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Abstract

This paper is concerned with the existence of multiple unbounded solutions for a
Sturm-Liouville boundary value problem on the half-line. By assuming the existence
of two pairs of unbounded upper and lower solutions, the existence of at least three
solutions is obtained using the degree theories. Nagumo condition plays an
important role in the nonlinear term involved in the first-order derivative. It is an
interesting point that the method of unbounded upper and lower solutions is
extended to obtain conditions for the existence of multiple solutions.
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1 Introduction
In this paper, we will employ the method of unbounded upper and lower solutions to

study the existence of Sturm-Liouville boundary value problem on the half-line{
u′′(t) + φ(t)f (t, u(t), u′(t)) = 0, t ∈ (0, +∞),
u(0) − au′(0) = B, u′(+∞) = C,

(1)

where j : (0, +∞) ® (0, +∞), f : [0, +∞) × ℝ2 ® ℝ are continuous, a > 0, B, C Î ℝ.

The method of upper and lower solutions is a powerful tool to prove the existence of

differential equation subject to certain boundary conditions. It is well known that non-

linear problems always have at least one solution in the ordered interval defined by

one pair of well-ordered upper and lower solutions. To show this kind of result, we

can employ the topological degree theory or monotone iterative technique, etc, see

[1-5] and the reference therein.

Boundary value problems to differential equations on the half-line arise naturally in

the study of radially symmetric solutions of nonlinear elliptic equations, and many

works have been done in this area, see [6]. When applying the method of upper and

lower solution method to discuss the infinite interval problem, most of the results are

concerned with the existence of the bounded or positive solutions. Chen and Zhang

[7], with a = 0, discussed the lower and upper solution technique and presented the

existence of positive solutions with sublinearity conditions. In [8], Agarwal and O’Re-

gan studied the equation (1/p)(py’)’ = q(t)f(t, y) with the boundary condition y(t)

bounded on [0, +∞) or limt®+∞y(t) = 0 using the upper and lower solution technique.
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The methods used therein were based on diagonalization arguments and existence

results of appropriate boundary value problems on finite intervals using upper and

lower solutions. In [9], Palamides and Galanis proved the existence of a global, mono-

tone, positive and unbounded solution. Recently, Yan, Agarwal and O’Regan [10], with

C > 0 in BVP (1), presented sufficient conditions for the existence of unbounded posi-

tive solutions. In [11], the authors established further the unbounded upper and lower

theory for such boundary value problem. Using such technique coupled with the

Schäuder fixed point theorem, the existence of the unbounded solution is obtained.

How many solutions exist when infinite interval nonlinear problem has two pairs of

well-ordered lower and upper solutions? Eloe, Kaufmann and Tisdell [12] have pre-

sented some sufficient conditions for the existence of three solutions for the equation

x″ - a(t)x + f(t, x) = 0 with the boundary conditions x(0) = x0 and x(t) bounded on [0,

+∞) by employing the degree theory on compact domains and the sequential argu-

ments on unbounded domain. But, to the best knowledge of the authors, when consid-

ering the upper and lower solution method, there is no paper to find the existence of

multiple unbounded solutions for infinite interval problem.

Inspirited by the papers mentioned above, in this paper, we aim to use the upper and

lower solution method to discuss the existence of multiple unbounded solutions for

infinite interval problem. For BVP (1), by assuming two unbounded lower solutions a1,

a2 and two unbounded upper solutions b1, b2 satisfying a1 ≤ a2, b1 ≤ b2, a2 ≰ b1, the
Nagumo condition and additional suitable ones on f to yield prior bounds of u and u’,

we show that the infinite interval problem (1) has at least three solutions. The bases of

the degree theory and the truncations analysis are exposed in this paper, which are

somewhat different from those in [12]. The solutions obtained in this paper are

admitted to be unbounded. And the extension of the unbounded upper and lower

solution method to obtain conditions for the existence of multiple solutions is

interesting.

2 Definitions
In this section, we present the definition of unbounded upper solutions, unbounded

lower solutions, Nagumo condition and a special Banach space.

Definition 2.1. A function a Î C1[0, +∞) ∩ C2(0, +∞) is called a lower solution of

BVP (1) if{
α′′(t) + φ(t)f (t,α(t),α′(t)) ≥ 0, t ∈ (0, +∞),
α(0) − aα′(0) ≤ B, α′(+∞) < C.

(2)

A function b Î C1[0, +∞) ∩ C2(0, +∞) is called an upper solution of BVP (1) if{
β ′′(t) + φ(t)f (t,β(t),β ′(t)) ≤ 0, t ∈ (0, +∞),
β(0) − aβ ′(0) ≥ B, β ′(+∞) > C.

(3)

A function a Î C1[0, +∞) ∩ C2(0, +∞) is called a strict lower solution of BVP (1) if

the inequality in (2) is strict for t Î (0, +∞). A strict upper solution is defined similarly.

Remark 2.1. Since the continuous functions a, b are defined on [0, +∞), they are

admitted to be unbounded. So, we call them unbounded lower and upper solutions.

Definition 2.2. Given a pair of functions a, b Î C1[0, +∞) satisfying a(t) ≤ b(t), t Î
[0, +∞). A function f : [0, +∞) × R2 ® R is said to satisfy Nagumo condition with
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respect to the pair of functions a, b, if there exists a nonnegative function ψ Î C[0,

+∞) and a positive one h Î C[0, +∞) such that

| f (t, x, y) | ≤ ψ(t)h(| y |)

for all 0 ≤ t < +∞, a(t) ≤ x ≤ b(t) and

+∞∫
0

ψ(s)φ(s)ds < +∞,

+∞∫
s

h(s)
ds = +∞.

Consider the space X defined by

X =
{
x ∈ C1[0, +∞), lim

t→+∞ x′(t) exists
}
, (4)

with the norm ||x|| = max{||x||1, ||x’||∞}, where ‖ x‖1 = supt∈[0,+∞)

∣∣∣ x(t)1+t

∣∣∣ , ||x’||∞ =

suptÎ[0,+∞) |x’(t)|. By the standard arguments, we can prove that (X, ||·||) is a Banach

space.

Remark 2.2. Banach space X is introduced in order to estimate the prior bound of

the solutions to BVP (1), which is necessary to apply the degree theory. The solution

of BVP (1) is bounded with the norm ||·|| in X as well as the upper and lower solu-

tions, but they are not as a continuous function.

3 Existence of solutions
For the sake of convenience, we list the assumptions to be used in this section.

(H1) BVP (1) has two pairs of upper-lower solutions bi, ai Î X, i = 1, 2 satisfying

α1(t) ≤ α2(t) ≤ β2(t), α1(t) ≤ β1(t) ≤ β2(t), α2(t) 	≤ β1(t), t ∈ [0, +∞),

where a2, b1 are strict lower and upper solutions, respectively.

(H2) f satisfies Nagumo condition with respect to a1, b2. j Î L1[0, +∞) and there

exists g > 1 such that sup
0≤t<+∞

(1 + t)γ φ(t)ψ(t) < +∞ .

(H3) For any r > 0, there exists �r such that for 0 ≤ t < +∞, a1(t) ≤ x ≤ b2(t), 0 ≤ y ≤

r, we have

f (t, x, y) ≤ ϕr(t) and

+∞∫
0

φ(s)ϕr(s)ds < +∞.

Theorem 3.1. Suppose conditions (H1) and (H2) hold. Then, BVP (1) has at least

three solutions u1, u2, u3 satisfying

α1 ≤ u1 ≤ β1, α2 ≤ u2 ≤ β2, u3 	≤ β1, u3 	≥ α2. (5)

Proof. Choose R >C,

η ≥ max

{
sup

t∈[δ,+∞)

β2(t) − α1(0)
t

, sup
t∈[δ,+∞)

β2(0) − α1(t)
t

}
(6)
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with δ > 0 a certain constant such that

R∫
η

s
h(s)

ds ≥ M

(
sup

t∈[0,+∞)

β2(t)
(1 + t)γ

− inf
t∈[0,+∞)

α1(t)
(1 + t)γ

+
γ

γ − 1
· sup
t∈[0,+∞)

β2(t)
1 + t

)
,

where M = sup
0≤t<+∞

(1 + t)γ φ(t)ψ(t) . And consider the truncated boundary value pro-

blem {
u′′(t) + φ(t)f ∗

1 (t, u(t), u
′(t)) = 0, t ∈ (0, +∞),

u(0) − au′(0) = B, u′(+∞) = C,
(7)

where

f ∗
1 (t, x, y) =

⎧⎪⎨
⎪⎩
fR(t,α1(t), y) +

α1(t)−x
1 +|x−α1(t)| , x < α1(t),

fR(t, x, y), α1(t) ≤ x ≤ β1(t),
fR(t,β2(t), y) +

β2(t)−x
1+|x−β2(t)| , x > β2(t),

and

fR(t, x, y) =

⎧⎨
⎩
f (t, x,−R), y < −R,
f (t, x, y), −R ≤ y ≤ R,
f (t, x,R), y > R.

Obviously, if (7) has triple solutions ui, i = 1, 2, 3 satisfying a1 ≤ ui ≤ b2 and

‖ u′
i‖∞ < R , then we can complete the proof. Next, we will prove sequentially that if u

is a solution of (7), it holds a1 ≤ u ≤ b2, ||u’||∞ <R and (7) has at least three solutions.

Step 1: If u is a solution of (7), it holds a1(t) ≤ u(t) ≤ b2(t), t Î [0, +∞).

We just show u(t) ≤ b2(t), t Î [0, +∞). If it does not hold, we have

sup
0≤t<+∞

(u(t) − β2(t)) > 0.

Because u′(+∞) − β ′
2(+∞) < 0 , so there are two cases.

Case 1. limt→0+(u(t) − β2(t)) = sup0≤t<+∞(u(t) − β2(t)) > 0 .

Easily, it holds u′(0+) − β ′
2(0

+) ≤ 0. While from the boundary condition, we have

u′(0) − β ′
2(0) ≥ 1

a
(u(0) − β2(0)) > 0,

which is a contraction.

Case 2. There exists t* Î (0, +∞) such that

u(t∗) − β2(t∗) = sup
0≤t<+∞

(u(t) − β2(t)) > 0.

So we have u′(t∗) − β ′
2(t

∗) = 0, u′′(t∗) − β ′′
2(t

∗) ≤ 0 . Unfortunately,

u′′(t∗) − β ′′
2(t

∗) ≥ φ(t∗)(f (t∗,β2(t∗),β ′
2(t

∗)) − f ∗
1 (t

∗, u(t∗), u′(t∗)))

= φ(t∗)
u(t∗) − β2(t∗)

1 + | u(t∗) − β2(t∗) |
> 0.
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Which is also a contraction. Here, we note that ||b2||∞ <R holds with similar discus-

sions to those in step 2.

Consequently, u(t) ≤ b2(t) holds for all t Î [0, +∞). Similarly, we can show that a1(t)

≤ u(t) for all t Î [0, +∞).

Step 2: If u is a solution of (7), then ||u’||∞ ≤ R.

From step 1, we know that a1 ≤ u ≤ b2 if u is a solution of (7). If ||u’||∞ ≤ R is

untrue, we have the following three cases.

Case 1. |u’(t)| >h, ∀t Î [0, +∞).

Without loss of generality, we suppose u’(t) >h, t Î [0, +∞). While for any T ≥ δ,

β2(T) − α1(0)
T

≥ u(T) − u(0)
T

=
1
T

T∫
0

u′(s)ds > η ≥ β2(T) − α1(0)
T

,

which is a contraction. So, there must exist t0 Î [0, +∞) such that |u’(t0)| ≤ h.
Case 2. |u’(t)| ≤ h, ∀t Î [0, +∞).

Just take R such as the definition of h in (6) and we can complete the proof.

Case 3. There exists [t1, t2] ⊂ [0, +∞) such that |u’(t1)| = h, |u’(t)| >h, t Î (t1, t2] or |

u’(t2)| = h, |u’(t)| >h, t Î [t1, t2).

Without loss of generality, we suppose that u’(t1) = h, u’(t) >h, t Î (t1, t2].

Obviously,

u′(t2)∫
u′(t1)

s
h(s)

ds =

t2∫
t1

u′(s)
h(u′(s))

u′′(s)ds

=

t2∫
t1

−φ(s)f ∗
1 (s, u(s), u

′(s))u′(s)
h(u′(s))

ds

≤
t2∫

t1

u′(s)φ(s)ψ(s)ds ≤ M

t2∫
t1

u′(s)
(1 + s)γ

ds

= M

⎛
⎝ t2∫

t1

(
u(s)

(1 + s)γ

)
ds +

t2∫
t1

γ u(s)

(1 + s)1+γ
ds

⎞
⎠

≤ M

⎛
⎝ sup

t∈[0,+∞)

β2(t)
(1 + t)γ

− inf
t∈[0,+∞)

α1(t)
(1 + t)γ

+ sup
t∈[0,+∞)

β2(t)
1 + t

+∞∫
0

γ

(1 + s)γ
ds

⎞
⎠

≤
R∫

η

s
h(s)

ds,

which concludes that u’(t2) ≤ R. For t1 and t2 are arbitrary, we obtain that if u’(t) ≥ h,
then u’(t) ≤ R, t Î [0, +∞).

Similarly, we can also obtain that if u’(t1) = -h, u’(t) < -h, t Î (t1, t2], then u’(t) ≥ -R,

t Î [0, +∞).

Step 3: (7) has at least three solutions.
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Define T1 : X ® X as

(T1u)(t) = aC + B + Ct +

+∞∫
0

G(t, s)φ(s)f ∗
1 (s, u(s), u

′(s))ds,

where

G(t, s) =
{
a + s, 0 ≤ s ≤ t < +∞,
a + t, 0 ≤ t ≤ s < +∞.

(8)

Easily, the fixed point of T1 coincides with the solution of BVP (7). It is enough to

prove that T1 has at least three fixed points.

With the similar discussions to those in [11], we can show that T1 is completely con-

tinuous. Let

N > max{max{C, aC + B} + max{a, 1} · HR

∫ +∞

0
φ(s)ψ(s)ds, ‖ α1 ‖, ‖ β2 ‖} , where HR

= max0 ≤ s ≤ R h(s). Set Ω = {u Î X1, ||u|| <N}. Then for any u ∈ 
̄ , it holds

‖ T1u ‖ = max{‖ T1u‖1, ‖ (T1u)′‖∞}

≤ max{C, aC + B} + max{a, 1}
+∞∫
0

φ(s) | f ∗
1 (s, u(s), u

′(s)) | ds

≤ max{C, aC + B} + max{a, 1}HR

+∞∫
0

φ(s)ψ(s)ds < N,

so we obtain deg(I - T1, Ω, 0) = deg(I, Ω, 0) = 1. Let


α2 =
{
u ∈ 
, u(t) > α2(t), t ∈ [0, +∞)

}
,


β1 =
{
u ∈ 
, u(t) < β1(t), t ∈ [0, +∞)

}
.

Because a2 ≰ b1, a1 ≤ a2 ≤ b2 and a1 ≤ b1 ≤ b2, we have 
α2 	= ∅ , 
\
α2 ∪ 
β1 	= ∅
and 
α2 ∩ 
β2 = ∅. Noticing that a2, b1 are strict lower and upper solutions, T1 has

no fixed point in the set ∂
α2 ∩ ∂
β2 . Therefore,

deg(I − T1,
, 0) = deg(I − T1,
\
α2 ∪ 
β2 , 0)

+ deg(I − T1,
α2 , 0) + deg(I − T1,
β1 , 0).

In order to show deg(I − T1,
α2 , 0) = deg(I − T1,
β1 , 0) = 1 , we define the opera-

tor T2 : 
̄ → 
̄ as

(T2u)(t) = aC + B + Ct +

+∞∫
0

G(t, s)f ∗
2 (s, u(s), u

′(s))ds,

where f ∗
2 has the same expression as f ∗

1 except changing a1 to a2. Similarly, we

have a2(t) ≤ u(t) ≤ b2(t) for t Î [0, +∞) when u is a fixed point of T2. In another word,

deg(I − T2,
\
α2 , 0) = 0 . Meanwhile, T2
̄ ⊂ 
̄ , so from Schäuder fixed point theo-

rem, it holds
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deg(I − T2,
, 0) = 1.

And we have

deg(I − T1, 
α2 , 0) = deg(I − T2, 
α2 , 0)

= deg(I − T2, 
, 0) − deg(I − T2,
\
α2 , 0)

= 1.

Similarly, we can deduce that deg(I − T1, 
β1 , 0) = 1 . Therefore,

deg(I − T1,
\
α2 ∪ 
β2 , 0) = −1.

Using the properties of the degree, we can obtain that T1 has at least three fixed

point u1 ∈ 
α2 , u2 ∈ 
β1 , u3 ∈ 
\
α2 ∪ 
β1 .

Remark 3.1. The strictness of the lower solution a2 and the upper one b1 can be

weakened, see [3].

If f : [0, +∞)3 ® [0, +∞), we can establish a criteria for the existence of positive

solutions.

Theorem 3.2. Let f : [0, +∞)3 ® [0, +∞) be continuous and j Î L1[0, +∞). Suppose

conditions (H1) and (H3) hold with a1(t) > 0, t Î (0, +∞). Then, BVP (1) with B, C ≥ 0

has at least three positive solutions satisfying the inequality (5).

Proof. Choose R = 1
a (B + β(0)) and consider the boundary value problem (7) except

fR substituting by

fR(t, x, y) =

⎧⎨
⎩
f (t, x, 0), y < 0,
f (t, x, y), 0 ≤ y ≤ R
f (t, x,R), y > R.

Similarly, we can obtain that the truncated problem has at least three solutions ui, i

= 1, 2, 3 satisfying a1(t) ≤ ui(t) ≤ b2(t), t Î [0, +∞). Because

u′′
i (t) = −φ(t)f ∗(t, ui(t), u′

i(t)) ≤ 0

and u′
i(+∞) = C ≥ 0 , we have

0 ≤ u′
i(t) ≤ u′

i(0) =
1
a
(B + ui(0)) ≤ R.

Consequently, ui, i = 1, 2, 3 are positive solutions of (1).
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