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Abstract

In this article, we study the nonlocal p(x)-Laplacian problem of the following form⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
a(

∫
�

1
p(x)

(|∇u|p(x) + |u|p(x))dx)(−div(|∇u|p(x)−2∇u) + |u|p(x)−2u)

= b(
∫
�
F(x, u)dx)f (x, u) in �

a
(∫

�

1
p(x)

(|∇u|p(x) + |u|p(x))dx
)

|∇u|p(x)−2 ∂u
∂ν

= g(x, u) on ∂�,

where Ω is a smooth bounded domain and ν is the outward normal vector on the
boundary ∂Ω, and F(x, u) =

∫ u

0
f (x, t)dt. By using the variational method and the

theory of the variable exponent Sobolev space, under appropriate assumptions on f,
g, a and b, we obtain some results on existence and multiplicity of solutions of the
problem.
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1 Introduction
In this article, we consider the following problem

(P)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
a
(∫

�

1
p(x)

(|∇u|p(x) + |u|p(x))dx
)
(−div(|∇u|p(x)−2∇u) + |u|p(x)−2u)

= b
(∫

�
F(x, u)dx

)
f (x, u) in �

a
(∫

�

1
p(x)

(|∇u|p(x) + |u|p(x))dx
)

|∇u|p(x)−2 ∂u
∂ν

= g(x, u) on ∂�,

where Ω is a smooth bounded domain in RN, p ∈ C
(
�̄

)
with 1 < p- := infΩ p(x) ≤ p

(x) ≤ p+ := supΩ p(x) < N, a(t) is a continuous real-valued function, f : Ω × R ® R, g :

∂Ω × R ® R satisfy the Caratheodory condition, and F(x, u) =
∫ u

0
f (x, t)dt. Since the

equation contains an integral related to the unknown u over Ω, it is no longer an iden-

tity pointwise, and therefore is often called nonlocal problem.
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Kirchhoff [1] has investigated an equation

ρ
∂2u
∂t2

−
(
P0
h

+
E
2L

∫ L

0

∣∣∣∣∂u∂x
∣∣∣∣2dx

)
∂2u
∂x2

= 0,

which is called the Kirchhoff equation. Various equations of Kirchhoff type have

been studied by many authors, especially after the work of Lions [2], where a func-

tional analysis framework for the problem was proposed; see e.g. [3-6] for some inter-

esting results and further references. In the following, a key work on nonlocal elliptic

problems is the article by Chipot and Rodrigues [7]. They studied nonlocal boundary

value problems and unilateral problems with several applications. And now the study

of nonlocal elliptic problem has already been extended to the case involving the p-

Laplacian; see e.g. [8,9]. Recently, Autuori, Pucci and Salvatori [10] have investigated

the Kirchhoff type equation involving the p(x)-Laplacian of the form

utt − M
(∫

�

1
p(x)

|∇u|p(x)dx
)

�p(x)u +Q(t, x, u, ut) + f (x, u) = 0.

The study of the stationary version of Kirchhoff type problems has received consider-

able attention in recent years; see e.g. [5,11-16].

The operator Δp(x)u = div(|∇u|p(x)-2∇u) is called p(x)-Laplacian, which becomes p-

Laplacian when p(x) ≡ p (a constant). The p(x)-Laplacian possesses more complicated

nonlinearities than p-Laplacian. The study of various mathematical problems with vari-

able exponent are interesting in applications and raise many difficult mathematical

problems. We refer the readers to [17-23] for the study of p(x)-Laplacian equations

and the corresponding variational problems.

Corrêa and Figueiredo [13] presented several sufficient conditions for the existence

of positive solutions to a class of nonlocal boundary value problems of the p-Kirchhoff

type equation. Fan and Zhang [20] studied p(x)-Laplacian equation with the nonlinear-

ity f satisfying Ambrosetti-Rabinowitz condition. The p(x)-Kirchhoff type equations

with Dirichlet boundary value problems have been studied by Dai and Hao [24], and

much weaker conditions have been given by Fan [25]. The elliptic problems with non-

linear boundary conditions have attracted expensive interest in recent years, for exam-

ple, for the Laplacian with nonlinear boundary conditions see [26-30], for elliptic

systems with nonlinear boundary conditions see [31,32], for the p-Laplacian with non-

linear boundary conditions of different type see [33-37], and for the p(x)-Laplacian

with nonlinear boundary conditions see [38-40]. Motivated by above, we focus the case

of nonlocal p(x)-Laplacian problems with nonlinear Neumann boundary conditions.

This is a new topics even when p(x) ≡ p is a constant.

This rest of the article is organized as follows. In Section 2, we present some necessary

preliminary knowledge on variable exponent Sobolev spaces. In Section 3, we consider the

case where the energy functional associated with problem (P) is coercive. And in Section 4,

we consider the case where the energy functional possesses the Mountain Pass geometry.

2 Preliminaries
In order to discuss problem (P), we need some theories on variable exponent Sobolev

space W1,p(x)(Ω). For ease of exposition we state some basic properties of space W1,p(x)

(Ω) (for details, see [22,41,42]).
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Let Ω be a bounded domain of RN, denote

C+(�̄) = {p|p ∈ C(�̄), p(x) > 1, ∀x ∈ �̄},
p+ = maxx∈�̄p(x), p

− = minx∈�̄p(x),∀p ∈ C(�̄),

Lp(x)(�) =
{
u|u is a measurable real - valued function on �,

∫
�

|u|p(x)dx < ∞
}
,

we can introduce the norm on Lp(x) (Ω) by

|u|p(x) = inf

{
λ > 0 :

∫
�

∣∣∣∣u(x)λ

∣∣∣∣p(x)dx ≤ 1

}

and (Lp(x) (Ω), | · |p(x)) becomes a Banach space, we call it the variable exponent

Lebesgue space.

The space W1, p(x)(Ω) is defined by

W1,p(x)(�) = {u ∈ Lp(x)(�)||∇u| ∈ Lp(x)(�)},

and it can be equipped with the norm

||u|| = |u|p(x) + |∇u|p(x),

where |∇u|p(x) = ||∇u||p(x); and we denote by W1,p(x)
0 (�) the closure of C∞

0 (�) in W1,

p(x)(Ω), p∗ = Np(x)
N−p(x), p∗ = (N−1)p(x)

N−p(x) , when p(x) <N, and p* = p* = ∞, when p(x) >N.

Proposition 2.1 [22,41]. (1) If p ∈ C+(�), the space (Lp(x) (Ω), | · |p(x)) is a separable,

uniform convex Banach space, and its dual space is Lq(x) (Ω), where 1/q(x) + 1/p(x) =

1. For any u Î Lp(x) (Ω) and v Î Lq(x) (Ω), we have∣∣∣∣∫
�

uvdx

∣∣∣∣ ≤ (
1
p− +

1
q−)|u|p(x)|v|q(x);

(2) If p1, p2 ∈ C+(�), p1 (x) ≤ p2 (x), for any x Î Ω, then Lp2(x)(�) ↪→ Lp1(x)(�), and

the imbedding is continuous.

Proposition 2.2 [22]. If f : Ω × R ® R is a Caratheodory function and satisfies

|f (x, s)| ≤ d(x) + e |s|
p1 (x)
p2 (x) , for any x ∈ �, s ∈ R,

where p1, p2 ∈ C+(�), d ∈ Lp2(x)(�), d(x) ≥ 0 and e ≥ 0 is a constant, then the super-

position operator from Lp1(x)(�) to Lp2(x)(�) defined by (Nf (u)) (x) = f (x, u (x)) is a

continuous and bounded operator.

Proposition 2.3 [22]. If we denote

ρ(u) =
∫

�

|u|p(x)dx, ∀u ∈ Lp(x)(�),

then for u, un Î Lp(x) (Ω)

(1) |u (x)|p(x) < 1(= 1; > 1) ⇔r (u) < 1(= 1; > 1);

(2)
|u(x)|p(x) > 1 ⇒ |u|p−

p(x) ≤ ρ(u) ≤ |u|p+p(x);
|u(x)|p(x) < 1 ⇒ |u|p−

p(x) ≥ ρ(u) ≥ |u|p+p(x);

(3)
|un(x)|p(x) → 0 ⇔ ρ(un) → 0 as n → ∞;

|un(x)|p(x) → ∞ ⇔ ρ(un) → ∞ as n → ∞.
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Proposition 2.4 [22]. If u, un Î Lp(x) (Ω), n = 1, 2, ..., then the following statements

are equivalent to each other

(1) limk ® ∞ |uk - u|p(x) = 0;

(2) limk ® ∞ r |uk - u| = 0;

(3) uk ® u in measure in Ω and limk ® ∞ r (uk) = r (u).

Proposition 2.5 [22]. (1) If p ∈ C+(�), then W1,p(x)
0 (�) and W1,p(x)(Ω) are separable

reflexive Banach spaces;

(2) if q ∈ C+(�) and q (x) <p* (x) for any x ∈ �, then the imbedding from W1, p(x)(Ω)

to Lq(x) (Ω) is compact and continuous;

(3) if q ∈ C+(�) and q (x) <p* (x) for any x ∈ �, then the trace imbedding from W1, p

(x)(Ω) to Lq(x) (∂Ω)is compact and continuous;

(4) (Poincare inequality) There is a constant C > 0, such that

|u|p(x) ≤ C|∇u|p(x) ∀u ∈ W1,p(x)
0 (�).

So, |∇u|p(x) is a norm equivalent to the norm || u || in the space W1,p(x)
0 (�).

3 Coercive functionals
In this and the next sections we consider the nonlocal p(x)-Laplacian-Neumann pro-

blem (P), where a and b are two real functions satisfying the following conditions

(a1) a : (0, + ∞) ® (0, + ∞) is continuous and a Î L1 (0, t) for any t > 0.

(b1) b : R ® R is continuous.

Notice that the function a satisfies (a1) may be singular at t = 0. And f, g satisfying

(fl) f : Ω × R ® R satisfies the Caratheodory condition and there exist two constants

C1 ≥ 0, C2 ≥ 0 such that

|f (x, t)| ≤ C1 + C2|t|q1(x)−1, ∀(x, t) ∈ � × R,

where q1 ∈ C+(�) and q1 (x) <p* (x), ∀x ∈ �.

(g1) g : ∂Ω × R ® R satisfies the Caratheodory condition and there exist two con-

stants C′
1 ≥ 0,C′

2 ≥ 0 such that

|g(x, t)| ≤ C′
1 + C′

2|t|q2(x)−1, ∀(x, t) ∈ ∂� × R,

where q2 Î C+ (∂Ω) and q2 (x) <p* (x), ∀x Î ∂Ω. For simplicity we write X = W1, p(x)

(Ω), denote by C the general positive constant (the exact value may change from line

to line).

Define

â(t) =
∫ t

0
a(s)ds, b̂(t) =

∫ t

0
b(s)ds, ∀t ∈ R,

I1(u) =
∫

�

1
p(x)

(
|∇u|p(x) + |u|p(x)

)
dx, I2(u) =

∫
�

F(x, u) dx, ∀u ∈ X,

J(u) = â(I1(u)) = â
(∫

�

1
p(x)

(
|∇u|p(x) + |u|p(x)

)
dx

)
,

	(u) = b̂(I2(u)) = b̂
(∫

�

F(x, u) dx
)

and 
(u) =
∫

∂�

G(x, u) dσ , ∀u ∈ X,

E(u) = J(u) − 	(u) − 
(u), ∀u ∈ X,

,

where F(x, u) =
∫ u
0 f (x, t) dt, G(x, u) =

∫ u
0 g(x, t) dt.
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Lemma 3.1. Let (f1), (g1) (a1) and (b1) hold. Then the following statements hold true:

(1) â ∈ C0([0, ∞)) ∩ C1((0, ∞)), â(0) = 0, â′(t) = a(t) > 0; b̂ ∈ C1(R), b̂(0) = 0.

(2) J, F, Ψ and E Î C0 (X), J (0) = F (0) = Ψ (0) = E (0) = 0. Furthermore J Î C1 (X

\{0}), F, Ψ Î C1 (X), E Î C1 (X\{0}). And for every u Î X\{0}, v Î X, we have

E′(u)v = a
(∫

�

1
p(x)

(
|∇u|p(x) + |u|p(x)

)
dx

)∫
�

(
|∇u|p(x)−2∇u∇v + |u|p(x)−2uv

)
dx

− b
(∫

�

F(x, u)dx
)∫

�

f (x, u)v dx −
∫

∂�

g(x, u) vdσ .

Thus u Î X\{0} is a (weak) solution of (P) if and only if u is a critical point of E.

(3) The functional J : X ® R is sequentially weakly lower semi-continuous, F, Ψ: X

® R are sequentially weakly continuous, and thus E is sequentially weakly lower semi-

continuous.

(4) The mappings F’ and Ψ’ are sequentially weakly-strongly continuous, namely, un
⇀ u in X implies F’ (un) ® F’ (u) in X*. For any open set D ⊂ X\{0} with D ⊂ X\{0},
The mappings J’ and E′ : D → X∗ are bounded, and are of type (S+), namely,

un ⇀ u and lim
n→∞ J′(un) (un − u) ≤ 0, implies un → u.

Definition 3.1. Let c Î R, a C1-functional E : X ® R satisfies (P.S)c condition if and

only if every sequence {uj} in X such that limj E (uj) = c, and limj E’ (uj) = 0 in X* has

a convergent subsequence.

Lemma 3.2. Let (f1), (g1), (a1), (b1) hold. Then for any c ≠ 0, every bounded (P. S)c
sequence for E, i.e., a bounded sequence {un} ⊂ X\{0} such that E (un) ® c and E’ (un)

® 0, has a strongly convergent subsequence.

The proof of these two lemmas can be obtained easily from [25,40], we omitted them

here.

Theorem 3.1. Let (f1), (g1), (a1), (b1) and the following conditions hold true:

(a2) There are positive constants a1, M, and C such that â(t) ≥ Ctα1 for t ≥ M.

(b2) There are positive constants b1 and C such that |̂b(t)| ≤ C + C|t|β1 for t Î R.

(H1) b1 q1+ <a1 p-, q2+ <a1p-.

Then the functional E is coercive and attains its infimum in X at some u0 Î X.

Therefore, u0 is a solution of (P) if E is differentiable at u0.

Proof. For || u || large enough, by (f1), (g1), (a2), (b2) and (H1), we have that

J(u) = â(I1(u)) = â
(∫

�

1
p(x)

(
|∇u|p(x) + |u|p(x)

)
dx

)
≥ â(C1||u||p−) ≥ C2||u||α1p−,∣∣∣∣∫

�

F(x, u) dx

∣∣∣∣ ≤ C3||u||q1+,

	(u) = b̂(I2(u)) = b̂
(∫

�

F(x, u) dx
)

≤ C4||u||β1q1+ + C̃4,


(u) =

∣∣∣∣∫
∂�

G(x, u) dσ

∣∣∣∣ ≤ C5||u||q2+ + C̃5,

E(u) = J(u) − 	(u) − 
(u) ≥ C2||u||α1p− − C4||u||β1q1+ − C5||u||q2+ − +C̃6,

Guo and Zhao Boundary Value Problems 2012, 2012:1
http://www.boundaryvalueproblems.com/content/2012/1/1

Page 5 of 11



and hence E is coercive. Since E is sequentially weakly lower semi-continuous and X

is reflexive, E attains its infimum in X at some u0 Î X. In this case E is differentiable

at u0, then u0 is a solution of (P).

Theorem 3.2. Let (f1), (g1), (a1), (b1), (a2), (b2), (H1) and the following conditions

hold true:

(a3) There is a positive constant a2 such that lim sup
t→0+

â(t)
tα2 < +∞.

(b3) There is a positive constant b2 such that lim inf
t→0

b̂(t)
|t|β2 > 0.

(f2) There exist an open subset Ω0 of Ω and r1 > 0 such that lim inf
t→0

F(x, t)
|t|r2 > 0 uni-

formly for x Î Ω0.

(g2) There exists r2 > 0 such that lim inf
t→0

G(x, t)
|t|r2 > 0 uniformly for x Î ∂Ω.

(H2) b2r1 <a2 p-, r2 <a2 p-.

Then (P) has at least one nontrivial solution which is a global minimizer of the

energy functional E.

Proof. From Theorem 3.1 we know that E has a global minimizer u0. It is clear that

b̂(0) = 0,̂b(0) = 0,F (x, 0) and consequently E (0) = 0. Take w ∈ C∞
0 (�0)\{0}. Then, by

(f2), (g2) (a3), (b3) and (H2), for sufficiently small l > 0 we have that

E(λw) = â

(∫
�

λp(x)

p(x)

(
|∇w|p(x) + |w|p(x)

)
dx

)

− b̂
(∫

�

F(x, λw) dx
)

−
∫

∂�

G(x, λw) dσ

≤ C1

(∫
�

λp(x)

p(x)

(
|∇w|p(x) + |w|p(x)

)
dx

)α2

− C2

(∫
�0

F(x, λw) dx)
)β2

− C3

∫
∂�

|λw|r2dσ

≤ C4λ
α2p− − C5λ

β2r1 − C6λ
r2 < 0.

Hence E (u0) < 0 and u0 ≠ 0.

By the genus theorem, similarly in the proof of Theorem 4.3 in [18], we have the

following:

Theorem 3.3. Let the hypotheses of Theorem 3.2 hold, and let, in addition, f and g

satisfy the following conditions:

(f3) f (x, - t) = - f (x, t) for x Î Ω and t Î R.

(g3) g (x, - t) = - g (x, t) for x Î ∂Ω and t Î R.

Then (P) has a sequence of solutions {un} such that E(un) < 0.

Theorem 3.4. Let (f1), (g1), (a1), (b1), (a2), (b2), (a3), (b3), (H1), (H2) and the following

conditions hold true:

(b+) b(t) ≥ 0 for t ≥ 0.

(f+) f(x, t) ≥ 0 for x Î Ω and t ≥ 0.

(g+) g(x, t) ≥ 0 for x Î ∂Ω and t ≥ 0.

(f2)+There exist an open subset Ω0 of Ω and r1 > 0 such that lim inf
t→0+

F(x,t)
tr1 > 0 uni-

formly for x Î Ω0.

(g2)+ There exists r2 > 0 such that lim inf
t→0+

G(x,t)
tr2 > 0 uniformly for x Î ∂Ω.
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Then (P) has at least one nontrivial nonnegative solution with negative energy.

Proof. Define

f̃ (x, t) =
{
f (x, t) if t ≥ 0,
f (x, 0) if t < 0,

g̃(x, t) =
{
g(x, t) if t ≥ 0,
g(x, 0) if t < 0,

F̃(x, t) =
∫ t

0
f̃ (x, s)ds,∀x ∈ �, t ∈ R,

G̃(x, t) =
∫ t

0
g̃(x, s)ds,∀x ∈ ∂�, t ∈ R,

b̃(t) =
{
b(t) if t ≥ 0,
b(0) if t < 0,

̂̃b(t) = ∫ t

0
b̃(s)ds,∀t ∈ R,

Ẽ(u) = â
(∫

�

1
p(x)

(
|∇u|p(x) + |u|p(x)

)
dx

)
−̂̃b(∫

�

F̃(x, u)dx) −
∫

∂�

G̃(x, u)dσ ,∀u ∈ X.

Then, using truncation functions above, similarly in the proof of Theorem 3.4 in

[25], we can prove that Ẽ has a nontrivial global minimizer u0 and u0 is a nontrivial

nonnegative solution of (P).

4 The Mountain Pass theorem
In this section we will find the Mountain Pass type critical points of the energy func-

tional E associated with problem (P).

Lemma 4.1. Let (f1), (g1), (a1), (b1) and the following conditions hold true:

(a2)′∃α1 > 0, M >0, and C >0 such that

â(t) ≥ Ctα1for all t ≥ M

with a1p- >1.

(a4) ∃ l >0, M >0 such that

λâ(t) ≥ a(t)tfor all t ≥ M

(b4) ∃θ >0, M >0 such that:

0 ≤ θ b̂(t) ≤ b(t)t, for all t ≥ M.

(f4) ∃μ >0, M >0 such that:

0 ≤ μF(x, t) ≤ f(x, t)t, for |t| ≥ M and x Î Ω.

(g4) ∃� > θμ >0, M >0 such that:

0 ≤ �G(x, t) ≤ g(x, t)t, |t| ≥ M and x Î ∂Ω.

(H3) lp+ < θμ.

Then E satisfies condition (P.S)c for any c ≠ 0.

Proof. By (a4), for ||u|| large enough,

λp + J(u) = λp + â(
∫

�

1
p(x)

(|∇u|p(x) + |u|p(x))dx)

≥ p + a
(∫

�

1
p(x)

(
|∇u|p(x) + |u|p(x)

)
dx

)∫
�

1
p(x)

(
|∇u|p(x) + |u|p(x)

)
dx

≥ a
(∫

�

1
p(x)

(
|∇u|p(x) + |u|p(x)

)
dx

)∫
�

(
|∇u|p(x) + |u|p(x)

)
dx = J′(u)u.
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From (f4) and (g4) we can see that there exists C1 >0 and C2 >0 such that

−C1 ≤ μ

∫
�

F(x, u)dx ≤
∫

�

f (x, u)udx + C1,∀u ∈ X,

−C2 ≤ κ

∫
∂�

G(x, u)dσ ≤
∫

∂�

g(x, u)udσ + C2,∀u ∈ X,

and thus, given any ε Î (0, μ), there exists Mε ≥ M >0 and M′
ε ≥ M > 0 such that

(μ − ε)
∫

�

F(x, u)dx ≤
∫

�

f (x, u)udx, if
∫

�

F(x, u)dx ≥ Mε ,

θ(μ − ε)
∫

∂�

G(x, u)dσ ≤
∫

∂�

g(x, u)udσ , if
∫

∂�

G(x, u)dσ ≥ M′
ε.

We may assume Mε > c1
μ and Mε

′ > c2
θμ. Note that in this case the inequalities∫

�
F(x, u)dx ≥ Mε and

∫
∂�

G(x, u)dσ ≥ M′
ε are equivalent to | ∫

�
F(x, u)dx| ≥ Mεand

| ∫
∂�

G(x, u)dσ | ≥ M′
ε, because

∫
�
F(x, u)dx ≥ −C1

μ and
∫
∂�

G(x, u)dσ ≥ − c2
θμ for all u Î

X. We claim that there exist Cε > 0 and C′
ε > 0 such that

	′(u)u − θ(μ − ε)	(u) ≥ −Cε for u ∈ X,


 ′(u)u − θ(μ − ε)
(u) ≥ −C′
ε for u ∈ X.

Indeed, when | ∫
�
F(x, u)dx| ≤ Mε and | ∫

∂�
G(x, u)dσ | ≤ M′

ε, the validity is obvious.

When | ∫
�
F(x, u)dx| ≥ Mε and | ∫

∂�
G(x, u)dσ | ≥ M′

ε, i.e.,
∫
�
F(x, u)dx ≥ Mε and∫

∂�
G(x, u)dσ ≥ M′

ε, we have that

θ(μ − ε)	(u) = θ(μ − ε)b̂
(∫

�

F(x, u)dx
)

≤ (μ − ε)b
(∫

�

F(x, u)dx
)∫

�

F(x, u)dx

≤ b
(∫

�

F(x, u)dx
) ∫

�

f (x, u)udx = 	′(u)u,

and

θ(μ − ε)
(u) = θ(μ − ε)
∫

∂�

G(x, u)dσ

≤
∫

∂�

g(x, u)udσ = 
 ′(u)u.

Now let {un} ⊂ X\{0}, E(un) ® c ≠ 0 and E’(un) ® 0. By (H3), there exists ε >0 small

enough such that lp+ < θ(μ - ε). Then, since {un} is a (P.S)c sequence, for sufficiently

large n, we have

θ(μ − ε)c + 1+ ‖ un ‖
≥ θ(μ − ε)E(un) − E′(un)un
≥ (θ(μ − ε) − λp+)J(un) + (λp+J(un) − J′(un)un) + (	′(un)un − θ(μ − ε)	(un))

+ (
 ′(un)un − θ(μ − ε)
(un))

≥ C3 ‖ un‖α1p− − C4 − Cε − C′
ε

Since a1p- >1, we have that {||un||} is bounded. By Lemma 3.2, E satisfies condition

(P.S)c for c ≠ 0.
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Theorem 4.1. Under the hypotheses of Lemma 4.1, and let the following conditions

hold:

(a5) There is a positive constant a3 such that lim sup
t→0+

â(t)
tα3 > 0.

(b5) There is a positive constant b3 such that lim inf
t→0

b̂(t)
|t|β3 < +∞.

(f5) There exists r1 ∈ C0(�) such that 1 < r1(x) < p*(x) for x ∈ � and

lim inf
t→0

|F(x,t)|
|t|r1(x) < +∞ uniformly for x Î Ω.

(g5) There exists such r2 ∈ C0(�) such that 1 < r2(x) < p*(x) for x Î ∂ Ω and

lim inf
t→0

|G(x,t)|
|t|r2(x) < +∞ uniformly for x Î ∂ Ω.

(H4) a3p+ < b3r1-, a3p+ < r2-, lp+ < θμ.

Then (P) has a nontrivial solution with positive energy.

Proof. Let us prove this conclusion by the Mountain Pass lemma. E satisfies condi-

tion (P.S)c for c ≠ 0 has been proved in Lemma 4.1.

For ||u|| small enough, from (a5) we can obtain easily that J(u) ≥ C1 ‖ u‖α3p+, from

(b5), (f1) and (f5) we have|	(u)| ≤ C2 ‖ u‖β3r1−, and in the similar way from(g1) and (g5)

we have |
(u)| ≤ C2 ‖ u‖r2−. Thus by (H4), we conclude that there exist positive con-

stants r and δ such that E(u) ≥ for ||u|| = r.
Let w Î X\{0} be given. From (a4) for sufficiently large t >0 we have â(t) ≤ C1tλ,

which follows that J(sw) ≤ d1sλp+ for s large enough, where d1 is a positive constant

depending on w. From (f4) and (f1) for |t| large enough we have
∫
�
F(x, sw)dx ≥ d2sμ

for s large enough, where d2 is a positive constant depending on w. From (b4) for t

large enough we have 	(sw) = b̂(
∫
�
F(x, sw)dx) ≥ d3sθμ for s large enough, where d3 is

a positive constant depending on w. From (g4) and (g1) for |t| large enough we have


(sw) =
∫

∂�

G(x, sw)dσ ≥ d4s
θμ. Hence for any w Î X\{0} and s large enough,

E(sw) ≤ d1sλp+ − d3sθμ − d4sθμ, thus by (H3), We conclude that E(sw) ® -∞ as s ®
+∞.

So by the Mountain Pass lemma this theorem is proved.

By the symmetric Mountain Pass lemma, similarly in the proof of Theorem 4.8 in

[40], we have the following:

Theorem 4.2. Under the hypotheses of Theorem 4.1, if, in addition, (f3) and (g3) are

satisfied, then (P) has a sequence of solutions {±un} such that E(±un) ® +∞ as n ® ∞.
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