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Abstract
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1 Introduction

Let Q © R® be a bounded domain with sufficiently smooth boundary Q. We consider
the non-autonomous 3D Navier-Stokes-Voight (NSV) equations that govern the
motion of a Klein-Voight linear viscoelastic incompressible fluid:

U —vAu—?Aug+ (u-Vu+ Vp=f(t,x), (xt)e QxR (L.1)
V-u=0, xe€8, teR, (1.2)
u(t,x)|yq =0, teR (1.3)
u(t,x) =u.(x), x€Q, 71€ER;. (1.4)

Here u = u(t, x) = (u1(8, %), us(t, x), us(¢, x)) is the velocity vector field, p is the pres-
sure, v > 0 is the kinematic viscosity, and the length scale « is a characterizing para-
meter of the elasticity of the fluid.

When o = 0, the above system reduce to the well-known 3D incompressible Navier-
Stokes system:

w—vAu+(u-V)u+Vp=f(t.x), x€ Q, t e Ry, (1.5)

V.-u=0,x€Q, teR,. (1.6)

For the well-posedness of 3D incompressible Navier-Stokes equations, in 1934, Leray
[1-3] derived the existence of weak solution by weak convergence method; Hopf [4]
improved Leray’s result and obtained the familiar Leray-Hopf weak solution in 1951.
Since the 3D Navier-Stokes equations lack appropriate priori estimate and the strong
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nonlinear property, the existence of strong solution remains open. For the infinite-
dimensional dynamical systems, Sell [5] constructed the semiflow generated by the
weak solution which lacks the global regularity and obtained the existence of global
attractor of the 3D incompressible Navier-Stokes equations on any bounded smooth
domain. Chepyzhov and Vishik [6] investigated the trajectory attractors for 3D non-
autonomous incompressible Navier-Stokes system which is based on the works of
Leray and Hopf. Using the weak convergence topology of the space H (see below for
the definition), Kapustyan and Valero [7] proved the existence of a weak attractor in
both autonomous and non-autonomous cases and gave a existence result of strong
attractors. Kapustyan, Kasyanov and Valero [8] considered a revised 3D incompressible
Navier-Stokes equations generated by an optimal control problem and proved the exis-
tence of pullback attractors by constructing a dynamical multivalued process.

However, the infinite-dimensional systems for 3D incompressible Navier-Stokes
equations have not yet completely resolved, so many mathematicians pay attention to
this challenging problem. In this regard, Kalantarov and Titi [9] investigated the
Navier-Stokes-Voight equations as an inviscid regularization of the 3D incompressible
Navier-Stokes equations, and further obtained the existence of global attractors for
Navier-Stokes-Voight equations. Recently, Qin, Yang and Liu [10] showed the exis-
tence of uniform attractors by uniform condition-(C) and weak continuous method to
obtain uniformly asymptotical compactness in H' and H?, Yue and Zhong [11] investi-
gated the attractors for autonomous and nonautonomous 3D Navier-Stokes-Voight
equations in different methods. More details about the infinite-dimensional dynamics
systems, we can refer to [12-27].

Using the contractive functions, we have in this paper established the uniformly
asymptotical compactness of the processes {U(¢, 7)}(¢ = 7, 7 € R) to obtain the existence
of the uniform attractor of the 3D non-autonomous NSV equations.

Main difficulties we encountered are as follows:

(1) how to obtain a contractive function,

(2) how to deduce the uniformly asymptotical compactness from a contractive
function,

(3) how to obtain the convergence of contractive function.

2 Main results

Notations: Throughout this paper, we set R, = [z, +), 7€ R. C stands for a generic

positive constant, depending on Q, but independent of ¢. L(Q)(1 < p < +) is the gen-

eric Lebesgue space, H*(Q) 1is the general Sobolev space. We set

E = {ulu € (CF(RQ))? divu = 0}, H, V, W is the closure of the set E in the topology of

(L2(Q))%, (HY(Q))3, (HX(Q))? respectively. “~” stands for weak convergence of sequence.
Let ¥ C L2 (R,L?(S2)) be the hull of f; as a symbol space:

loc

E = H+(fo) = [fo(t + h)|h e R]LIZOC(R’LZ(Q)) (2.1)

for all fo € L}, (R, L*(R2)), where [-];2.
leoc(R, Lz(Q)).

Under the assumptions of the initial data, the problem (1.1)-(1.4) has a global solu-

(r12(2)) denotes the closure in the topology of

tion u € C([z, +), V). UAL, 1, u): V — V denotes the processes generated by the
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global solutions and satisfies

u(t, t;u) = Up(t, T, ug Jug, (2.2)
Ur(t, s u) - Up(s, T u) = Up(t, T u), Yur € X, t > 1, 120, (2.3)
Uf(r,t)=1d, YT €R. (2.4)

Let {T(s)} be the translation semigroup on Z, we see that the family of processes {LI,
(t, )} (fe X) satisfies the translation identity if

Ur(t+s,t+5) =Upey(t,t), YfeX t>1, T€R, (2.5)

T(s)E = %, Vs > 0. (2.6)

Next, we recall a simple method to derive uniformly asymptotical compactness which
can be found in [28].

Definition 2.1 Let X be a Banach space and B be a bounded subset of X, X be a
symbol space. We call a function ¢(-) defined on (X x X) x (X x X) to be a contrac-

tive function on B x B if for any sequence {xn}o; C B and any {g,} € X, there are sub-

sequences {Xn, Yooy C {xXn}p2y and {8n )32y C {8nlney such that

lim lim @ (xp,, Xn,; g, ) = 0. (2.7)

k— 00 I>00

We denote the set of all contractive functions on B x B by Contr(B, X).

Lemma 2.2 Let {UAt, 1)}(f € X) be a family of processes satisfying the translation
identity (2.5) and (2.6) on Banach space X and has a bounded uniform (w.r.t fe %)
absorbing set By © X. Moreover, assume that for any ¢ > 0, there exist T = T(Bo, €) and
@7 € Contr(By, X) such that

Uy, (T, 0)x — Uy, (T, 0)yll < &+ r(x v fr,f2),

(2.8)
Vx,y (S] B(), Vfl,fz € X.

Then {ULt, 1)} (fe X) is uniformly (w.r.t. fe X) asymptotically compact in X.
Theorem 2.3 Assume that fe ¥ S L*(R, H), u, € V, then the problem (1.1)-(1.4) pos-

sesses uniform attractors .A} ®) in V.
Theorem 2.4 Assume that fe ¥ S L*(R, H), u, € W, then the problem (1.1)-(1.4)

possesses uniform attractors A}(t) in W.

3 Proof of Theorem 2.3

In this section, we shall prove Theorem 2.3 by two steps as follows, the first one is to
get the existence of an absorbing ball, the second is to prove the asymptotical com-
pactness by means of a contractive function.

From the property of solutions, we can easily derive that the set class {LI(t, 7, u,)} (7,
< t) is a process in V for all 7 < . Moreover, the mapping UAt, 7, u,): V — Vis
continuous.

Lemma 3.1 We assume that {u'} CV, u; €V and u" — u,, f* — fin L*(R, H),
then
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Upn (t, T, uy )uy —=Up(t, T, ur)u;

3.1
weakly star in L*°((z, T); H), Yt > 1, &.1)

Upn (- T, u)uy =Us(-, T, ur)u;

) (3.2)
weakly in L~(t, T; V), Vt > t.

Proof. From the boundedness of the solutions in corresponding topological spaces,
we easily conclude the results. O

Lemma 3.2 Assume fe L*(R, H), u, € V, then there exists a uniform (w.r.t. fe %)
absorbing set By of processes {UAL, 1, u,)}.

Proof. For all u € V, multiplying both sides of (1.1) with # and noting that ((u-V)u,

u) = 0, we derive

d (lu()[1> + o> [Vu()|1?) + 2v[IVu()l* < 2(f(1), u(t))
dt ) (3.3)
< 20[|Vu(0)|* + o o 112

Consequently, for all z € R, there holds
2 t
()l + o2 || Vu©I? < (| ucl? + o | Vu(e)]?) + Mf I F(&)Ids. (3.4)
T

Consider the property of the functional () + a'(V-,V.), we get
Cll- I = () + @V, V) <Call - Iy, 0 < C1 = Cy,

and there exists a constant C, satisfying C; < Cy < C,, such that
Coll- Iy = () + &*(V-, V).

Setting the radius 2 = || u.||? + o? || Vu.||?, we easily get that there exists a constant

C > 0 such that

t

2C
e = ot 20 [ e 65

forall u,e V,t>r

Setting
»_ 2 (! 2
< dg,
s o[ e
then we denote R the nonnegative number given by
2C !
N GRS 5.6
VA J_o

and consider the family of closed balls By in V defined by
Bo={veV]lvly = 2R}. 3.7)

It is straightforward to check that By is a uniform absorbing ball for the processes
{uft, 7, u)}. ©
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Lemma 3.3 Under the condition of fe L*(R, H), the process {UA¢t, 7, u,)} generated by
the global solutions for problem (1.1)-(1.4) is uniformly asymptotically compact in V.
Proof. For any initial data u! € Bo(i = 1,2), let #/(¢, x) be the corresponding solu-

tions to the symbols £ with u!, that is, #/(¢) is the solution of the problem:

U — ol Au —vAu+ (u-Vu+Vp=fi(t,x), xeQ, teR,, (3.8)

divu =0, te€R,, (3.9)

u(t, x)|aQ = O, t S Rl—, (310)

u(t,x) =ui(x), teR (3.11)
Denote

w(t) = u' (1) — (1), (3.12)

then w(t) satisfies the equivalent abstract equations

wy + @Aw, — vAw + B(u') — B(u?) = f1(t,x) —f*(t,x), (3.13)
divw = 0, (3.14)
w(t, x)|yq = 0, (3.15)
w(t,x) =ul(x) —ui(x), teR (3.16)

where B(u) = (u-V)u, p has disappeared by the projection operator P.
Setting

1 ) a? 2
Ey(t) = / | w(t) |°dx + / | Vw(t) |°dx. (3.17)
2 Ja 2 Ja
Multiplying (3.13) by w and integrating over [s, T] x Q, we deduce
T
Ey(T) — Eu(s) +v f / |Vw(h)|*dxdh
s Q
T
+/ / (B(u'(h)) — B(u?(h))) w(h)dxdh (3.18)
$ Q
T
_ / / (F'(h) — £2(h)) w(h)dxdh,
s Q
where 7 < s < T. Then we have

T T
v \Vw(h) | dxdh < Ey(t) — (B(u' (h)) — B(u2(h))) w(h)dxdh
iy [

T
o [ [0t =) uinasan
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Hence,

/TTEw(s)ds

/TT(; / —w(s)—2dx + 0‘22 /Q_vw(s)—zdx> ds

Q
T

C/ /—Vw(s)—zdxds
T Q

C |:Ew(1') — /,T/Q (B(u'(s)) — B(u*(s))) w(s)dxds
+/,T/Q (F'(s) = 2 () w(s)dxds:| .

Integrating (3.18) over [7, T] with respect to s, we get

IA

(3.20)

IA

TE,(T) +v f ! / ' fﬂ \Viw(h)| dxdhds
< / ! Eu(s)ds — / ! / ! /Q (B(u" () — B(u?(h))) w(h)dxdhds
N / ! / ! /Q (F'(h) — £2(h)) w(h)dxdhds
<C |:Ew(t) - /TT/Q (B(u'(s)) — B(u?(s))) w(s)dxds (3.21)
. [ ! /Q (F1(5) — £2(5)) w(s)dxds]
_/TT /ST/Q (B(u'(h)) — B(u?(h))) w(h)dxdhds
. / ! / ! fQ (' (h) — f2(h)) w(i)dxdhds.

If we set

CO = CEW(‘L'),

T
¢(u5,ué;g1(t),g2(t))=C[— / / (B(u' ()) - B((s))) w(s)dxds

N / ' fg (F'e) =) w(s)dde] (3.22)

_ / ! f ! /Q (B(u' (h)) — B(u2(h))) w(h)dxdhds
. / ! /S ' /Q (F'(h) — £2(h)) w(h)dxdhds,

then we have
Co 1 1,21 2 (3.23)
Bo(T) = 0+ (b ' (0. (1). -
Since the family of processes has a uniformly bounded absorbing set, we choose T'

large enough such that

Co _ g, (3.24)
T =

Co

ie, T > ~°,
- &
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Let u”, u™ be the solutions with respect to the initial data uj, ug and symbols f*(z),

f"(t)e X, mn=1,2,...respectively. Then from Lemma 3.1, we can derive

lim lim f ' / ' /Q (f"(h) — f"(h)) (u"(s) — w"(s)) dxdhds = 0,

n—00 m— 00

lim lim /T/sz (f"(s) = f(s)) (u"(s) — u™(s)) dxds = 0,

n—o0 m— oo
and
n—00 m— 00
x (u"(s) — u™(s)) dxds

T
= lim lim /5 /Q (" (s) - V)" (s) — (u™(s) - VIu™(s))

T
lim lim f /Q (B(u"(s)) — B(u"(s)))

n—00 m—> 00

x (u"(s) — u™(s)) dxds

T
- lim tim [ [ (006 =06 9 — (19 - V)

x(u™(s) — u"(s))) x (u"(s) — u™(s))dxds
=0,

lim lim /T/T/ (B(u"(h)) — B(u™(h))) (u"(s) — u™(s)) dxdhds
T Js Q

n—o00 m— oo

T T
- lim lim / f fg ((u"(h) - V)u'(h) — (u™(h) - V)u" (h))

n— 00 m—> 00

x (u"(s) — u™(s)) dxdhds

T T
= tim tim [ [ [ (0 = 0) - 9 - @) - 9)

x (u"(h) — u"(h))) x (u"(s) — u™(s))dxdhds
=0.

Hence ¢(ud, ud; f1(1),f(t)) € Contr(Bo, ) for the above T. By Lemma 2.2 and the

property of the functional () + o (V., V.), the conclusion holds. ©
Proof of Theorem 2.3 From Lemmas 3.1-3.3, we can deduce the result easily. O

4 Proof of Theorem 2.4

Similarly to the proof of Theorem 2.3, we easily obtain that the set class {L; (¢, 7, u,)} (¢
< t) is a process in W for all 7 < t. Moreover, the mapping Uy (¢, 7, u,): W — W is con-
tinuous. If we assume that {u}} is a sequence in W and weakly converges to u, € W,
f' = fin L*(R, H), then

Upn(t, T, uf Juf — Us(t, T, ur Ju, weakly in W, V fixed t > t, (4.1)

Upn (-, T, uf)ull = Up(-, T, ur Jur weakly in L*(t, T; W),V t > 7. (4.2)

Lemma 4.1 Assume f e L*(R, H), then there exists a global uniform (w.r.t. fe %)
absorbing set By of the process {Uy (t, T, u,)}.
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Proof. By the Faedo-Galerkin method, the standard elliptic operator theory and the
Poincaré inequality, we get that u belongs to L*((z, T); D(A)) n L=((z, T); W), then
using the Gronwall inequality and similar energy method to the proof of Theorem 3.1
in Qin, Yang and Liu [10], we can deduce the boundedness of u# and the existence of
absorbing set. O

Lemma 4.2 Under the condition of f € L*(R, H), u, € W, the process {Ur (t, 7, u,)}
generated by the global solutions for problem (1.1)-(1.4) is asymptotically compact in W.

Proof. For any initial data u! € Bo(i = 1,2), let #(¢, x) be the corresponding solu-
tions to the symbolsf with ui, that is, #'(t) is the solution of the problem (3.8)-(3.11).

Denote A = -A and w(f) = u'(£) - u*(¢), then w(¢) satisfies the equivalent abstract equa-
tions (3.13)-(3.14).
Setting

1 2 a? 2
Eu(t) = 2f9|w(t)| de+ fQ|Aw(t)| dx. (4.3)
Multiplying (3.13) by Aw and integrating over [s, 7] x Q, we deduce
T
Ey(T) — Ey(s) + v / /Q |Aw(h)|*dxdh
T
+/ / (B(u'(h)) — B(u?(h)))Aw(h)dxdh (4.4)
s Q
T
- [ [ 61ty - P imauiiasan
s Q
where 7 < s < T. Then we have

V/;T/Q | Aw(h)| dxdh <E,(t) — /;T/Q (B(ul(h)) _ B(uz(h)))AW(h)dxdh

[ [ 6'o - romaenan h
Hence,
/T U Bu(s)ds - f ' (; /Q |Aw(s)|2c1x+°‘22 /Q |AW(S)I2dx)dS
<cC / ' /Q |Auw(s)|* dxds (4.6)

<C [Ew(r) - /T/sz (B(u'(s)) — B(u?(s)))Aw(s)dxds

N / ! /Q (1 (s) - fz(s))Aw(s)dxds:|.

Page 8 of 11
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Integrating (4.4) over [z, T] with respect to s, we get
TE,(T) +v / ! / ! / |Aw(h)|*dxdhds
T s Q
T T (T
< _ 1 _ 2
_/r E,(s)ds /r /5 /Q(B(u (h)) — B(u”(h)))Aw(h)dxdhds
T T
+/ / /(fl(h)—fz(h))Aw(h)dxdhds
T s Q
T
< _ 1 _ 2 ‘
< C[Ew(r) /T /Q(B(u (s)) — B(u“(s)))Aw(s)dxds 4.7)
T
+/ /Q(fl(s) —fz(s))Aw(s)dxds:|
— /T/T/ (B(u'(h)) — B(uz(h)))Aw(h)dxdhds
T s Q
+ /T /T/ (f*(h) = f*(h))Aw(h)dxdhds.
T s Q

If we set

Co = CEy(7),

T
$(ug, uzig' (1), 8°(1)) = C [_/ ,/Q (B(u' (s)) — B(12(s)))Aw(s)dxds
+/Z /S;(fl(s) —f2(5))Aw(s)dxds:| @8)
_/T /T/ (B(u' (h)) — B(u?(h)))Aw(h)dxdhds
T s Q
+/T /T/ (f'(h) — f*(h))Aw(h)dxdhds,
t Js Q
then we have
BulT) = (;0 " ;¢(”5'”<2>;f1(f)'f2(t)). (4.9)

Since the family of the processes has a uniformly bounded absorbing set, we choose
T large enough such that

(4.10)

ie, T > .
- ¢
Let u”, u™ be the solutions with respect to the initial data uj, ug and symbols f'(z),

S"(t)e %, m,n=1,2,...respectively. Then we can obtain

lim lim / ! / ! / (F(h) — f™(h))(Au" (s) — Au™(s))dxdhds = 0,
T s Q

n—o00 m— o0

lim lim /T/ (f"(s) — () (Au"(s) — Au™(s))dxds = 0,
T Q

n—00 m— 00
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and

T
lim lim/ ‘/Q(B(u"(s))—B(um(s)))(Au"(s)—Au'"(s))dxds

n—00 m—> 00

T
= lim lim / /Q ((W"(s) - V)u"(s) — (u™(s) - V)u"(5))

n— 00 m— 00

x (Au"(s) — Au™(s))dxds

T
< lim tim [ [ (06 = 0"6) - 90— (19 V)

x(u™(s) — u"(s))) x (Au"(s) — Au™(s))dxds
=0,

n—00 m— 00

lim lim /T/T/ (B(u"(h)) — B(u™(h)))(Au"(s) — Au™(s))dxdhds
T s Q

n—00 m— 00

x (Au"(s) — Au™(s))dxdhds

T T
= lim lim/ /5 /Q(((u”(h)—u’"(h))~V)u”(h)—(u’"(h)~V)

T T
= lim lim / /5 /Q (W' (h) - V)u"(h) — (u"(h) - V)u"(h))

x(u™(h) — u"(h))) x (Au"(s) — Au™(s))dxdhds
=0.

Hence ¢(up, ud; f1(¢),f(t)) € Contr(Bo, ) for the above T. By Lemma 2.2 and the

property of the functional (;, A-) + o*(A-, A-), the conclusion holds. O
Proof of Theorem 2.4 From Lemmas 4.1-4.2, we can deduce the result easily. O
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