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Abstract

A new fully discrete stabilized discontinuous Galerkin method is proposed to solve
the incompressible miscible displacement problem. For the pressure equation, we
develop a mixed, stabilized, discontinuous Galerkin formulation. We can obtain the
optimal priori estimates for both concentration and pressure.
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1 Introduction
We consider the problem of miscible displacement which has considerable and practi-

cal importance in petroleum engineering. This problem can be considered as the result

of advective-diffusive equation for concentrations and the Darcy flow equation. The

more popular approach in application so far has been based on the mixed formulation.

In a previous work, Douglas and Roberts [1] presented a mixed finite element (MFE)

method for the compressible miscible displacement problem. For the Darcy flow,

Masud and Hughes [2] introduced a stabilized finite element formulation in which an

appropriately weighted residual of the Darcy law is added to the standard mixed for-

mulation. Recently, discontinuous Galerkin for miscible displacement has been investi-

gated by numerical experiments and was reported to exhibit good numerical

performance [3,4]. In Hughes-Masud-Wan [5], the method of [2] was extended to the

discontinuous Galerkin framework for the Darcy flow. A family of mixed finite element

discretizations of the Darcy flow equations using totally discontinuous elements was

introduced in [6]. In [7] primal semi-discrete discontinuous Galerkin methods with

interior penalty are proposed to solve the coupled system of flow and reactive trans-

port in porous media, which arises from many applications including miscible displace-

ment and acid-stimulated flow. In [8], stable Crank-Nicolson discretization was given

for incompressible miscible displacement problem.

The discontinuous Galerkin (DG) method was introduced by Reed and Hill [9], and

extended by Cockburn and Shu [10-12] to conservation law and system of conserva-

tion laws,respectively. Due to localizability of the discontinuous Galerkin method, it is

easy to construct higher order element to obtain higher order accuracy and to derive

highly parallel algorithms. Because of these advantages, the discontinuous Galerkin
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method has become a very active area of research [4-7,13-18]. Most of the literature

concerning discontinuous Galerkin methods can be found in [13].

In this paper, we analyze a fully discrete finite element method with the stabilized

mixed discontinuous Galerkin methods for the incompressible miscible displacement

problem in porous media. For the pressure equation, we develop a mixed, stabilized,

discontinuous Galerkin formulation. To some extent, we develop a more general stabi-

lized formulation and because of the proper choose of the parameters g and b, this
paper includes the methods of [2,6] and [5]. All the schemes are stable for any combi-

nation of discontinuous discrete concentration, velocity and pressure spaces. Based on

our results, we can assert that the mixed stabilized discontinuous Galerkin formulation

of the incompressible miscible displacement problem is mathematically viable, and we

also believe it may be practically useful. It generalizes and encompasses all the success-

ful elements described in [2,6] and [5]. Optimal error estimate are obtained for the

concentration, velocity and pressure.

An outline of the remainder of the paper follows: In Section 2, we describe the mod-

eling equations. The DG schemes for the concentration and some of their properties

are introduced in Section 3. Stabilized mixed DG methods are introduced for the velo-

city and pressure in Section 4. In Section 5, we propose the numerical approximation

scheme of incompressible miscible displacement problems with a fully discrete in time,

combined with a mixed, stabilized and discontinuous Galerkin method. The bounded-

ness and stability of the finite element formulation are studied in Section 6. Error esti-

mates for the incompressible miscible displacement problem are obtained in Section 7.

Throughout the paper, we denote by C a generic positive constant that is indepen-

dent of h and Δt, but might depend on the partial differential equation solution; we

denote by ε a fixed positive constant that can be chosen arbitrarily small.

2 Governing equations
Miscible displacement of one incompressible fluid by another in a porous medium Ω

Î Rd(d = 2, 3) over time interval J = (0, T] is modeled by the system concentration

equation:

φ
∂c
∂t

+ u · ∇c − ∇ · (D(u)∇c) = qc∗, (x, t) ∈ � × J. (2:1)

Pressure equation:

u = −a(c)∇p, (x, t) ∈ � × J, (2:2)

∇ · u = q, (x, t) ∈ � × J. (2:3)

The initial conditions

c(x, 0) = c0(x), x ∈ �. (2:4)

The no-flow boundary conditions{
u · n = 0, x ∈ ∂�,

(D(u)∇c − cu) · n = 0, x ∈ ∂�.
(2:5)
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Dispersion/diffusion tensor

D(u) = φdmI + |u|(dlE(u) + dt(I − E(u))), (2:6)

where the unknowns are p (the pressure in the fluid mixture), u (the Darcy velocity

of the mixture, i.e., the volume of fluid flowing cross a unit across-section per unit

time) and c (the concentration of the interested species, i.e., the amount of the species

per unit volume of the fluid mixture). j = j(x) is the porosity of the medium, uni-

formly bounded above and below by positive numbers. The E(u) is the tensor that pro-

jects onto the u direction, whose (i,j) component is (E(u))ij =
uiuj
|u|2; dm is the molecular

diffusivity and assumed to be strictly positive; dl and dt are the longitudinal and the

transverse dispersivities, respectively, and are assumed to be nonnegative. The imposed

external total flow rate q is sum of sources (injection) and sinks (extraction) and is

assumed to be bounded. Concentration c* in the source term is the injected concentra-

tion cw if q ≥ 0 and is the resident concentration c if q < 0. Here, we assume that the a

(c) is a globally Lipschitz continuous function of c, and is uniformly symmetric positive

definite and bounded.

3 Discontinuous Galerkin method for the concentration
3.1 Notation

Let Th = (K) be a sequence of finite element partitions of Ω. Let ΓI denote the set of

all interior edges, ΓB the set of the edges e on ∂Ω, and Γh = ΓB + ΓI. K
+, K- be two

adjacent elements of Th; let x be an arbitrary point of the set e = ∂K+ ∩ ∂K-, which is

assumed to have a nonzero (d - 1) dimensional measure; and let n+, n- be the corre-

sponding outward unit normals at that point. Let (u, p) be a function smooth inside

each element K± and let us denote by (u±, p±) the traces of (u, p) on e from the inter-

ior of K±. Then we define the mean values {{·}} and jumps [[·]] at x Î {e} as

[
[u]

]
= u+ ·n+ +u− ·n−, {{u}} = 1

2
(u+ +u−), {{p}} = 1

2
(p+ + p−), [[p]] = p+n+ + p−n−.

For e Î ΓB, the obvious definitions is {{p}} = p, [[u]] = u·n, with n denoting the out-

ward unit normal vector on ∂Ω. we define the set 〈K, K’〉 as

〈K,K ′〉 :=
{� if measd−1(∂K ∩ ∂K ′) = 0,
interior of ∂K ∩ ∂K ′ otherwise.

For s ≥ 0, we define

Hs(Th) = {v ∈ L2(�) : v|K ∈ Hs(K).K ∈ Th}. (3:1)

The usual Sobolev norm on Ω is denoted by ||·||m, Ω [19]. The broken norms are

defined, for a positive number m, as

‖|v‖|2m =
∑
K∈Th

‖v‖2m,K . (3:2)

The discontinuous finite element space is taken to be

Dr(Th) = {v ∈ L2(�) : v|K ∈ Pr(K),K ∈ Th}, (3:3)
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where Pr(K) denotes the space of polynomials of (total) degree less than or equal to r (r

≥ 0) on K. Note that we present error estimators in this paper for the local space Pr, but

the results also apply to the local space Qr (the tensor product of the polynomial spaces

of degree less than or equal to r in each spatial dimension) because Pr(K) ⊂ Qr(K).

The cut-off operator M is defined as

M(c)(x) = min(c(x),M),

M(u)(x) =
{
u(x) if |u(x)| ≤ M,
Mu(x)/|u(x)| if |u(x)| > M,

(3:4)

where M is a large positive constant. By a straightforward argument, we can show

that the cut-off operator M is uniformly Lipschitz continuous in the following sense.

Lemma 3.1 [7] (Property of operator M) The cut-off operator Mdefined as in Equa-

tion 3.4 is uniformly Lipschitz continuous with a Lipschitz constant one, that is

‖M(c) − M(w)‖L∞(�) ≤ ‖c − w‖L∞(�), ∀c ∈ L∞(�),w ∈ L∞(�),

‖M(u) − M(v)‖(L∞(�))d ≤ ‖u − v‖(L∞(�))d , ∀u ∈ (L∞(�))d,v ∈ (L∞(�))d.

We shall also use the following inverse inequalities, which can be derived using the

method in [20]. Let K Î Th, v Î Pr(K) and hK is the diameter of K. Then there exists a

constant C independent of v and hK, such that{
‖Dqv‖0,∂K ≤ Ch−1/2

K ‖Dqv‖K , q ≥ 0.
‖Dq+1v‖0,K ≤ Ch−1

K ‖Dqv‖0,K , q ≥ 0.
(3:5)

3.2 Discontinuous Galerkin schemes

Let ∇h · v and ∇hv be the functions whose restriction to each element K ∈ � are equal

to ∇ · v, ∇v, respectively. We introduce the bilinear form B(c, w; u) and the linear func-

tional L(w; u, c)

B(c,w;u) = (D(u)∇hc,∇hw) +
∫

�h

{{D(u)∇hw}}[[c]]ds −
∫

�h

{{D(u)∇hc}}[[w]]ds

+
∫

�h

C11[[c]][[w]]ds + (u · ∇hc,w) −
∫

�

cq−wdx,

L(w;u, c) =
∫

�

cwq+wdx,

with

C11 =
{
c11 max{h−1

K+ , h−1
K−} x ∈ 〈K+,K−〉,

c11h
−1
K+ x ∈ ∂K+ ∩ ∂�,

(3:6)

here c11 > 0 is a constant independent of the meshsize.

We now define the weak formulation on which our mixed discontinuous method is

based

(φct ,w) + B(c,w;u) = L(w;u, c), ∀w ∈ Hk(Th). (3:7)

Let N be a positive integer, �t =
T
N

and tm = mΔt for m = 0, 1, ..., N. The approxi-

mation of ct at t = tn+1 can be discreted by the forward difference. The DG schemes

for approximating concentration are as follows. We seek ch Î W1,∞(0, T; Dk-1(Th))
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satisfying

(φ
cn+1h − cnh

�t
,wh) + B(cn+1h ,wh;unM) = L(wh;un

M, c
n+1
h ),

∀wh ∈ W1,∞(0,T;Dk−1(Th)),

(3:8)

where unM = M(unh) with the DG velocity uh defined below

unh = −a(M(cnh))∇pnh, x ∈ K,K ∈ Th.

4 A stabilized mixed DG method for the velocity and pressure
4.1 Elimination for the flux variable u

Letting a(c) = a(c)-1. For the velocity and pressure, we define the following forms

a(u,v; c) = (α(c)u,v), (4:1)

b(p,v) = (p,∇h · v) −
∫

�I

{{p}}[[v]]ds −
∫

�B

{{v}}[[p]]ds. (4:2)

The discrete problem for the velocity and pressure can be written as: find uh Î (Dl-2

(Th))
d, (l ≥ 2), ph Î Dl-1(Th) such as{

a(uh,v; c) − b(ph,v) = 0, ∀v ∈ (Dl−2(Th))d,
b(ψ ,uh) = (ψ , q), ∀ψ ∈ Dl−1(Th).

(4:3)

In order to eliminate the flux variable, we first recall a useful identity, that holds for

vectors u and scalars ψ piecewise smooth on Th:

∑
K∈Th

∫
∂K

v · nψds =
∫

�h

{{v}} · [[ψ]]ds +
∫

�I

[[v]]{{ψ}}ds. (4:4)

Using (4.4) we have

∑
K

∫
K
(∇ · uhψ + uh · ∇ψ)dx =

∫
�h

{{uh}} · [[ψ]]ds +
∫

�I

[[uh]]{{ψ}}ds. (4:5)

Substituting (4.5) in the first equation of (4.3) we obtain

(α(c)uh + ∇hph,v) −
∫

�I

[[ph]] · {{v}}ds = 0. (4:6)

We introduce the lift operator R:L1(∪∂K) ® (Dl-2(Th))
d defined by∫

�

R[[ψ]] · vdx = −
∫

�I

[[ψ]] · {{v}}ds, ∀v ∈ (Dl−2(Th))d. (4:7)

From (4.6) and (4.7) we have

(α(c)uh + ∇hph + R[[ph]],v) = 0. (4:8)

We also introduce the L2-projection π onto (Dl-2(Th))
d

(πw,v) = (w,v), ∀v ∈ (Dl−2(Th))d. (4:9)
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Equation 4.8 gives now

α(c)uh = −(π∇hph + R[[ph]]). (4:10)

Noting that ∇hDl-1(Th) ⊂ (Dl-2(Th))
d, we have π∇hph ≡ ∇hph for all ph Î Dl-1(Th). The

Equation 4.10 gives

α(c)uh = −(∇hph + R[[ph]]). (4:11)

Using (4.5) and the lifting operator R defined in (4.7) we have

b(ψ ,uh) = −(uh,∇hψ) +
∫

�I

[[ψ]] · {{u}}ds,
= −(uh,∇hψ + R[[ψ]]).

(4:12)

Substituting (4.12) in the second equation of (4.3) and using (4.11) we have

(a(c)(∇hph + R[[ph]]),∇hψ + R[[ψ]]) = (q,ψ). (4:13)

For future reference, it is convenient to rewrite (4.13) as follows

ABR(ph,ψ) = (q,ψ), ∀ψ ∈ Dl−1(Th), (4:14)

where

ABR(ph,ψ) = (a(c)(∇hph + R[[ph]]),∇hψ + R[[ψ]]). (4:15)

4.2 Stabilization of formulation (4.3)

We write first (4.3) in the equivalent form: find (uh, ph) Î (Dl-2(Th))
d × Dl-1(Th) such

that

A(uh,v; ph,ψ ; c) = l(ψ), ∀(v,ψ) ∈ (Dl−2(Th))d × Dl−1(Th), (4:16)

where

A(uh,v; ph,ψ ; c) = a(uh,v; c) − b(ph,v) + b(ψ ,uh), l(ψ) = (q,ψ). (4:17)

In a sense, (4.16) can be seen as a Darcy problem. The usual way to stabilized it is to

introduce penalty terms on the jumps of p and/or on the jumps of u. In [2], Masud

and Hughes introduced a stabilized finite element formulation in which an appropri-

ately weighted residual of the Darcy law is added to the standard mixed formulation.

In Hughes-Masud-Wan [5], the method was extend within the discontinuous Galerkin

framework. A family of mixed finite element discretizations of the Darcy flow equa-

tions using totally discontinuous elements was introduced in [6]. In this paper, we con-

sider the following stabilized formulation which includes the methods of [2,6] and [5].

The stabilized formulation of (4.16) is

Astab(uh,v; ph,ψ ; c) = lstab(ψ), ∀(v,ψ) ∈ (Dl−2(Th))d × Dl−1(Th), (4:18)

where

Astab(u,v; p,ψ ; c) = A(u,v; p,ψ ; c) + γ e(p,ψ)

+βθ
(
u + a(c)∇hp,−α(c)v + δ∇hψ

)
,

lstab(ψ) = l(ψ),

e(p,ψ) = a(c)
∫

�h

C11[[p]][[ψ]]ds,

(4:19)
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where g and b are chosen as the following (i) g = 1, b = 1. (ii) g = 0, b = 1, δ could

assume either the value +1 or the value -1. The definition of θ will be given in the fol-

lowing content.

5 A mixed stabilized DG method for the incompressible miscible
displacement problem
By combining (3.8) with (4.18), we have the stabilized DG for the approximating (2.1)-

(2.5): seek ch Î W1,∞(0, T; Dk-1(Th)) =: Wh, ph Î W1,∞(0, T; Dl-1(Th)) =: Qh and uh Î
(W1,∞(0, T; Dl-2(Th)))

d =: Vh satisfying⎧⎨
⎩ (φ

cn+1h − cnh
�t

,w) + B(cn+1h ,w;un
M) = L(w;unM, c

n+1
h ), ∀w ∈ Wh,

Astab(unh,v; p
n
h,ψ ;M(cnh)) = lstab(ψ), ∀(v × ψ) ∈ (Vh × Qh).

(5:1)

We define the “stability norm” by

‖(u, p)‖stab =
{
1
2

‖|α1/2(c)u‖|20 + ‖p‖21,h
}1/2

, (5:2)

where

‖p‖21,h =
1
2

‖a1/2(c)∇hp‖20 + ‖a1/2(c)[[p]]‖20,�h
,

‖a1/2(c)[[p]]‖20,�h
=

∫
�h

a(c)C11[[p]] · [[p]]ds, ‖∇hp‖20 =
∑
K

‖∇p‖20,K .
(5:3)

6 Stability and consistency
From [6], we can state the following results.

Lemma 6.1 [6]There exist two positive constants C1 and C2, depending only on the

minimum angle of the decomposition and on the polynomial degree

C1‖R[[ψ]]‖20,� ≤
∑
e∈�I

h−1
e ‖[[ψ]]‖20,e ≤ C2‖R[[ψ]]‖0,� . (6:1)

Lemma 6.2 [6]There exists two positive constants C1 and C2, depending only on the

minimum angle of the decomposition such that

C1‖R[[ψ]]‖20,� ≤
∑
e∈�I

h−1
e ‖[[ψ]]‖20,e ≤ C2(‖R[[ψ]]‖20,� + ‖∇hψ‖20), ψ ∈ H2(Th). (6:2)

Lemma 6.3 [6]Let Hbe a Hilbert spaces, and l and μ positive constants. Then, for

every ξ and h in Hwe have

λ‖ξ + η‖2H + μ‖η‖2H ≥ λμ

2(λ + μ)
(‖ξ‖2H + ‖η‖2H). (6:3)

Theorem 6.1 (Stability) For δ = 1, problem (4.18) is stable for all θ Î (0,1).

Proof Consider first the case g = 1, b = 1. From the definition of Astab(·,·;·,·;·), we have

Astab(uh,uh; ph, ph; c) = a(uh,uh; c) + e(ph, ph) + θ(uh + a(c)∇hph,−α(c)uh + ∇hph). (6:4)

We remark that (6.4) can be rewritten as

Astab(uh,uh; ph, ph; c) = (1 − θ)‖|α1/2(c)u‖|20 + θ‖a1/2(c)∇hp‖20 + ‖a1/2(c)[[p]]‖20,�h
, (6:5)
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and the stability in the norm (5.2) follows from θ =
1
2
.

Consider now the case g = 0, b =1. Using the equivalent expressions (4.11) and (4.12)

for the first and second equation of (4.3), respectively, the problem (4.18) for g = 0 can

be rewritten as: find uh Î (Dl-2(Th))
d, ph Î Dl-1(Th) such that{

(α(c)uh + ∇hph + R[[ph]], v) − θ(α(c)uh + ∇hph, v) = 0,
−(uh,∇hψ + R[[ψ]]) + δθ(uh + a(c)∇hψ ,∇hψ) = (q,ψ).

(6:6)

From the first equation in (6.6) and (4.9) we have

α(c)uh = −(∇hph +
1

1 − θ
R[[ph]]). (6:7)

Substituting the expression (6.7) in the second equation of (6.6) for δ = 1, we have

ABR(ph,ψ) +
θ

1 − θ

∫
�

a(c)R[[ph]] · R[[ψ]]dx = (q,ψ), ∀ψ ∈ Dl−1(Th). (6:8)

Denote by B1h(·,·) the bilinear form (6.8), we have

B1h(ψ ,ψ) = ‖a(c)(∇hψ + R[[ψ]])‖0,� +
θ

1 − θ
‖a(c)1/2R[[ψ]]‖20,� , (6:9)

and the stability in the norm (5.3) follows from Lemma 6.1. This completes the

proof. □
Theorem 6.2 For δ = -1, problem (4.18) is stable for all θ < 0.

Proof Consider first the case g = 1, b = 1. The problem (4.18) for δ = -1 reads

Astab(uh,uh; ph, ph; c) = a(uh,uh; c) + θ(uh + a(c)∇hph,−α(c)uh − ∇hph)

+e(ph, ph).
(6:10)

Using the arithmetic-geometric mean inequality, we have

Astab(uh,uh; ph, ph; c) ≥ (1 − 2θ)‖|α1/2(c)u‖|20 − 2θ‖a1/2(c)∇hp‖20
+‖a1/2(c)[[p]]‖20,�h

,
(6:11)

and since θ < 0 the result follows.

Consider now the case g = 0, b = 1. From (6.7) the second equation of (6.6) for δ =

-1 can be written as

ABR(ph,ψ) +
2θ

1 − θ
(R[[ph]], a(c)∇hψ) +

θ

1 − θ

∫
�

a(c)R[[ph]] · R[[ψ]]dx = (q,ψ). (6:12)

We remark that formulation (6.12) can be rewritten as

1
1 − θ

ABR(ph,ψ) − θ

1 − θ
ABO(ph,ψ) = (q,ψ), (6:13)

where ABO(ph, ψ) is introduced by Baumann and Oden [14], and given by

ABO(ph,ψ) :=
∫

�

a(c)(∇hph −R[[ph]]) · (∇hψ +R[[ψ]])dx +
∫

�

a(c)R[[ph]] ·R[[ψ]]dx. (6:14)

Denote by B2h(·,·) the bilinear form (6.13), we have

B2h(ψ ,ψ) =
1

1 − θ
‖a1/2(c)(∇hψ + R[[ψ]])‖0,� − θ

1 − θ
‖a1/2(c)∇hψ‖20,�, (6:15)
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and since θ < 0 the result follows again from Lemma 6.3 and 6.1. □
Theorem 6.3 (Consistency) If p,c and u are the solution of (2.1)-(2.5) and are essen-

tially bounded, then
{
(φct ,w) + B(c,w;u) = L(w;u, c), ∀w ∈ L2(0,T;Hk(Th))
Astab(u,v; p,ψ ; c) = lstab(ψ), ∀(v × ψ) ∈ ((L2(0,T;Hl−1(Th)))d × L2(0,T;Hl(Th)))

(6:16)

provided that the constant M for the cut-off operator is sufficiently large.

To summarize, for all the bilinear forms in (6.4), (6.10), (6.8) or (6.13) we have: ∃C >

0 such that

B1h(ψ ,ψ) ≥ C‖ψ‖21,h, B2h(ψ ,ψ) ≥ C‖ψ‖21,h, ∀ψ ∈ Dl−1(Th), (6:17)

and ∃C > 0 such that

A(v,v;ψ ,ψ ; c)stab ≥ C‖(v,ψ)‖2stab, ∀ (v,ψ) ∈ (Dl−2(Th))d × Dl−1(Th), (6:18)

where (6.17) clearly holds for every θ Î (0,1) for the case ((6.4), (6.8)), and for every

θ < 0 for the case ((6.10), (6.13)). On the other hand, since ∇hDl-1(Th) ⊂ (Dl-2(Th))
d

holds, boundedness of the bilinear form in (6.8) and (6.13) follows directly from the

boundedness of the bilinear forms ABR and ABO, as proved in [13], thanks to the

equivalence of the norms (6.1) and (6.2). Thus, we have: ∃C > 0 such that

B1h(ph,ψ) ≤ C‖ph‖1,h‖ψ‖1,h, B2h(ph,ψ) ≤ C‖ph‖1,h‖ψ‖1,h, ∀ ph,ψ ∈ Dl−1(Th). (6:19)

7 Error estimates
Let (ũ, p̃, c̃) be an interpolation of the exact solution (u, p, c) such that⎧⎨

⎩
a(ũ, v; c) − b(p̃, v) = 0, ∀v ∈ (Dl−2(Th))d,
b(ψ , ũ) + e(p̃,ψ) = (q,ψ), ∀ψ ∈ Dl−1(Th),

(c̃ − c,w) = 0, ∀w ∈ Dk−1(Th).
(7:1)

Let us define interpolation errors, finite element solution errors and auxiliary errors

ξ1 = ũ − uh, ξ2 = ũ − u, eu = u − uh = ξ1 − ξ2;
η1 = p̃ − ph, η2 = p̃ − p, ep = p − ph = η1 − η2;
τ1 = c̃ − ch, τ2 = c̃ − c, ec = c − ch = τ1 − τ2.

It was proven in [18] that

‖|α1/2(c)ξ2|‖20 + ‖a1/2(c)[[η2]]‖20,�h
≤ Ch2l−2(‖u‖2l−1 + ‖p‖2l ). (7:2)

hold for all t Î J with the constant C independent only on bounds for the coefficient

a(c), but not on c itself.

Theorem 7.1 (Error estimate for the velocity and pressure) Let (u, p, c) be the solu-

tion to (2.1)-(2.5), and assume p Î L2(0, T; Hl(Th)), u Î (L2(0, T; Hl-1(Th)))
d and c Î

L2(0, T; Hk(Th)). We further assume that p, ∇p, c and ∇c are essentially bounded. If the

constant M for the cut-off operator is sufficiently large, then there exists a constant C

independent of h such that

‖(u − uh, p − ph)‖2stab(t) ≤ C(‖c − ch‖20(t) + h2l−2). (7:3)
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Proof For the sake of brevity we will assume θ =
1
2
, δ = 1 in the following content.

Consider the case g = 1, b = 1. From the second equation of (5.1) and (6.16) we have

(α(c)u − α(M(ch))uh,v) − b(p − ph,ψ) + b(ψ ,u − uh) + e(p − ph,ψ)

−1
2
(uh + a(M(ch))∇hph),−α(M(ch))v + ∇hψ)

+
1
2
(u + a(c)∇hp,−α(c)v + ∇hψ) = 0.

(7:4)

That is

(α(c)(u − ũ),v) + (α(M(ch))(ũ − uh),v) + ((α(c) − α(M(ch)))ũ,v) − b(p − ph,v)

+b(ψ ,u − uh) + e(p − ph,ψ) +
1
2
(α(M(ch))uh − α(c)u,v) +

1
2
(u − uh,∇hψ)

−1
2
(∇hp − ∇hph,v) +

1
2
(a(c)∇hp − a(M(ch))∇hph,∇hψ) = 0.

Choosing v = ξ1, ψ = h1 and splitting ep according ep = h1- h2, from (7.1) and we

obtain

1
2
(α(M(ch))ξ1, ξ1) + e(η1, η1) +

1
2
(a(M(ch))∇hη1,∇hη1) =

1
2
((α(M(ch)) − α(c))ũ, ξ1)

−1
2
(α(c)ξ2, ξ1) +

1
2
(a(c)∇hη2,∇hη1) − 1

2
((a(c) − a(M(ch)))∇hp̃,∇hη1)

+
1
2
(ξ2,∇hη1) − 1

2
(∇hη2, ξ1).

(7:5)

Let us first consider the left side of error equation (7.5)

1
2
(α(M(ch))ξ1, ξ1) + e(η1, η1) +

1
2
(a(M(ch))∇hη1,∇hη1)

=
1
2
(‖|α1/2(M(ch))ξ1|‖20 + ‖a1/2(M(ch))∇hη1‖20) + ‖[[η1]]‖20,�h

.

We know that (7.2) and quasi-regularity that ∇hp̃, ũ are bounded in L∞(Ω). So the

right side of the error equation (7.5) can be bounded from below. Noting that

|α(M(ch)) − α(c)| ≤ C|ch − c|, we have

|(α(M(ch)) − α(c))ũ, ξ1)| ≤ C‖c − ch‖20 + ε‖|ξ1|‖20. (7:6)

The second and the third terms of the right side of the error equation (7.5) can be

bounded using Cauchy-Schwartz inequality and approximation results,

|(α(c)ξ2, ξ1)| ≤ ‖α(c)‖0,∞‖ξ2‖0‖ξ1‖0 ≤ ε‖|ξ1|‖20 + Ch2l−2, (7:7)

|(a(c)∇hη2,∇hη1)| ≤ ε‖∇hη1‖20 + Ch2l−2. (7:8)

The fourth term can be bounded in a similar way as that for the first term

|(a(c) − a(M(ch))∇hp̃,∇hη1)| ≤ C‖c − ch‖20 + ε‖∇hη1‖20. (7:9)

The last two terms can be bounded as follows

(ξ2,∇hη1) ≤ ε‖∇hη1‖20 + Ch2l−2, (∇hη2, ξ1) ≤ ε‖|ξ1‖|20 + Ch2l−2. (7:10)
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Substituting all these inequalities into Equation 7.5, we have

1
2
(‖|α1/2(M(ch))ξ1|‖20 + ‖a1/2(M(ch))∇hη1‖20) + ‖a1/2(c)[[η1]]‖20,�h

≤ ε(‖|ξ1‖|20 + ‖∇hη1‖20) + C(‖c − ch‖20 + h2l−2).
(7:11)

Using the facts
1
C
I ≤ α(M(ch)) ≤ CI,

1
C
I ≤ α(c) ≤ CI, and

1
C
I ≤ a(M(ch)) ≤ CI,

1
C
I ≤ a(c) ≤ CI we have

‖(ξ1, η1)‖2stab ≤ C(‖c − ch‖20 + h2l−2). (7:12)

The theorem follows from the triangle inequality.

Now consider the case g = 0, b = 1. The bilinear form (6.8) from the second equa-

tion of (5.1) for θ =
1
2
reads

ABR(ph,ψ ; ch) +
∫

�

a(M(ch))R[[ph]] · R[[ψ]]dx = (q,ψ), (7:13)

where

ABR(ph,ψ ; ch) = (a(M(ch))(∇hph + R[[ph]]),∇hψ + R[[ψ]]).

Replacing (6.8) with ph = p and subtracting it from (7.13) we finally obtain

a(c)(∇hp,∇hψ + R[[ψ]]) − ABR(ph,ψ ; ch) = 0. (7:14)

Choosing ψ = h1, we have

ABR(η1, η1; ch) +
∫

�

a(M(ch))R[[η1]] · R[[η1]]dx = ABR(η2, η1)

+
∫

�

a(c)R[[η2]] · R[[η1]]dx + (a(M(ch)) − a(c))((∇hp̃ + R[[p̃]],∇hη1

+R[[η1]]) +
∫

�

a(c)R[[p̃]] · R[[η1]]dx).

(7:15)

Let us first estimate the left side of (7.15). From (6.17) and using the fact
1
C
I ≤ a(M(ch)) ≤ CI,

1
C
I ≤ a(c) ≤ CI, we have

ABR(η1, η1; ch) +
∫

�

a(M(ch))R[[η1]] · R[[η1]]dx ≥ C‖η‖21,h. (7:16)

The first and the second terms of the right side of (7.15) can be bounded using

Lemma 6.1 and (3.5)

ABR(η2, η1) +
∫

�

a(c)R[[η2]] · R[[η1]]dx ≤ C‖η2‖1,h‖η1‖1,h,

≤ ε‖η1‖21,h + Ch2l−2.
(7:17)
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Note that ∇hp̃, p̃ are bounded in L∞(Ω) and |a(M(ch)) − a(c)| ≤ C‖ch − c‖, we have

(a(M(ch)) − a(c))
{
(∇hp̃ + R[[p̃]],∇hη1 + R[[η1]]) +

∫
�

a(c)R[[p̃]] · R[[η1]]dx
}

≤ C‖c − ch‖0‖η1‖1,h ≤ C‖c − ch‖20 + ε‖η1‖21,h.
(7:18)

Substituting all these inequalities into the (7.15) and using the triangle inequality we

have

‖p − ph‖21,h ≤ C(‖c − ch‖20 + h2l−2). (7:19)

We easily deduce,using (7.19)

‖|α1/2(c)(u − uh)|‖20 ≤ C‖p − ph‖21,h ≤ C(‖c − ch‖20 + h2l−2), (7:20)

which completes the proof. □.
From [7], we state two lemmas for the properties of the dispersion-diffusion tensor,

which will be used to prove error estimates for the concentration.

Lemma 7.1 [7] (Uniform positive definiteness of D(u)) Let D(u) defined as in Equa-

tion 2.6, where jdm(x) ≥ 0, dl(x) ≥ 0 and dt(x) ≥ 0 are non-negative functions of x Î Ω.

Then

D(u)∇hc · ∇hc ≥ (φdm + min(dl, dt)|u|)|∇hc|2. (7:21)

If, in addition, �dm(x) ≥ dm,* > 0 uniformly in the domain Ω, then D(u) is uniformly

positive definite in Ω:

D(u)∇hc · ∇hc ≥ dm,∗|∇hc|2. (7:22)

Lemma 7.2 [7] (Uniform Lipschitz continuity of D(u)) Let D(u) defined as in Equa-

tion 2.6, where dm(x) ≥ 0, dl(x) ≥ 0 and dt(x) ≥ 0 are non-negative functions of x Î Ω,

and the dispersivities dl and dt is uniformly bounded, i.e., dl(x) ≤ dl
* and dt(x) ≤ dt

*.

Then

‖D(u) − D(v)‖(L2(�))d×d ≤ kD‖u − v‖(L2(�))d . (7:23)

where kD = (7d∗
t + 6d∗

l )d
3/2is a fixed number (d = 2 or 3 is the dimension of domain

Ω).

Theorem 7.2 (Error estimate for concentration) Let (u, p, c) be the solution to (2.1)-

(2.5), and assume p Î L2(0, T; Hl(Th)), u Î (L2(0, T; Hl-1(Th)))
d and c Î L2(0, T; Hk

(Th)). We further assume that p, ∇p, c and ∇c are essentially bounded. If the constant

M for the cut-off operator is sufficiently large, then there exists a constant C indepen-

dent of h and Δt such that

‖
√

φ(c − ch)‖L∞(0,T;L2(�)) + (
N∑
i=1

�t(‖|D1/2(ui−1)∇h(ci − cih)|‖20 + ‖[[ci − cih]]‖20,�h
))1/2

≤ C(�t + hk−1 + hl−1).

(7:24)

Proof The first equation of (5.1) is

(φ
cn+1h − cnh

�t
,w) + B(cn+1h ,w;un

M) = L(w;un
M, c

n+1
h ).
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It can be written as

(φ
τ n+1
2 − τ n

2

�t
,w)−(φ

τ n+1
1 − τ n

1

�t
,w)+(φ

cn+1 − cn

�t
,w)+B(cn+1h ,w;un

M) = L(w;un
M, c

n+1
h ).

Subtracting the DG scheme equation from the weak formulation, we have for any w

Î Dk-1(Th)

(φct,w) −
(

φ
τ n+1
2 − τ n

2

�t
,w

)
+

(
φ

τ n+1
1 − τ n

1

�t
,w

)
−

(
φ
cn+1 − cn

�t
,w

)
− B(cn+1h ,w;un

M)

+B(cn+1,w;un) = L(w;un, cn+1) − L(w;unM, c
n+1
h ).

that is

(φct,w) +
(

φ
τ n+1
1 − τ n

1

�t
,w

)
+ B(τ n+1

1 ,w;un
M) =

(
φ

τ n+1
2 − τ n

2

�t
,w

)
+

(
φ
cn+1 − cn

�t
,w

)
+B(τ n+1

2 ,w;un
M) + B(cn+1,w;un

M) − B(cn+1,w;un)

+L(w;un, cn+1) − L(w;unM, c
n+1
h ).

Choosing w = τ1
n+1, we obtain

(
φ

τ n+1
1 − τ n

1

�t
, τ n+1

1

)
+ B(τ n+1

1 , τ n+1
1 ;un

M) =
(

φ
cn+1 − cn

�t
, τ n+1

1

)
− (φct , τ n+1

1 )

+
(

φ
τ n+1
2 − τ n

2

�t
, τ n+1

1

)
+ B(τ n+1

2 , τ n+1
1 ;un

M) + B(cn+1, τ n+1
1 ;unM)

−B(cn+1, τ n+1
1 ;un) + L(τ n+1

1 ;un, cn+1) − L(τ n+1
1 ;un

M, c
n+1
h ).

(7:25)

Let us first consider the left side of the error equation (7.25). The first term can be

bounded as(
φ

τ n+1
1 − τ n

1

�t
, τ n+1

1

)
≥ φ

2�t
((τ n+1

1 , τ n+1
1 ) − (τ n

1 , τ
n
1 )). (7:26)

The second term of Equation 7.25 is

B(τ n+1
1 , τ n+1

1 ;un
M) = (D(unM)∇hτ

n+1
1 ,∇hτ

n+1
1 ) + (unM · ∇hτ

n+1
1 , τ n+1

1 )

−
∫

�

q−(τ n+1
1 )2dx +

∫
�h

C11[[τ n+1
1 ]][[τ n+1

1 ]]ds.

The second term of B(·,·;·) can be estimated using the boundedness of uM and

(unM · ∇hτ
n+1
1 , τ n+1

1 ) ≤ ε‖|D1/2(un)∇hτ
n+1
1 |‖20 + C‖

√
φτ n+1

1 ‖20.:

(unM · ∇hτ
n+1
1 , τ n+1

1 ) ≤ ε‖|D1/2(un)∇hτ
n+1
1 |‖20 + C‖

√
φτ n+1

1 ‖20. (7:27)

Thus(
φ

τ n+1
1 − τ n

1

�t
, τ n+1

1

)
+ B(τ n+1

1 , τ n+1
1 ;un

M)

≥ φ

2�t
(‖τ n+1

1 ‖20 − ‖τ n
1 ‖20) + ‖|D1/2(un)∇hτ

n+1
1 ‖|20

+‖[[τ n+1
1 ]]‖20,�h

− C‖
√

φτ n+1
1 ‖20.

(7:28)
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Let us bound the right side of the error equation (7.25).

L(τ n+1
1 ;un, cn+1) − L(τ n+1

1 ;un
M, c

n+1
h ) ≤ C‖

√
φτ n+1

1 ‖20. (7:29)

Using Taylor series expansion, we have

(
φ
cn+1 − cn

�t
, τ n+1

1

)
− (φct, τ n+1

1 ) ≤ φ

2
�t‖D2

t c‖L2(tk,tk+1;L2(�)) + C‖
√

φτ n+1
1 ‖20. (7:30)

The fourth term in the right side of the error equation (7.25) is

B(τ n+1
2 , τ n+1

1 ;unM) = (D(unM)∇hτ
n+1
2 ,∇hτ

n+1
1 ) + (unM · ∇hτ

n+1
2 , τ n+1

1 )

−(q−τ n+1
2 , τ n+1

1 ) +
∫

�h

{{D(unM)∇hτ
n+1
1 }}[[τ n+1

2 ]]ds

−
∫

�h

{{D(unM)∇hτ
n+1
2 }}[[τ n+1

1 ]]ds

+
∫

�h

C11[[τ n+1
1 ]][[τ n+1

2 ]]ds =:
6∑
i=1

Ti.

Terms T1 through T3 can be bounded by using Cauchy-Schwartz inequality and

approximation results,

|T1| ≤ ε‖|D1/2(un)∇hτ
n+1
1 ‖|20 + C‖∇h(cn+1 − c̃n+1)‖20,

≤ ε‖|D1/2(un)∇hτ
n+1
1 ‖|20 + Ch2k−2,

(7:31)

and

|T2| ≤ ε‖|D1/2(un)∇hτ
n+1
1 ‖|20 + Ch2k−2, |T3| ≤ C(‖√φτ n+1

1 ‖20 + h2k). (7:32)

Terms T4 and T5 can be estimated using inverse inequalities,

|T4| ≤ εh
∑
K∈�h

‖|D1/2(un)∇hτ
n+1
1 ‖|0,∂K +

C
h

∑
K∈�h

‖τ n+1
2 ‖20,∂K ,

≤ ε‖|D1/2(un)∇hτ
n+1
1 ‖|20 + Ch2k−2,

(7:33)

and

|T5| ≤ ε‖[[τ n+1
1 ]]‖20,�h

+
C
h

∑
K∈�h

‖τ n+1
2 ‖20,∂K ,

≤ ε‖[[τ n+1
1 ]]‖20,�h

+ Ch2k−2.

(7:34)

Using Cauchy-Schwartz inequality and the trace inequality, we have

|T6| ≤ ε‖[[τ n+1
1 ]]‖20,�h

+
C
h

∑
K∈�h

‖τ n+1
2 ‖20,∂K ≤ ε‖[[τ n+1

1 ]]‖20,�h
+ Ch2k−2. (7:35)

Noting that [[cn+1]] = 0, if the constant M for the cut-off operator is sufficiently

large, we write the last two terms in the right side of the error equation (7.25) as
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B(cn+1, τ n+1
1 ;un

M) − B(cn+1, τ n+1
1 ;un) = ((D(unM) − D(un))∇hcn+1,∇hτ

n+1
1 )

+((unM − un) · ∇hcn+1, τ n+1
1 ) −

∫
�h

{{(D(unM) − D(un))∇hcn+1}}[[τ n+1
1 ]]ds

=:
3∑
i=1

Si.

Noting that |un − unM| = |un − unh| point-wise if the constant M for the cut-off opera-

tor is sufficiently large, we can bound term S1 as

|S1| ≤ ε‖|D1/2(un)∇hτ
n+1
1 ‖|20 + C‖D(un) − D(unM)‖20,

≤ ε‖|D1/2(un)∇hτ
n+1
1 ‖|20 + C‖un − unM‖20,

≤ ε‖|D1/2(un)∇hτ
n+1
1 ‖|20 + C‖un − unh‖20.

(7:36)

Term S2 can be bounded in a similar way as that for S1

|S2| ≤ ε‖
√

φτ n+1
1 ‖20 + C‖un − unh‖20. (7:37)

Term S3 can be bounded using the penalty term and continuity of dispersion-diffu-

sion tensor

|S3| ≤ ε

∫
�h

C11[[τ n+1
1 ]]2ds + ‖D(un) − D(unM)‖20,

≤ ε‖[[τ n+1
1 ]]‖20,�h

+ C‖un − unh‖20.
(7:38)

Combining all the terms in (7.25), we have

1
2�t

(‖
√

φτ n+1
1 ‖20 − ‖

√
φτ n

1 ‖20) +
1
2
(‖|D1/2(un)∇hτ

n+1
1 ‖|20 + ‖[[τ n+1

1 ]]‖20,�h
)

≤ C(‖
√

φτ n+1
1 ‖20 +

φ

2
�t‖D2

t c‖2L2(tk,tk+1;L2(�)) + �t‖∂tτ2‖2L2(tk,tk+1;L2(�)))

+C(h2k−2 + ‖un − unh‖20).

Suppose that m is an integer, 0 ≤ m ≤ N - 1. Multiplying by 2Δt, summing from n =

0 to n = m, we obtain

‖
√

φτ n+1
1 ‖20 + �t

m+1∑
n=1

(‖|D1/2(un)∇hτ
n+1
1 ‖|20 + ‖[[τ n+1

1 ]]‖20,�h
)

≤ C�t(
m∑
n=1

‖τ n
1 ‖20 +

m∑
n=0

‖eu‖20) + C(�t2‖D2
t c‖2L2(tk ,tk+1;L2(�))

+‖∂tτ2‖2L2(tk,tk+1;L2(�))).

The theorem follow from (7.3), the discrete Gronwall’s lemma and the triangle

inequality. □
Theorem 7.3 (Error estimate for flow in coupled system) Let (u, p, c) be the solution

to (2.1)-(2.5), and assume p Î L2(0, T; Hl(Th)), u Î (L2(0, T; Hl-1(Th)))
d and c Î L2(0,

T; Hk(Th)). We further assume that p, ∇p, c and ∇c are essentially bounded. If the con-

stant M for the cut-off operator is sufficiently large, then there exists a constant C inde-

pendent of h and Δt such that

max
0≤t≤T

‖(u − uh, p − ph)‖stab(t) ≤ C(�t + hk−1 + hl−1). (7:39)
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Proof Taking L∞ norm with time in (7.3), we have

max
0≤t≤T

‖(u − uh, p − ph)‖2stab(t) ≤ C(‖c − ch‖2L∞(0,T;L2) + h2l−2). (7:40)

Substituting (7.24) into the above inequality, we obtain (7.39). □
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