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1 Introduction
Boundary value problem (BVP) for ordinary differential equations arise in different
areas of applied mathematics and physics and so on, the existence and multiplicity of
positive solutions for such problems have become an important area of investigation in
recent years, lots of significant results have been established by using upper and lower
solution arguments, fixed point indexes, fixed point theorems and so on (see [1-8] and
the references therein). Especially, the existence of positive solutions of nonlinear BVP
with integral boundary conditions has been extensively studied by many authors (see
[9-18] and the references therein).

However, the corresponding results for BVP with integral boundary conditions on time
scales are still very few [19-21]. In this article, we discuss the multiple positive solutions
for the following fourth-order system of integral BVP with a parameter on time scales

A (@) + af (6, 2(), 2 (1), 2420, y(0), y* (0,722 (1) = 0, 1€ (0,0(T))r,
PE() + gt x(0), x* (1), x4 (0, y(0), y* (), y*4 (1) = 0, t € (0,0(T))r,
x(0) =x2(0) = 0,
y(0)=y*(0) =0,
o(T)
a1 x24(0) — bix®22(0) = f X8 (5)A1(s)As,
0
o(T) (1.1)
c1x22(0 (T)) + d1x222 (o (T)) = / x28(5)By (5)As,
0

o(T)
ay*3(0) — boy34(0) = / PAA()A () A,
0
o(T)

ey (o (1)) + doy** (o (T)) = / y22(5)Ba(s)As,
0
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where a;, b;, ¢;, d; > 0, and p; = a;c,0(T) + ad; + bic; >0(i =1, 2),0 < A, 4 <+oo, f,
g€ C((0,0(T))t x (R*)®, R*), R" = [0, +e0), A; and B; are nonnegative and rd-continu-
ous on [0,0(T)]r(i=1,2)

The main purpose of this article is to establish some sufficient conditions for the exis-
tence of at least two positive solutions for system (1.1) by using the fixed point theorem of
cone expansion and compression type. This article is organized as follows. In Section 2,
some useful lemmas are established. In Section 3, by using the fixed point theorem of
cone expansion and compression type, we establish sufficient conditions for the existence
of at least two positive solutions for system (1.1). An illustrative example is given in
Section 4.

2 Preliminaries

In this section, we will provide several foundational definitions and results from the
calculus on time scales and give some lemmas which are used in the proof of our
main results.

A time scale T is a nonempty closed subset of the real numbers R.

Definition 2.1. [22]For ¢ € T, we define the forward jump operator ¢ : T — T by
o(t)y=inflr e T: v >1t}, while the backward jump operator p:T — Thy
p(t)=sup{t eT: 7t <t}

In this definition, we put inff) = sup T and sup ¥ = infT, where &, denotes the empty
set. If o(t) > t, we say that ¢ is right-scattered, while if p(¢) < ¢, we say that ¢ is left-
scattered. Also, if t < supT and o(¢) = ¢, then ¢ is called right-dense, and if t > inf T
and p(t) = t, then ¢ is called left-dense. We also need, below, the set Tk, which is
derived from the time scale T as follows: if T has a left-scattered maximum i, then
Tk = T — m. Otherwise, Tk = T.

Definition 2.2. [22]Assume that x : T — Ris a function and let ¢ ¢ Tk Then x is
called differentiable at t € Tif there exists a 0 € R such that for any given ¢ >0, there is
an open neighborhood U of t such that

lx(o (1)) — x(s) = x2(D)lo (1) =3I | <elo(t) —sl, seU.

In this case, x*(¢) is called the delta derivative of x at t. The second derivative of x(t)
is defined by 2880 = ()2 0).

In a similar way, we can obtain the fourth-order derivative of x(¢) is defined by x
(®) = (HHHO.

Definition 2.3. [22]A function f : T — Ris called rd-continuous provided it is contin-
uous at right-dense points in Tand its left-sided limits exist at left-dense points in T.
The set of rd-continuous functions f : T — Rwill be denoted by Cy(T).

Definition 2.4. [22]A function F:T — Ris called a delta-antiderivative of
f : T — Rprovide FA(t) = fit) holds for all ¢ ¢ T*. In this case we define the integral of f by

(44)

() = E(0) - F(a).

For convenience, we denote I = [0,0(T)]r, I' = (0,0(T))7 and for i = 1, 2, we set

Qqi Py; 1 1

Dy; = , Dyi= , Kyi= , K= ,
! 1-—Py; x 1— Qg 1 1—Py; x 1—Qq
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where
o(T) o(T)
P1i=/B()aS+b N P2i=/A()a’S+b
0 0
o(T o(T)
Qi = / Bi(s)di+ci((;(_T)_s)As, Qi = /A()d +Cl((;(T) )As.
0 0

To establish the existence of multiple positive solutions of system (1.1), let us list the
following assumptions:

(H1)Pji, Qji € [0,1),DuDy € [0,1),Dy1 Dy € [0,1), ji=1,2.

In order to overcome the difficulty due to the dependence of f, g on derivatives, we
first consider the following second-order nonlinear system

utB(t) + Af(t, Ao, Au, Agu, Ay, A, Agr) =0, t € (0,0(T))T,
VA2 () + pg(t, Aau, Aru, Agu, Ayv, Ayv, Agr) = 0,  t e (0,0(T))r,
o(T)
a,u(0) — bu®(0) = / u(s)A1(s)As,
0
o(T)
cau(o (1)) + diu® (o (T)) = / u(s)B1(s)As, 2.1)
0
o(T)
a;v(0) — bov*(0) = / v(s)Az(s)As,
0
o(T)
cov(o (1)) + dav® (o (T)) = f v(s)B2(s)As,

0

where Ay is the identity operator, and
t t
Au(t) = f (t—o(s)) u(s)as, Aw(t) = / (t—o(s) "u(s)Aas, i=1,2.(22)
0 0

For the proof of our main results, we will make use of the following lemmas.

Lemma 2.1. The fourth-order system (1.1) has a solution (x, y) if and only if the non-
linear system (2.1) has a solution (u, v).

Proof. 1f (x, y) is a solution of the fourth-order system (1.1), let u(t) = x288), v(t) =
y*4(#), then it follows from the boundary conditions of system (1.1) that

Aru(t) = x2(1), Au(t) = x(t), A1v(t) = y2 (1), Aav(t) = y(1).

Thus (&, v) = (x*2(2), yAA(t)) is a solution of the nonlinear system (2.1).

Conversely, if (4, v) is a solution of the nonlinear system (2.1), let x(¢) = A,u(t), y(t) =
A,v(t), then we have

x8(1) = Aqu(t), x22(6) = u(t), y2(£) = Ayw(0), y22 (1) = (1),
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which imply that
x(0) = 0,x2(0) = 0,y(0) = 0,y*(0) = 0.
Consequently, (x, ¥) = (A,u(f), Ayv(t)) is a solution of the fourth-order system (1.1).

This completes the proof.
Lemma 2.2. Assume that D11Dy; = 1 holds. Then for any hy € C(I', R”), the following

BvVP
utt(t) +hi(t) =0, te(0,0(T))y,
o(T)
—bul = ,
a,u(0) — b1u”(0) { u(s)Ai(s)As (2.3)

o(T)
au(o(T)) +diu”(o(T)) = [ u(s)Bi(s)As
0

has a solution

o(T)
u(t) = [ Hi(t,s)hi(s)As,
0

where
o(T) a(T)
H, (t,S) = Gl(t, S) + 1 (I) / Bl(r)Gl (‘L’,S)A‘L’ + Tz(t) / Al(r)Gl(r,s)Ar,
0 0

1 [(ar0(s) +b1)[ds +c1(0(T) = )], o(s) <1,

Gt 9= oy e e o

Kyi(ait +b1) + KnDanldy + ¢c1(o(T) — t)]
p1(1 —DnDa)

KynDm(art+b1) + Kaldy +c1(o(T) — t)]

p1(1 —DnDy) .

m (t) =

’

1 (I) =

Proof. First suppose that u is a solution of system (2.3). It is easy to see by integra-
tion of BVP(2.3) that

u?(t) = u®(0) — / hi(s)As. (2.4)
0
Integrating again, we can obtain
u(t) = u(0) + tu”(0) — / (t—o(s))hi(s)As. (2.5)
0
Let £ = o(7T) in (2.4) and (2.5), we obtain
o(T)
u(o(T)) = u®(0) — / hi(s)As, (2.6)
0
o(T)
u(o (T)) = u(0) + o (T)u’(0) — / (a(T) — o (s))hi(s)As. (2.7)
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Substituting (2.6) and (2.7) into the second boundary value condition of system (2.3),

we obtain

c1u(0) + (10 (T) + dy)u(0) = /

o(T)
[di +c1(o(T) —o(s))]hi(s)As

0
o(T)

+ / u(s)B1(s)As.

0

From (2.8) and the first boundary value condition of system (2.3), we have

a(T)

a(T)

NOPR +c1(o —o(s))]hi1(s)As + u(s)B1(s)As
u() - ! 0/[d1 (1) = o NIEas + [ us)Bi(

a(T)

0
o(T)

0

o(T)

0

— / u(s)A1(s)As |,

o(T)

/ [di +c1(o(T) — o (s))]hi(s)As + / u(s)Bi(s)As

0
o(T)

1
_ O/u(s)Al(s)As +a1 /u(s)Al(s)As.

0

Substituting (2.9) and (2.10) into (2.5), we have

o(T)

a(T)

u(t) = / Gl(t,s)hl(s)As+a1i:1-bl / u(s)B1 (5) As

0

+d1 +Cl(O'(T) — t)

P1
By (2.11), we get
o(T)
f u(s)Bi1(s)As = )
0
o(T)
/ u(s)Ai(s)As = 1
0
+

— Py

1
—Qxn

1_QZI

0
o(T)

/ u(s)Ai(s)As.

0

a(T) a(T)

B](S) / G] (S, 'L')h] (T)ATAS

0 0
o(T)

/ u(s)Ai(s)As,

0

Qu
— Py

o(T) o(T)

Bi(s) /
0

Gi(s, T)hi(r)ATAs

a(T)

/ u(s)B1(s)As.

P

(2.8)

(2.10)

(2.11)

(2.12)

(2.13)

Page 5 of 18
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By (2.12) and (2.13), we get

a(T) o(T) o(T)

KuD
/u(s)Al(s)As= nea /Bl(s) / G1(s, 7)hi(T) AT As
1—DnDx
0 0 0 (2.14)
K« o(T) o(T)
21
A Gi(s,T)h ATAsS,
+1—D11D21 / 1(5)/ 1(s, T)hi(r)ATAs
0 0
o(T) K T T
1
B As = B Gi(s,t)h ATA
/u(s) 1(s)As 1—D11D21/ l(s)/ 1(s, T)hi(t)ATAs
0 0 0 (2.15)
oD o(T) o(T)
21D
A Gi(s, t)h ATAS.
+1—D11D21 / 1(5)/ 1(s, T)hi(t) AT As
0 0
Substituting (2.14) and (2.15) into (2.11), we have
a(T)
u(t) = f Gi(t,s)hi(s)As
0
Kun(axt+b1) + KnDalds +es(a(m) =01 [ [
nlait +b1) + Kby ldy + (o -
+ pi(1— DyiDa) /Bl(s) / Gi(s, t)hi(t)ATAs
0 0
KaDu(at+b1) +Kalds +ero(m =01 [,
adnldil +01) + Ka1dy + €1 (O -
+ p1(1 = DiDa) O/Al(s) O/ Gi(s, T)hi(r)ATAs
o(T) o(T) o(T) (2.16)
= / G1(t,s)h1(s)As + 11 (2) / Bi(s) / Gi(s, t)hi(t)ATAs
0 0 0
o(T) o(T)
+T21(t)/A1(5) / Gi(s, T)hi(t)ATAs
0 0
o(T)
= /Hl(t,s)hl(s)As,
0
Conversely, suppose u(t) = fé’m H;(t,s)h;(s)As, then
a(T) o(T) o(T)
u(t) = / G1(t, s)h1(s)As + 111 (¢) / Bi(s) / G1(s, T)h1(r)ATAs
0 0 0 (2.17)
o(T) o(T)

+Tz1(t)/A1(s) / Gi(s, ) (t)ATAs.

Page 6 of 18
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Direct differentiation of (2.17) implies

o (T) t
ut(t) = ,011 a / [di +c1(o(T) — o (s))]h1(s)As — ¢ 0/ (a10(s) +b1)hi(s) A's
o(T) o(T)

Kn — caiKuD
a1 K1 — 1K1 Doy Bl(S) / Gl(sl‘[)hl(f)ArAs

p1(1 — Dy Dy)

oD K a(T) a(T)
a1k — alka
p1(1 — Dy Do) f Aq(s) / Gi(s, t)h(r)AtAs
0 0
and
utt (1) = —h (1),
and it is easy to verify that
o (T)
aju(0) — bu®(0) = / u(s)A1(s)As,
0
a(T)
cu(o (1)) + diu®(o(T)) = / u(s)B1(s)As.
0

This completes the proof.
Lemma 2.3. Assume that D,,Dyy z 1 holds. Then for any hy € C(I', R), the following

BVP
P 4 ha() =0, L€ (0,0(T))y
o(T
av(0) — byv®(0) = })v(s)Az(s)As,
0

cov(o(T)) + dov® (o (T)) = G}T)v(s)Bz (s)As
0

has a solution

o(T)

v(t) = [ Ha(t,s)ha(s)As,
0

where
o(T) o(T)
Hz(t,S) =Gz(t,$)+7’12(t) / BQ(T)GQ(T,S)A‘L' +T22(I) / AQ(T)GQ(T,S)A‘E,
0 0

1 [ (az0(s) +b2)[da +c2(o(T)—1)], 0(s) <,
Ga(trs) = 02 { (a2t +b2)[dy + c2(a(T) — o (s))], t <o (s),
Kia(axt +by) + Ki2Daa[ds + ¢o (o (T) — t)]
p2(1 — D12D23)
Ky:D12(ast + by) + Kaa[dy + c2 (o (T) — t)]
p2(1 — D12D22) .

ra(t) = ’

122 (t) =

Proof. The proof is similar to that of Lemma 2.2 and will omit it here.
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Lemma 2.4. Suppose that (H,) is satisfied, for all t, s € I and i = 1, 2, we have

(i) Gt s) >0, Hi(¢, s) >0,
(11) LimiGi(O'(s), S) < Hi(t, S) < MI'G,'(O-(S), S),
(iii) mGHo(s), s) < H{t, s) < MG{0(s), s),

where
a(T) a(T)
Mi=1+r1y; / Bi(t)At + 1y / Ai(t)AT, Tji= 0rnax1 ri(t),
<i<
0 0
o(T) o(T)

m; =1 +11(t) / Bi(t)At +1i(t) | Ai(r)Ar, 715 = 0min1 ri(t),
<t<
0

0
d; b;

' , L,j=1,2.
di+C,' a,—+b,-} J

M = max{Mi, M5}, m=min{Lymy,Lym,}, L;= min{

Proof. 1t is easy to verify that G,(t, s) >0, H,(¢, s) >0 and Gi(¢, s) < G;(o(s), s), for all ¢,

s € 1. Since

Gi(o(s)s) ai?(t:)bibi, o(s) >t

di+c, (o (T)—
Gi(t,s) : Beern oy 0 (5) <t
Thus G;(t, s)/G,(o(s), s) = L; and we have
Gi(t, 5) > LiGi(G (S), S).

On the one hand, from the definition of L; and m1;, for all ¢, s € I, we have

o(T) o(T)
Hi(t,s) = Gi(t,s) + mi(t) / Bi(7)Gi(z,s)At + r2i(t) / Ai(7)Gi(z,s)At
0 0
o(7) o(7)

> LiGi(o(s),s) | 1 +r1(t) f Bi(‘E)AT+T2,‘(t)/A,'(T)A‘L'
0 0

> Lim;iGi(o (s),5),
and on the other hand, we obtain easily that from the definition of M;, for all £, s € 1,

o (T) o(T)

Hilt,s) < Gio(5), ) + 11i(0) f Bi(v)Gi(o (s), ) A + 12i(1) / A(T)Gilo (5), ) AT
0 0

< MiGi(O' (S),S).

Finally, it is easy to verify that mG(o(s), s) < Hi(t, s) < MG,(0o(s), s). This completes

the proof.
Lemma 2.5. [23]Let E be a Banach space and P be a cone in E. Assume that Q, and
Q, are bounded open subsets of E, such that 0 € Qi, Qi C Q, and let

T : PN (Q\Q1) — Pbe a completely continuous operator such that either

@ || Tul| < ||ull, Yue P noQy and ||Tu|| = ||ul|, Yu € P n 0Qy, or
@) || Tul| = ||u||, Vu € PnoQy and ||Tul|| < ||u||, Yu € P n oQ,

Page 8 of 18
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holds. Then T has a fixed point in PN (2,\21).

To obtain the existence of positive solutions for system (2.1), we construct a cone P
in the Banach space Q = C(, R") x C(I, R") equipped with the norm
G 0)I1 = lull + [v]] = max Jul + max [v] by

P= {(u, v) € Qlu(t) = 0,v(t) =0, ntlelln(u(t) +(t)) = ﬁ”(u, v)||} .

It is easy to see that P is a cone in Q.
Define two operators Ty, T, : P — C(I, R") by

T
Ty (u,v)(t) = A/Hl(t, S)f(t, Aqu, Ayu, Aou, Ayv, Ayv, Agv)As,  t e,
0

T
T, (u,v)(t) = p,/Hz(t,s)g(t,Azu,Alu,Aou,sz,Alv,Aou)As, tel
0

Then we can define an operator 7: P — C(I, R*) by
T(u,v) = (Ta(u,v), Ty(u,v)), Y(uv)eP.

Lemma 2.6. Let (H;) hold. Then T : P — P is completely continuous.
Proof. Firstly, we prove that T: P — P. In fact, for all (4, v) € P and t € I, by Lemma
2.4(i) and (H,), it is obvious that T (u, v)(¢) >0, T,(u, v)(¢) >0. In addition, we have

o(T)

T (u,v)(t) = A / Hi (8, 9)f(t, Aau, Aru, Aou, Ayv, Aqv, Agv) As

o (2.18)
<M / G1(o(5), $)f (t, Aau, Aru, Agu, Ayv, A1v, Agv) As,

0

which implies ||T;(u,v)|| < AM fgm G1(o(s), )f (t, Aau, Ayu, Agu, Ay, A1u, Agv) As.
And we have
o(T)
Ty (u,v)(t) = ALymy / G1(o(s), s)f (t, Aqu, Aru, Agu, Agv, Aqv, Agv) As

0

m
> T, (u, v)|].
=L 5 (u V)l
In a similar way,
m
Tu(u)(©) = | 1T (w V)l
Therefore,
. m m
min(T (u, v)(6) + Tu(uw,v)(0) = | (o)l + 11T, (V)]
= 1T (0, 0), T ()

This shows that 7: P — P.

Page 9 of 18
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Secondly, we prove that T is continuous and compact, respectively. Let {(x, vi)} € P

be any sequence of functions with klim (e, i) = (w,v) € P,
— 00

[T (ure, vie) () — T (u, v) (£)| <AMy sup |f(t, Agtig, Arug, Aok, AsVi, A1Vr, AoUk)
tel
a(T)

—f(t, Ayu, Ayu, Aou, Ayu, Arv, Agv)| / G1(o(s),5)As,
0

from the continuity of f, we know that || T (us vi) - Ta(u, v)|| > 0 as k — eo. Hence
T, is continuous.
T) is compact provided that it maps bounded sets into relatively compact sets. Let

f= sup |f (¢, Asu, Aju, Aou, Ayv, Av, Agv) | and let Q be any bounded subset of P, then

tel’
there exists r >0 such that ||(«, v)|| < r for all (&, v) € Q. Obviously, from (2.16), we

know that
_a(1)
Ti(u,v)(t) < AMf [ Gi(o(s),s)As,
0

so, T;Q) is bounded for all (x, v) € Q. Moreover, let

_ a(T) o(T)
A
L' = f a / [di +c1(a(T) —o(s))]As +c; / (a10(s) +by)As
L1 s s
a(7) a(T)

+A]_‘|a1K11 — c1KuDx |

Bi(s /G S, T)ATAS
P1(1 = DuDy) 1()0 157

}"_ D K o(T) a(T)
flaiKanDu — c1Ka | /Al(S) / Gi(s, T)ATAs.
p1(1 —DnDa)
0 0
We have
T (u, ) (1)

o(T)
A
< a / [di +c1(o(T) — o (s))1f (s, Aau, Aru, Aou, Aav, A1v, Agv) As
P1

t

t
—C / (ala(s) + bl)f(S, Azu,Alu, Aou, AQU,A]U, A()V)AS
0

a(T) a(T)
B1 () / Gi1(s, T)f (s, Aau, Aru, Agu, Aav, A1v, AgV) AT As

0
o(T) o(T)

/Al(s) / G1(s, T)f (s, Aau, Aru, Aou, Agv, A1v, AgV) AT As
0

0

AaiKy — c1Ku Do
01(1 — DuDy)

AlaiKa Dy — a1 Ka|
p1(1 —DuD2p)
<L.
Thus, for any (u#, v) € Q and Ve >0, let 6 = Lfl, then for t;, t, € I, |t; - o] < J, we
have

|T)L(ll, U)(tl) — T)L(ll, U)(t2)| < L/1|t1 — t7_| < €.
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So, for all (u, v) € Q, THQ is equicontinuous. By Ascoli-Arzela theorem, we obtain
that Tj : P — P is completely continuous. In a similar way, we can prove that T}, : P
— P is completely continuous. Therefore, T': P — P is completely continuous. This
completes the proof.

3 Main results

In this section, we will give our main results on multiplicity of positive solutions of
system (1.1). In the following, for convenience, we set

fﬁ - lim lrlff(t’ (/)1/-‘-/(/)6)

L1, ...,

, f*= lim supf( o1 Q)
oS () XL Lol
> gl i=1

= . ,
il(pilea tel qz(t) Zi:l il
o1

L1, ..., . t,o1,...,
g5 = lim ll'lff( ®1 . q)ﬁ)l goz = lim Sl.lpf( 1 : §06)’
Slors SO0 I G vy
where ¢q,(t), qi(t) € C,u(l', R") satisfy
o(T)
0 < / G1(o(s),5)qi(s)As < +o0  (i=1,2),
0
o(T)
0 < / Ga(o(s),5)gi(s)As < +o0  (j = 3,4).
0

Theorem 3.1. Assume that (H,) holds. Assume further that

(H,) there exist a constant R >0, and two functions p,(t) € C,q4(I, R,) satisfying
o(T)
0 < [ Gi(o(s) s)pi(s)As < +oo(i = 1, 2)such that
0

6
fltigr.. 06) <Rp1(8), Viel, 0<) lol <R,
i=1

6
8(tgr...,96) SRpa(t), Viel, 0<) lgl <R,
i1

and one of the folloeing conditions is satisfied
(E1) A € (%S'Mﬂ, M e (gzrf\h),

(Ey) A € (’}fj’,M4), ue ([;;/NH,

(Es) A € (%::Mﬂ: e (0, Ny),

(E)Ae (0, My), € (&, Na),

where
2 o(T) -1 o(T) -1
M; = M /Gl(a(s), S)i(s)As| . Mg= OlMN/(;l(a(s),s)pl(s)As ,
0 0
o(T) - o(T) -
N3 = ";4 / Ga(o(s) )s(s)As |, Na=|osMN [ Ga(o(s), s)pa(s)As |
0 0

Fo = min{fOlfOO}/ Gy = {30/ goo}r

Page 11 of 18
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0y, O, satisfy 011 + 012 <1,N=1+0(T)+(0(T))> Then system (1.1) has at least two

positive solutions.
Proof. We only prove the case in which (H,) and (E;) hold, the other case can be
proved similarly. Firstly, from (2.2), we have

2 2
ZAiu(t)+ZAiv(t) < N )l + o (M) + (oM v)ll = Nl ). (3.1)

Take R; = f], and let Q; = {(u, v) € Q; ||(, v)|| < Ry}. Forany t € I, (u, v) € 901 N
P, it follows from A < My, u < N4 and (H,) that
o(T)

Th(u, v)(t) = A f Hi(t,5)f (s, Aau, Au, Agu, Agv, Aqv, Agv) As

a(T)
< MsM f G1(o (), $)f (s, Aqu, Ayu, Aou, Aqv, Aqv, Agv) As

0
o(T)

< M4MR / G1(o(s), s)p1(s)As
0
o(T)

= NMyMR; / Gi(o(s), s)p1(s)As < Ol Ry
1

and
o(T)

T, (uv)(t)=n / Hj(t,5)8(s, Aau, A1u, Aou, Ay, A1v, Agv) As
0

a(T)
< N4M / Ga(o(s),5)8(s, Aau, Aqu, Aou, Ay, A1y, Agv) As

0
o(T)

< N4sMR f Ga(o(s),s)p2(s)As

0
o(T)

= NysMNR, f Gz(O’(S),S)pQ(S)AS < ()1 R;.
2
0

Consequently, for any (i, v) € 9Q; N P, we have

1

1
T (w, )1l = [T (u, V)| + [T (u, V)] < OlRl o

Ry <R;. (3.2)
2

Second, from A > Af?, we can choose & >0 such that Afy > M3 + &, then there exists

0 < /3 < NR; such that for any Z?:l lpil <ljand te I,

M3 + &1 6
ft o1, ... 06) > X q1(6) X lgil.
i=1
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And since

2 2
> Aw() + 3 Aw(e) = u(t) +v(t) = ZH(u, ol (3.3)

i=0 i=0

Take

For all (, v) € Q, N P, where Q, = {(, v) € Q; ||(1, v)|| < Ry}, we have
2 2 m
STAu(t) + X Aw(t) > u(t) +v(t) > = Ry.
i=0 i=0 M

Thus, for all (#, v) € Q, N P, we have

o(T)
Ty (u,v)(t) = Am / G1(o(8),5)f (s, Aqu, Aqu, Agu, Agv, A1y, Agv) As
0
2 2 a(T)
> m(Ms + 1) (Z Al + Y |Aiv|> / Gi(o () s)aqi(s)As
i=0 i=0 o
o(T)
m2
> Msj M R, / G1(o(s),5)q1(s)As = Ry.
0
Consequently, for all (x, v) € Q, N P, we have
NT(u, )1l = 1T (wv)ll = (). (3.4)

Finally, from p > N3/g.., we can choose ¢; >0 such that yg.. > N3 + ¢;. then, there

exists I > J|R such that for any Zil lpil <L and te I,

N3 + &) 6
8(tgr, ... p6) = " q5(t) X leil.
i=1

Take

m\ —1
R3=(M) 17_>R1.

For all (&, v) € Q3 N P, where Q3 = {(, v) € Q; ||(4, v)|| < R3}, from (3.3), we have

2 2
;Aiu(t) + ;Aiv(t) > A";R3 - . (3.5)
Thus, for all (i, v) € Q3 N P, we have
o(T)
Ty (u,v)(t) = um / Ga(o(s),5)g(s, Aau, A1u, Aou, A, Arv, Agv) As
0
2 2 o(T)
> m(N3 + &) (Z |Aiul + Z |Aivl> / Ga(a (s),8)q3(s)As
i=0 i=0 o
, oM

> N3 T/I Rs / Ga(o(s),5)gs(s)As = Rs.
0
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Consequently, for all (1, v) € Q3 N P, we have
HT(u, V)l = Tu(w )l = [I(w, V)l (3.6)

From (3.2), (3.4), and (ii) of Lemma 2.5, it follows that system (2.1) has one positive
solution (u1, v1) € P with Ry < ||(u1, v1)|| € R;. Therefore, from Lemma 2.1, it follows
that system (1.1) has one positive solution (x;, y;). In the same way, from (3.2), (3.6),
and (i) of Lemma 2.5, it follows that system (2.1) has one positive solution (i, v5) € P
with Ry < ||(¢2, v2)|| € Rs. Therefore, from Lemma 2.1, it follows that system (1.1) has
one positive solution (x,, ¥,). Above all, system (1.1) has at least two positive solutions.
This completes the proof.

Theorem 3.2. Assume that (H,) holds. Suppose further that

(H3) there exist a constant Ry >0, and two functions wi(t) € C,4(I, R,) (i = 1, 2) satis-

fring 0 < (70 Gi(o (), s)wi(s)As < +ocsuch that

6
ftor....06) = Rowr (1), Veel Y |gil > Ro, (3.7)
i=1
or
6
g(tr Prreves (/’6) > ROWZ(t)I vVt € II Z |(P1| > RO' (38)
i=1

Then system (1.1) has at least two positive solutions for each A € (Ms, ‘\13106 Jand
u € (Ns, 2’5‘ ), where

-1 -1

m2 o (1) o (1)
Ms=| / Gi(o(s)shwr()as| , Ns=|' f Ga(o(s), swa(s)As|
0 0
o(T) -1 o (1) -1
Mg = OlMN/ Gi1(o(s), s)g2(s)As| , Ng= onN/ Ga(o(s),8)ga(s)As |
0 0

F* = max{f°, f*°} < 0o, G* = max{g°,¢g®} < .

Proof. We only prove the case in which (3.7) holds. The other case in which (3.8)
holds can be proved similarly.
Take

/ m -1
Ry = (M) Ro
and let Q4 ={(u,v) € Q; ll(w, V)|l <R}}). For any t € I, (u, v) € 9Q4 N P, it follows
from A > M5 and (Hs) that
o(T)
T (u,v)(t) = 2 / Hi(t,8)f (s, Aqu, Ayu, Aou, Agv, A1v, Agv) As
0
o(T)
> Msm / G1(o(s), $)f (s, Az, Aru, Agu, Ayv, A1y, Agv) As
0
o(T)
> mMsRg / Gi(o(s), s)wi(s)As
0
) o(T)
m
=Ms M R / Gi1(o(s), s)wi(s)As = R';y.

0

Page 14 of 18
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Consequently, for any (i, v) € 0Q4 N P, we have
NT(u, )l = T (u )l = ()l 3.9)
From A < jﬁf, n < g’g, we know that A < 1}4&’, n < 1;06, we can choose &3 >0 such that

Mg - €3 >0, Ng - €3 >0 and lfo < Mg - &3, ﬂgo < Ng - ¢3. Then there exists
0 < I3 < NRy < NR; such that for any Zle lpil <lzandte I,

6
Mg — &3
G B (D)) leil,
-1
Ng — €3 :

8(tp1,..., 06) < " 6]4(t)Z|<Pi|-
-1

Take R}, = 5\3] < R} and Q5 = {(u,v) € Q;|I(u, V)| < RS}, Then, for any (4, v) € Q5 n

P, from(3.1), we have

o(T)

T;(u, v)(t) = A / Hi(t, 8)f (s, Aqu, Au, Agu, Aqv, Aqv, Agv) As
0

a(T)
< M / G1(0(5), $)f (s, Aqu, Aru, Agu, Aqv, A1v, Agv) As
0
2 2 o(T)
< M(Mg — £3) (Z Al + Y |Aiv|> / Gi1(o (), 5)q2(s) As
i=0 i=0 5
o(T)
< MNMgR', / Gi1(o(5),5)g2(s)As = Oll R,
0
and
a(T)
T,(uv)(t)=n / Hj(t,5)g(s, Aau, A1u, Aou, A, Arv, Agv) As
0
a(T)
< uM / Ga(o(s),5)8(s, Aau, Aju, Aou, Ayv, Ay, Agv) As
0
2 5 o(T)
< M(Ng — ¢3) (Z Al + ) |AiU|> / Ga(0(5),5)qa(s)As
i=0 i=0 5
o(T)
< MNNgR', / Ga(0(s),5)ga(s)As = OlzR/z-
0
Consequently, for any (u, v) € 0Q5 N P, we have
TG o)l = ITuwv)ll+ [ Tuw o)l < ) Ry+ | R, <R, (3.10)

O, )
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Mg N

From A < .8, u < ¢ we know that A < ?4,_,5, n< ;\iﬁ, we can choose &, >0 such that

Mse - €4 >0, Ng - &4 >0 and Af°< Mg - &4, ug” < N - €4. Then there exists ls > || R}
such that for any Zle lpi| >Ilgand te I,

6
Mg — &3
flbgr-.ops) =7 B0 leil,
i-1

6
Ng — ¢
8(tgr,... 96) < GM 3fi4(t)X:|</Ji|.
i=1

Take R = (A"/;)*llél > R} and let Q6 = {(u,v) € Q; [|(u,v)|| < R5}. Then, for any (1, v)
e Qg N P, we have

o(T)

T (u, v)(t) = A / Hi(t,5)f (s, Aau, A1u, 3Aou, Aqv, A1v, Agv) As
0

o(T)
<M / G1(o (), $)f (s, Aqu, Au, Agu, Aqv, A1y, Agv) As
0
5 5 o(T)
gM(M6—83)<Z |Aiu|+Z|Aiv|) / G1(0(5),$)92(s) As
i=0 i=0 5
a(T)
< MNMGR'3 / Gi1(o(s), 5)g2(s)As = OllR/g
0
and
o(T)
T, (uv)(t)=n / Hj(t,5)g(s, Aau, A1u, Aou, Aav, Arv, Agv) As
0
o(T)

< uM / Ga(o(s),5)8(s, Axu, Aju, Aou, Ay, A1y, Agv) As
0

o(T)

2 2
< M(Ng — &3) (Z Al + Y |Aiv|> / Ga(0(5), 5)qa(s) As
i=0 i=0 o
a(T) )
< MNNGR/g / Gz(O’(S),S)q4(S)AS = o R/3.
" 2
Consequently, for any (u, v) € 0Qg N P, we have
1 / 1 / /
NT(w, )l = Tx(w )| + 11Ty (w v)I| < o R3 + o R; < Rj;. (3.11)
1 bl

From (3.9), (3.10) and (i) of Lemma 2.5, it follows that system (2.1) has one positive
solution (uy, v;) € P with R} < ||(u1,v1)|| < R). Therefore, from Lemma 2.1, it follows
that system (1.1) has one positive solution (x, ;). In the same way, from (3.9), (3.11)
and (i) of Lemma 2.5, it follows that system (2.1) has one positive solution (u,, v,) €
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P with R} < [|(u2, v2)|| < R;. Therefore, from Lemma 2.1, it follows that system (1.1)

has one positive solution (x,, y5). Above all, system (1.1) has at least two positive solu-

tions. This completes the proof.

4 An example

Consider the following BVP with integral boundary conditions:

x(0) =x*(0) = 0,
y(0) =y*(0) = 0,

o(T)
x22(0) — x222(0) = / X228 (5)A1(s)As,
0
o(T)
A8 (0 (1)) + x222(0 (1)) = / x22(5)B1(s) As,
0
o(T)
ORI OB FANOTHANE
0
o(T)

YR8 (0 (1)) + Y280 (T)) = / (5)Ba(s)AAs,
0

where A () = B1(¢) = t, Ay(t) = By(£) = t/2 and

6 2
f(t/ ¢]/ ¢2/ ¢3/ ¢4: ¢5/ ¢6) = 2I<Z ¢)l> ’ te (0' U(T))Fl (pi > 0, i

i=1

6 \3
8(t: p1, b2, b3, Pas b5, P6) = ; (Z ¢i> , te(0,0(T)r, ¢:i=0, i
=1

(1) + Af (1, x(1), x* (1), 2240, y(0), v (0, y*2 (1)) = 0, 1€ (0,0(T))r,
YU (1) + gt x(0), x5 (0, 54 (0, ¥ ¥2 (0,24 (1) =0, t€ (0,0(T))r,

(4.1)

1,...,6,

1,...,6.

we choose O; =2, O, =4, R =1, pi(¢t) = 2¢, pa(t) = 5, q1(2) = q3(2) = 1. It is easy to
check that fy = g.. = o, (H;), (H») and (E;) are satisfied. Therefore, by Theorem 3.1,
system (4.1) has at least two positive solutions for each 1 € (0, My), u € (0, Ny).
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