Sub-super solutions for ($p-q$) Laplacian systems

Somayeh Haghaieghi ${ }^{1 *}$ and Ghasem Alizadeh Afrouzi ${ }^{2}$

* Correspondence:

Haghaieghi_ch86@yahoo.com 'Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, Iran Full list of author information is available at the end of the article

Abstract

In this work, we consider the system:

$$
\left\{\begin{array}{cl}
-\Delta_{p} u=\lambda[g(x) a(u)+f(v)] & \text { in } \Omega \\
-\Delta_{q} v=\lambda[g(x) b(v)+h(u)] & \text { in } \Omega \\
u=v=0 & \text { on } \partial \Omega,
\end{array}\right.
$$

where Ω is a bounded region in R^{N} with smooth boundary $\partial \Omega, \Delta_{p}$ is the p-Laplacian operator defined by $\Delta_{p} u=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right), p, q>1$ and $g(x)$ is a C^{1} sign-changing the weight function, that maybe negative near the boundary. f, h, a, b are C^{1} nondecreasing functions satisfying $a(0) \geq 0, b(0) \geq 0$. Using the method of sub-super solutions, we prove the existence of weak solution.

1 Content

In this paper, we study the existence of positive weak solution for the following system:

$$
\left\{\begin{array}{cl}
-\Delta_{p} u=\lambda[g(x) a(u)+f(v)] & \text { in } \Omega \tag{1}\\
-\Delta_{q} v=\lambda[g(x) b(v)+h(u)] & \text { in } \Omega \\
u=v=0 & \text { on } \partial \Omega,
\end{array}\right.
$$

where Ω is a bounded region in R^{N} with smooth boundary $\partial \Omega, \Delta_{p}$ is the p-Laplacian operator defined by $\Delta_{p} u=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right), p, q>1$ and $g(x)$ is a C^{1} sign-changing the weight function, that maybe negative near the boundary. f, h, a, b are C^{1} non-decreasing functions satisfying $a(0) \geq 0, b(0) \geq 0$.

This paper is motivated by results in [1-5]. We shall show the system (1) with signchanging weight functions has at least one solution.

2 Preliminaries

In this article, we use the following hypotheses:

$$
\text { (Al) } \lim \frac{f\left(M(h(s))^{\frac{1}{q-1}}\right)}{s^{p-1}}=0 \text { as } s \rightarrow \infty, \forall M>0
$$

(A2) $\lim f(s)=\lim h(s)=\infty$ as $s \rightarrow \infty$.
(A3) $\lim \frac{a(s)}{s^{p-1}}=\lim \frac{b(s)}{s^{q-1}}=0$ as $s \rightarrow \infty$.
Let λ_{p}, λ_{q} be the first eigenvalue of $-\Delta_{p},-\Delta_{q}$ with Dirichlet boundary conditions and ϕ_{p}, ϕ_{q} be the corresponding positive eigenfunctions with $\left\|\phi_{p}\right\|_{\infty}=\left\|\phi_{q}\right\|_{\infty}=1$.

Let $m, \delta, \gamma, \mu_{p}, \mu_{q}>0$ be such that

$$
\left\{\begin{align*}
\left|\nabla \varphi_{p}\right|^{p}-\lambda_{p} \varphi_{p} & \geq m \quad \text { in } \bar{\Omega}_{\delta} \tag{2}\\
\varphi_{p} & \geq \mu_{p} \quad \text { on } \Omega-\Omega_{\delta}
\end{align*}\right.
$$

and

$$
\left\{\begin{align*}
\left|\nabla \varphi_{q}\right|^{q}-\lambda_{q} \varphi_{q} & \geq m \quad \text { in } \bar{\Omega}_{\delta} \tag{3}\\
\varphi_{p} & \geq \mu_{p} \text { on } \Omega-\Omega_{\delta} .
\end{align*}\right.
$$

$$
\bar{\Omega}_{\delta}=\{x \in \Omega ; d(x, \partial \Omega) \leq \delta\} .
$$

We assume that the weight function $g(x)$ take negative values in Ω_{δ}, but it requires to be strictly positive in $\Omega-\Omega_{\delta}$. To be precise, we assume that there exist positive constants β and η such that $g(x) \geq-\beta$ on $\bar{\Omega}_{\delta}$ and $g(x) \geq \eta$ on $\Omega-\Omega_{\delta}$. Let $s_{0} \geq 0$ such that $\eta a(s)+f(s)>0, \eta b(s)+h(s)>0$ for $s>s_{0}$ and

$$
f_{0}=\max \{0,-f(0)\}, h_{0}=\max \{0,-h(0)\} .
$$

For γ such that $\gamma^{-1} t>s_{0} ; t=\min \left\{\alpha_{p}, \alpha_{q}\right\}, r=\min \{p, q\}$ we define

$$
\begin{aligned}
& \left.A=\max \left[\frac{\gamma \lambda_{p}}{\left.{ }_{\eta a}\left(\frac{1}{p-1}\right)_{\alpha_{p}}\right)+f\left(\frac{1}{\gamma-1}_{\alpha_{q}}\right)}, \frac{\gamma \lambda_{q}}{\left.{ }_{\eta b}\left(\frac{1}{q-1}\right)_{\alpha_{q}}\right)+h\left(\frac{1}{p-1}\right.}{ }_{\alpha_{p}}\right)\right] \\
& B=\min \left[\frac{m \gamma}{\beta a\left(\frac{1}{\gamma-1}\right)+f_{0}}, \frac{m \gamma}{\beta b\left(\frac{1}{\partial-1}\right)+h_{0}}\right]
\end{aligned}
$$

where $\alpha_{p}=\frac{p-1}{p} \mu_{p} \frac{p}{p-1}$ and $\alpha_{q}=\frac{q-1}{q} \mu_{q} \frac{q}{q-1}$.
We use the following lemma to prove our main results.
Lemma 1.1 [6]. Suppose there exist sub and supersolutions $\left(\psi_{1}, \psi_{2}\right)$ and $\left(z_{1}, z_{2}\right)$ respectively of (1) such that $\left(\psi_{1}, \psi_{2}\right) \leq\left(z_{1}, z_{2}\right)$. then (1) has a solution ($\left.u, v\right)$ such that $(u, v) \in\left[\left(\psi_{1}, \psi_{2}\right),\left(z_{1}, z_{2}\right)\right]$.

3 Main result

Theorem 3.1Suppose that (A1)-(A3) hold, then for every $\lambda \in[A, B]$, system (1) has at least one positive solution.
Proof of Theorem 3.1 We shall verify that $\left(\psi_{1}, \psi_{2}\right)$ is a sub solution of (1.1) where

$$
\begin{aligned}
& \psi_{1}=\gamma^{\frac{1}{p-1} \frac{p-1}{p} \varphi_{p} \frac{p}{p-1}} \\
& \psi_{2}=\gamma^{\frac{1}{q-1}} \frac{q-1}{q} \varphi_{q} \frac{q}{q-1}
\end{aligned}
$$

Let $W \in H_{0}{ }^{1}(\Omega)$ with $w \geq 0$. Then

$$
\begin{equation*}
\int_{\Omega}\left|\nabla \psi_{1}\right|^{p-2} \nabla \psi_{1} \nabla w \mathrm{~d} x=\gamma \int_{\Omega}\left(\lambda_{p} \varphi_{p}^{p}-\left|\nabla \varphi_{p}\right|^{p}\right) w \mathrm{~d} x \tag{4}
\end{equation*}
$$

Now, on $\bar{\Omega}_{\delta}$ by (2),(3) we have

$$
\gamma\left(\lambda_{p} \varphi_{p}^{p}-\left|\nabla \varphi_{p}\right|^{p}\right) \leq-m \gamma
$$

Since $\lambda \leq B$ then

$$
\lambda \leq \frac{m \gamma}{\beta a\left(\gamma^{\frac{1}{p-1}}\right)+f_{0}}
$$

thus

$$
\begin{aligned}
\gamma\left(\lambda_{p} \varphi_{p}^{p}-\left|\nabla \varphi_{p}\right|^{p}\right) & \leq-m \gamma \\
& \leq \lambda\left(-\beta a\left(\gamma^{\frac{1}{p-1}}\right)-f_{0}\right) \\
& \leq \lambda\left(g(x) a\left(\gamma^{\frac{1}{p-1}}\right)-f_{0}\right) \lambda\left(g(x) a\left(\frac{p-1}{p} \gamma^{\frac{1}{p-1}} \varphi_{p}^{\frac{1}{p-1}}\right)\right. \\
& \left.+f\left(\frac{q-1}{q} \gamma^{\frac{1}{q-1}} \varphi_{q}^{\frac{1}{q-1}}\right)\right)
\end{aligned}
$$

then by (4)

$$
\begin{aligned}
\int_{\bar{\Omega}_{\delta}}\left|\nabla \psi_{1}\right|^{p-2} \nabla \psi_{1} \nabla w \mathrm{~d} x \leq & \int_{\bar{\Omega}_{\delta}} \lambda\left(g(x) a\left(\frac{p-1}{p} \gamma^{\frac{1}{p-1}} \varphi_{p} \frac{p}{p-1}\right)\right. \\
& \left.+f\left(\frac{q-1}{q} \gamma^{\frac{1}{q-1}} \varphi_{q} \frac{q}{q-1}\right)\right) w \mathrm{~d} x
\end{aligned}
$$

A similar argument shows that

$$
\begin{aligned}
\int_{\bar{\Omega}_{\delta}}\left|\nabla \psi_{2}\right|^{q-2} \nabla \psi_{2} \nabla w \mathrm{~d} x \leq & \int_{\bar{\Omega}_{\delta}} \lambda\left(g(x) b\left(\frac{q-1}{q} \gamma^{\frac{1}{q-1}} \varphi_{q} \frac{1}{q-1}\right)\right. \\
& \left.+h\left(\frac{p-1}{p} \gamma^{\frac{1}{p-1}} \varphi_{p} \frac{1}{p-1}\right)\right) w \mathrm{~d} x
\end{aligned}
$$

Next, on $\Omega-\bar{\Omega}_{\delta}$. Since $\lambda \geq A$, then

$$
\lambda \geq \frac{\gamma \lambda_{p}}{\eta a\left(\gamma^{\frac{1}{p-1}} \alpha_{p}\right)+f\left(\gamma^{\frac{1}{q-1}} \alpha_{q}\right)}
$$

so we have

$$
\begin{aligned}
\gamma\left(\lambda_{p} \varphi_{p}{ }^{p}-\left|\nabla \varphi_{p}\right|^{p}\right) & \leq \gamma \lambda_{p} \\
& \leq \lambda\left[\eta a\left(\gamma^{\frac{1}{p-1}} \alpha_{p}\right)+f\left(\gamma^{\frac{1}{q-1}} \alpha_{q}\right)\right] \\
& \leq \lambda\left[g(x) a\left(\psi_{1}\right)+f\left(\psi_{2}\right)\right], \Omega-\overline{\Omega_{\delta}}
\end{aligned}
$$

Then by (4) on we have

$$
-\Delta_{p} \psi_{1} \leq \lambda\left[g(x) a\left(\psi_{1}\right)+f\left(\psi_{2}\right)\right] \quad \text { on } \Omega-\overline{\Omega_{\delta}}
$$

A similar argument shows that

$$
-\Delta_{q} \psi_{2} \leq \lambda\left[g(x) b\left(\psi_{2}\right)+h\left(\psi_{1}\right)\right]
$$

We suppose that κ_{p} and κ_{q} be solutions of

$$
\begin{aligned}
& \left\{\begin{aligned}
-\Delta_{p} \kappa_{p}=1 & \text { in } \Omega \\
\kappa_{p}=0 & \text { on } \partial \Omega
\end{aligned}\right. \\
& \left\{\begin{aligned}
-\Delta_{q} \kappa_{q}=1 & \text { in } \Omega \\
\kappa_{q}=0 & \text { on } \partial \Omega
\end{aligned}\right.
\end{aligned}
$$

respectively, and $\mu_{p}^{\prime}=\left\|\kappa_{p}\right\|_{\kappa},\left\|\kappa_{q}\right\|_{\kappa}=\mu_{q}^{\prime}$.
Let

$$
\left(z_{1}, z_{2}\right)=\left(\frac{c}{\mu_{p}^{\prime}} \lambda^{\frac{1}{p-1}} \kappa_{p},\left[2 h\left(c \lambda^{\frac{1}{q-1}}\right)\right]^{\frac{1}{q-1}} \lambda^{\frac{1}{q-1}} \kappa_{q}\right)
$$

Let $W \in H_{0}{ }^{1}(\Omega)$ with $w \geq 0$.
For sufficient C large

$$
\frac{\mu^{\prime}{ }_{p}^{p-1}\left[\|g\|_{\infty} a\left(C \lambda^{\frac{1}{p-1}}\right)+f\left(\left(2 h\left(C \lambda^{\frac{1}{p-1}}\right)\right)^{\frac{1}{q-1}} \lambda^{\frac{1}{q-1}} \mu_{q}^{\prime}\right)\right]}{C^{p-1}} \leq 1
$$

then

$$
\begin{aligned}
\int\left|\nabla z_{1}\right|^{p-2} \nabla z_{1} \nabla w \mathrm{~d} x & =\lambda\left(\frac{C}{\mu_{p}^{\prime}}\right)^{p-1} \int w \mathrm{~d} x \\
& \geq \lambda \int\left[\|g\|_{\infty} a\left(C \lambda^{\frac{1}{p-1}}\right)+f\left(\left(2 h\left(C \lambda^{\frac{1}{p-1}}\right)\right)^{\frac{1}{q-1}} \lambda^{\frac{1}{q-1}} \mu_{q}^{\prime}\right)\right] \mathrm{d} x \\
& \geq \lambda \int\left[g(x) a\left(C \lambda^{\frac{1}{p-1}} \frac{\kappa_{p}}{\mu_{p}^{\prime}}\right)+f\left(\left(2 h\left(C \lambda^{\frac{1}{p-1}}\right)\right)^{\frac{1}{q-1}} \lambda^{\frac{1}{q-1}} \kappa_{q}\right)\right] \mathrm{d} x \\
& =\int\left[g(x) a\left(z_{1}\right)+f\left(z_{2}\right)\right] w \mathrm{~d} x
\end{aligned}
$$

Similarly, choosing C large so that

$$
\frac{\|g\|_{\infty}\left(b\left(2 h\left(C \lambda^{\frac{1}{p-1}}\right)\right)^{\frac{1}{q-1}} \lambda^{\frac{1}{q-1}} \mu_{q}^{\prime}\right)}{h\left(C \lambda^{\frac{1}{p-1}}\right)} \leq 1
$$

then

$$
\begin{aligned}
\int\left|\nabla z_{2}\right|^{q-2} \nabla z_{2} \nabla w \mathrm{~d} x & =2 \lambda h\left(C \lambda^{\frac{1}{p-1}}\right) \int w \mathrm{~d} x \\
& \geq \lambda \int\left[\|g\|_{\infty} b\left(z_{2}\right)+h\left(z_{1}\right)\right] w \mathrm{~d} x
\end{aligned}
$$

Hence by Lemma (1.1), there exist a positive solution (u,v) of (1) such that $\left(\psi_{1}, \psi_{2}\right)$ $\leq(u, v) \leq\left(z_{1}, z_{2}\right)$.

Author details

${ }^{1}$ Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, Iran ${ }^{2}$ Department of Mathematics, Faculty of Mathematical Sciences University of Mazandaran, Babolsar, Iran

Authors' contributions

SH has presented the main purpose of the article and has used GAA contribution due to reaching to conclusions. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.
Received: 13 August 2011 Accepted: 2 December 2011 Published: 2 December 2011

References

1. Ali, J, Shivaji, R: Existence results for classes of Laplacian system with sign-changing weight. Appl Math Anal. 20, 558-562 (2007)
2. Rasouli, SH, Halimi, Z, Mashhadban, Z: A remark on the existence of positive weak solution for a class of (p, q)-Laplacian nonlinear system with sign-changing weight. Nonlinear Anal. 73, 385-389 (2010). doi:10.1016/j.na.2010.03.027
3. Ali, J, Shivaji, R: Positive solutions for a class of (p)-Laplacian systems with multiple parameters. J Math Anal Appl. 335, 1013-1019 (2007). doi:10.1016/j.jmaa.2007.01.067
4. Hai, DD, Shivaji, R: An existence results on positive solutions for class of semilinear elliptic systems. Proc Roy Soc Edinb A. 134, 137-141 (2004). doi:10.1017/S0308210500003115
5. Hai, DD, Shivaji, R: An Existence results on positive solutions for class of p-Laplacian systems. Nonlinear Anal. 56, 1007-1010 (2004). doi:10.1016/j.na.2003.10.024
6. Canada, A, Drabek, P, Azorero, PL, Peral, I: Existence and multiplicity results for some nonlinear elliptic equations. A survey Rend Mat Appl. 20, 167-198 (2000)
```
doi:10.1186/1687-2770-2011-52
Cite this article as: Haghaieghi and Afrouzi: Sub-super solutions for ( \(p-q\) ) Laplacian systems. Boundary Value Problems 2011 2011:52.
```


Submit your manuscript to a SpringerOpen ${ }^{\ominus}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

