satisfied. Hence, the conclusion of Theorem 3.1 applies to

the problem (4.1-4.2).

Example 4.2. Consider the nonlinear boundary value problem given by

x′′(t) + λx′(t) = 7x + sin(πxt/2) − t cos(πx/2) +
1
2

|x|, t ∈ [0, 1], (4:3)

3x(0) − 2x′(0) =
x(t)
4

+ 1, 3x(1) + 2x′(1) =
x(t)
2

+ 2, (4:4)

where f(t, x) = 7x + sin(πxt/2), k(t, x) = -tcos(πx/2),

H(t, x) =
1
2

|x|, L =
1
2
, g1(x) = x(t)/4 + 1, g2(x) = x(t)/2 + 2. Let a0 = 0 and b0 = 1 be

lower and upper solutions of (4.1-4.2), respectively. Observe that

fx(t, x) + kx(t, x) − 1
2
= 7 +

tπ

2
cos

π

2
xt +

tπ

2
sin

π

2
x − 1

2
> 0,

and 0 ≤ g
′
i(x) ≤ 1. For positive constants M1, M2, N1, N2, we choose

φ(t, x) = M1
π2

4
t2(1 + x)2, χ(t, x) = −M2π

2x2, ψi(x) = −Ni(x + 2)2,

such that fxx(t, x) + jxx(t, x) = π2t2[2M1 - cos(πtx/2)]/4 ≥ 0, kxx + cxx = -π2[8M2 -

tcos(πx/2)]/4 ≤ 0. Clearly, g
′′
i (x) + ψ

′′
i (x) ≤ 0. Thus, all the conditions of Theorem 3.1

are satisfied. Hence, the conclusion of theorem (3.1) applies to the problem (4.3-4.4).
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