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Abstract
Using the Mönch fixed point theorem, this article proves the existence of mild
solutions for nonlinear mixed type integro-differential functional evolution equations
with nonlocal conditions in Banach spaces. Some restricted conditions on a priori
estimation and measure of noncompactness estimation have been deleted, and
compactness conditions of evolution operators or compactness conditions on a
nonlinear term f (t,Xr ,Xr ,Xr) have been weakened. Our results extend and improve
many known results.
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1 Introduction
Let (X,‖ · ‖) be a Banach space, C[J ,X] = {x : J = [,a] → X,x(t) is continuous in J} with
the norm ‖x‖C = supt∈J ‖x(t)‖. It is easy to verify that C[J ,X] is a Banach space. The space
of X-valued Bochner integrable functions on J with the norm ‖x‖ =

∫ a
 ‖x(s)‖ds is de-

noted by L[J ,X]. Consider the following nonlinear mixed type integro-differential func-
tional evolution equations with nonlocal conditions in a Banach space X(IVP),

x′(t) = A
[
x(t) +

∫ t


F(t – s)x(s)ds

]
+ f

(
t,x

(
σ(t)

)
, (Kxσ )(t), (Hxσ )(t)

)
, t ∈ J , (.)

x() = g(x) + x, (.)

where

(Kxσ )(t) =
∫ t


k
(
t, s,x

(
σ(s)

))
ds, (Hxσ )(t) =

∫ a


h
(
t, s,x

(
σ(s)

))
ds, (.)

A is the generator of a strongly continuous semigroup in the Banach space X, and F(t) is
a bounded operator for t ∈ J , x ∈ X, f ∈ C[J × X,X], g : C[J ,X] → X, k ∈ C[� × X,X],
� = {(t, s) ∈ J × J : s ≤ t}, h ∈ C[J × J ×X,X], σi ∈ C[J , J] and σi(t)≤ t (i = , , ).
For the existence of mild solutions of integro-differential functional evolution equations

in abstract spaces, there are many research results, see [–], and references therein. In
order to obtain the existence and controllability of mild solutions in these study papers,
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usually, some restricted conditions on a priori estimation and compactness conditions of
an evolution operator or compactness conditions on f (t,Xr ,Xr ,Xr) are used.
Recently, using a fixed point theorem, Haribhau Laxman Tidkey and Machindra Babu-

rao Dhakne [] have studied the existence of mild solutions of IVP (.)-(.) when σi(t) = t
(i = , , ), the compactness of the resolvent operator and the restricted condition

M
[‖x‖ +G + Lrb + LKrb + LKb + LHrb + LHb + Lb

] ≤ r

with M[Lb + LKb + LHb] <  is used. Malar [] and Shi [] studied the existence of
mild solutions of semilinear mixed type integrodifferential evolution equations with the
equicontinuous semigroup

⎧⎪⎪⎨
⎪⎪⎩
x′(t) = Ax(t) + f (t,x(t),

∫ t
 a(t, s)k(s,x(s))ds,∫ a

 b(t, s)h(s,x(s))ds), t ∈ [,a],

x() = x + g(x).

(.)

Solvability of the scalar equation

m(t) = K +K

∫ t


h
(
s,m(s),n(s),q(s)

)
ds, t ∈ J

and the restricted condition on measure of noncompactness estimation

∫ t



[
η(s) + kη(s) + kη(s)

]
ds≤ K

are used in []. But estimations (.) and (.) in [] seem to be incorrect, as they have
no meaning.
In this paper, using the Mönch fixed point theorem, we investigate the existence of mild

solutions of IVP (.)-(.). Some restricted conditions on a priori estimation andmeasure
of noncompactness estimation have been deleted, and compactness conditions of a resol-
vent operator or compactness conditions on a nonlinear term f (t,Xr ,Xr ,Xr) have been
weakened. Our results extend and improve some corresponding results in papers [–,
–].

2 Preliminaries
We will make the following assumptions:

(H) A generates a strongly continuous semigroup in the Banach space X .
(H) F(t) ∈ B(X),  ≤ t ≤ a. F(t) : Y → Y and for x(·) continuous in Y , AF(·)x(·) ∈ L[J ,X].

For x ∈ X , F ′(t)x is continuous in t ∈ J , where B(X) is the space of all linear and
bounded operators on X , and Y is the Banach space formed from D(A), the domain
of A, endowed with the graph norm.

Definition. [] R(t) is a resolvent operator of (.) with f ≡  ifR(t) ∈ B(X) for  ≤ t ≤ a
and satisfies the following conditions:
() R() = I , the identity operator on X ,
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() for all x ∈ X , R(t)x is continuous for  ≤ t ≤ a,
() R(t) ∈ B(Y ),  ≤ t ≤ a; for y ∈ Y , R(·)y ∈ C[J ,X]∩C[J ,Y ] and

d
dt

R(t)y = A
[
R(t)y +

∫ t


F(t – s)R(s)yds

]

= R(t)Ay +
∫ t


R(t – s)AF(s)yds,  ≤ t ≤ a. (.)

The resolvent operator R(t) is said to be equicontinuous if {t → R(t)x : x ∈ B} is equicon-
tinuous for the entire bounded set B ⊂ X and t > . If x ∈ C[J ,X] satisfies the following
integral equation:

x(t) = R(t)
(
x + g(x)

)
+

∫ t


R(t – s)f

(
s,x

(
σ(s)

)
, (Kxσ )(s), (Hxσ )(s)

)
ds, t ∈ J ,

then x is said to be a mild solution IVP (.)-(.).

Lemma . [] Let the conditions (H), (H) be satisfied. Then (.) with f ≡  has a
unique resolvent operator.

The following lemma is obvious.

Lemma . Let the resolvent operator R(t) be equicontinuous. If there is ρ ∈ L[J ,R+] such
that ‖x(t)‖ ≤ ρ(t) for a.e. t ∈ J , then the set {∫ t

 R(t – s)x(s)ds} is equicontinuous.

Lemma . [] Let V ∈ C[J ,E] be an equicontinuous bounded subset. Then α(V (t)) ∈
C[J ,R+] (R+ = [,∞)), α(V ) =maxt∈J α(V (t)).

Lemma . [] Let V = {xn} ⊂ L[J ,E] and there exists σ ∈ L[J ,R+] such that ‖xn(t)‖ ≤
σ (t) for any x ∈ V and a.e. t ∈ J . Then α(V (t)) ∈ L[J ,R+] and

α

({∫ t


xn(s)ds : n ∈N

})
≤ 

∫ t


α
(
V (s)

)
ds, t ∈ J .

Lemma . [] (Mönch) Let E be a Banach space, � a closed convex subset in E and
y ∈ �. Suppose that the continuous operator F :� → � has the following property:

V ⊂ � countable,V ⊂ co
({y} ∪ F(V )

) ⇒ V is relatively compact.

Then F has a fixed point in �.

For V ⊂ C[J ,X], let V (t) = {x(t) : x ∈ V }, Vσi (t) = {x(σi(t)) : x ∈ V } (i = , , ), (KV )(t) =
{(Kx)(t) : x ∈ V }, (HV )(t) = {(Hx)(t) : x ∈ V } (t ∈ J), Xr = {x ∈ X : ‖x‖ ≤ r} and Sr = {x ∈
C[J ,X] : ‖x‖C ≤ r} for any r > . α(·) and αC (·) denote the Kuratowski measure of non-
compactness in X and C[J ,X] respectively. For details on the properties of noncompact
measure, we refer the reader to [].
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3 Existence of a mild solution
Wemake the following assumptions for convenience.

(H) There exist constants lg > ,M >  and lgM <  such that

∥∥g(x) – g(y)
∥∥ ≤ lg‖x – y‖C , x, y ∈ C[J ,X],

and g() = .
(H ′

) g : C[J ,X] → E is continuous, compact and there exists a constant N ≥  such that
‖g(x)‖ ≤ N .

(H) There exists q ∈ C[J ,R+] such that

∥∥f (t,x, y, z)∥∥ ≤ q(t)
(‖x‖ + ‖y‖ + ‖z‖), t ∈ J ,x, y, z ∈ X.

(H) There exist k ∈ C[�,R+], h ∈ C[J × J ,R+] such that

∥∥k(t, s,x)∥∥ ≤ k(t, s)‖x‖, (t, s) ∈ �,x ∈ X,
∥∥h(t, s,x)∥∥ ≤ h(t, s)‖x‖, t, s ∈ J ,x ∈ X.

(H) For any r >  and a bounded set Vi ⊂ Xr , there exist constants li >  (i = , , ) such
that

α
(
f (t,V,V,V)

) ≤ lα(V) + lα(V) + lα(V), t ∈ J .

(H) For any r >  and a bounded set V ⊂ Xr ,

α
(
k(t, s,V )

) ≤ k(t, s)α(V ), (t, s) ∈ �,

α
(
h(t, s,V )

) ≤ h(t, s)α(V ), t, s ∈ J .

(H) The resolvent operator R(t) is equicontinuous and ‖R(t)‖ ≤ Me–wt for t ∈ J and some
positive number

w =max
{
Mq( +Ka +Ha), M(l + laK + laH)

}
,

where K =max(t,s)∈� k(t, s), H =maxt,s∈J h(t, s), q =maxt∈J q(t).

Without loss of generality, we always suppose that x = .

Theorem . Let conditions (H), (H), (H)-(H) be satisfied. Then IVP (.)-(.) has at
least one mild solution.

Proof Let

(Fx)(t) = R(t)g(x)

+
∫ t


R(t – s)f

(
s,x

(
σ(s)

)
, (Kxσ )(s), (Hxσ )(s)

)
ds, t ∈ J . (.)
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We have by (H), (H) and (H),

∥∥(Fx)(t)∥∥
≤ ∥∥R(t)g(x)∥∥ +

∫ t



∥∥R(t – s)
∥∥∥∥f (s,x(σ(s)

)
, (Kxσ )(s), (Hxσ )(s)

)∥∥ds

≤ M
∥∥g(x)∥∥ +M

∫ t


e–w(t–s)q(s)

(∥∥x(σ(s)
)∥∥ +

∥∥(Kx)(σ(s)
)∥∥ +

∥∥(Hx)(σ(s)
)∥∥)

ds

≤ lgM‖x‖C

+Mq
∫ t


ew(s–t)

(∥∥x(s)∥∥ +
∫ s


k(s, r)

∥∥x(r)∥∥dr +
∫ a


h(s, r)

∥∥x(r)∥∥dr
)
ds

≤ lgM‖x‖C +Mq
∫ t


ew(s–t)( +Ka +Ha)‖x‖C ds

≤ lgM‖x‖C +Mq( +Ka +Ha)w–‖x‖C ≤ ‖x‖C . (.)

Let

BR =
{
x ∈ C[J ,X] : ‖x‖C ≤ R

}
.

Then BR is a closed convex subset in C[J ,X],  ∈ BR and F : BR → BR. Similar to the proof
of [] and [], it is easy to verify that F is a continuous operator fromBR into BR. For x ∈ BR,
s ∈ J , (H) and (H) imply

∥∥f (s,x(σ(s)
)
, (Kxσ )(s), (Hxσ )(s)

)∥∥ ≤ q(s)
(
 +

∫ s


k(s, r)dr +

∫ a


h(s, r)dr

)
R. (.)

We can show from (.), (H) and Lemma . that F(BR) is an equicontinuous subset in
C[J ,X].
Let V ⊂ BR be a countable set and V ⊂ co({} ∪ F(V )), then

V (t) ⊂ co
({} ∪ (FV )(t)

)
. (.)

From equicontinuity of F(BR) and (.), we know that V is an equicontinuous subset in
C[J ,X]. By the properties of noncompact measure, the conditions (H), (H), (H), (.)
and Lemma ., we have

α
(
V (t)

) ≤ α
(
(FV )(t)

)

≤ ∥∥R(t)∥∥α
(
g(V )

)
+ 

∫ t



∥∥R(t – s)
∥∥α

(
f
(
s,Vσ (s), (KVσ )(s), (HVσ )(s)

))
ds

≤ lgMαC (V ) + M
∫ t


ew(s–t)

[
lα

(
V

(
σ(s)

))
+ l

∫ s


k(s, r)α

(
V

(
σ(r)

))
dr

+ l
∫ a


h(s, r)α

(
V

(
σ(r)

))
dr

]
ds

≤ lgMαC (V )

+ M
∫ t


ew(s–t)

[
lα

(
V (s)

)
ds + 

(
l

∫ s


K + l

∫ a


H

)
α
(
V (r)

)
dr

]
ds
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≤ lgMαC (V ) + M(l + laK + laH)αC (V )
∫ t


ew(s–t) ds

≤ lgMαC (V ) + M(l + laK + laH)w–αC (V ) ≤ 


αC (V ), t ∈ J . (.)

(.) together with Lemma . imply that αC (V ) ≤ 
αC (V ), and so αC (V ) = . Hence V is

relatively compact in C[J ,X]. Lemma . implies that F has a fixed point in C[J ,X]. Then
IVP (.)-(.) has at least one mild solution. The proof is completed. �

Theorem . Let the conditions (H), (H) and (H ′
)-(H) be satisfied. Then IVP (.)-(.)

has at least one mild solution.

Proof Similar to (.) and (.), it is easy to verify

∥∥(Fx)(t)∥∥ ≤MN +Mq( +Ka +Ha)w–‖x‖C =MN + η‖x‖C ,

where η =Mq(+Ka+Ha)w– < . TakingR >MN(–η)–, letBR = {x ∈ C[J ,X] : ‖x‖C ≤
R}. We have F : BR → BR and the inequality (.) is transformed into α(V (t)) ≤ 

αC (V ),
t ∈ J .
The other proof is similar to the proof of Theorem ., we omit it. �

4 An example
Let X = L[,π ]. Consider the following partial functional integro-differential equation
with a nonlocal condition,

⎧⎪⎪⎨
⎪⎪⎩
ut(t, y) = uy(t, y) +

∫ t
 F(t – s)uy(s, y)ds + γ sinu(t – r, y)

+
∫ t


γu(s–r,y)ds
(+t) +

∫ a


γu(s–r,y)ds
(+t)(+s) , ≤ t ≤ a,

u(, y) = u(y) + γu(y),

(.)

where r,γi ∈ R (i = , , , ), σ(t) = σ(t) = σ(t) = t – r,  ≤ r ≤ t ≤ a, F(t) satisfies the
condition (H),

f
(
t,u

(
σ (t)

)
, (Kuσ )(t), (Suσ )(t)

)
(y)

= γ sinu(t – r, y) +
∫ t



γu(s – r, y)ds
( + t)

+
∫ a



γu(s – r, y)ds
( + t)( + s)

, (.)

k
(
t, s,u

(
σ (s)

))
(y) =

u(s – r, y)
 + t

, h
(
t, s,u

(
σ (s)

))
(y) =

u(s – r, y)
( + t)( + s)

, (.)

g(u)(y) = γu(y). (.)

Let the operator A be defined by Aw = w′, w ∈D(A) with the domain

D(A) =
{
w ∈ E : w′ ∈ E,w′ is almost everywhere bounded

}
.

Then A generates a translation semigroup R(t) and R(t) is equicontinuous. The problem
(.) can be regarded as a form of IVP (.)-(.). We have by (.), (.) and (.),

∥∥f (t,u, v, z)∥∥ ≤ |γ |(‖u‖ + ‖v‖ + ‖z‖), |γ | =max
{|γ|, |γ|, |γ|},u, v, z ∈ X,

http://www.boundaryvalueproblems.com/content/2012/1/100
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∥∥k(t, s,u)∥∥ ≤ ‖u‖, ∥∥h(t, s,u)∥∥ ≤ ‖u‖, u ∈ X,

and

∥∥g(u) – g(v)
∥∥ ≤ |γ|‖u – v‖C , g() = .

γ andM can be chosen such that M|γ| < . In addition, for any r >  and a bounded set
Vi ⊂ Xr (i = , , ), we can show that by the diagonal method,

α
(
f (t,V,V,V)

) ≤ |γ |(α(V) + α(V) + α(V)
)
, t ∈ J ,

α
(
k(t, s,V)

) ≤ α(V), t, s ∈ �,

α
(
h(t, s,V)

) ≤ α(V), t, s ∈ [,a].

Hence all the conditions of Theorem . are satisfied, the problem (.) has at least one
mild solution in C[J ,X].
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