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Introduction
In [], it is observed that although the set of periodic sequences forms a linear space, its
uniform closure is not the space of almost-periodic sequences but of semi-periodic se-
quences. In fact, the space of semi-periodic sequences was shown there to be Banach.
Thewhole Sections I., I. in [] and Sections II., II. in [] are devoted to semi-periodic

continuous functions, called there limit periodic functions (cf. also [, p.]). This class
was shown there to be identical with the one of uniformly almost-periodic functions with
one-term Q-base and, in case of integral one-term base, it reduces to the one of purely
periodic functions. For some more references concerning limit periodic functions, see,
e.g., [, ]. In fact, limit periodic functions were already considered by Bohr in , as
pointed out in [, p.].
In the following section, we define analogously to [] the class of semi-periodic contin-

uous functions (with values in a Banach space) and show that it is the same as the class
of limit periodic functions considered in [, ] (see Theorem  below). Let us note that
many different notions with the same name (i.e., semi-periodic), like functions satisfying
Floquet boundary conditions (see, e.g., [, ]) or those describing Bloch waves (see, e.g.,
[], and the references therein), exist in the literature (cf. also [, ]).
Hence, after giving a definition of semi-periodic functions, which is analogous to [], we

prove that the uniform closure of the set of periodic functions is again the one of semi-
periodic functions. Unlike in the discrete case, the space of semi-periodic functions is,
however, not linear and so not Banach. In order to clarify transparently the position of
semi-periodic sequences and functions in the hierarchy of closely related spaces, we de-
cided to illustrate it by means of Venn’s diagrams. Thus, the spaces of almost-periodic,
semi-periodic, quasi-periodic and periodic functions and sequences and some of their
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sums (in the continuous case) are compared in this way. For this, the semi-periodicity is
considered by means of the Fourier-Bohr coefficients.
There are even more general interesting classes of almost-periodic functions (for their

hierarchy, see, e.g., [, ]), but for our needs here only those which are uniformly (Bohr)
a.p. will be taken into account. It is well known that uniformly continuous Stepanov a.p.
functions are Bohr a.p. (see, e.g., [, ]). Another nontraditional characterization of Bohr
almost-periodicity was recently done in [], namely that Stepanov a.p. functions with
Stepanov a.p. derivatives are also Bohr a.p.
In order to make applications to difference and differential equations, we still need to

define the notion of uniform semi-periodicity and prove that the associated Nemystkii
operators map the set of semi-periodic sequences into themselves. This is unfortunately
not true in the case of functions. On this basis, we finally give two examples about the ex-
istence of semi-periodic solutions in the form of theorems, both in the discrete and in the
continuous cases. Although many various sorts of periodic-type solutions were investi-
gated (for their panorama, see []), as far as we know, semi-periodic solutions in the sense
of definitions below of difference or differential equations have been only considered in
[] and in a certain sense also in []. Nevertheless, as pointed out in [], Johnson [] and
Millionshchikov [] have already given examples of limit periodic differential equations
which admit almost automorphic solutions, but not limit periodic ones.
Before passing to semi-periodic functions in the next section, it will be convenient to

mention some facts about semi-periodic sequences.
Hence, denoting as usually by (N) Z the set of (positive) integers and letting E to be a

Banach space endowed with the norm | · |E, let us recall the definition of semi-periodic
sequences (cf. []).

Definition  A sequence x ∈ EZ is called semi-periodic (s.p.) if

∀ε > ,∃T ∈N,∀n ∈ Z,∀k ∈ Z, |xk+nT – xk|E ≤ ε.

One can readily check that Definition  can be regarded as a discrete version of Defini-
tion  below for semi-periodic functions. Similarly, the definition of quasi-periodic (q.p.)
sequences can be regarded as a discretized (i.e., restricted to Z) version of the one for
quasi-periodic functions recalled below. A q.p. extending function has the Fourier-Bohr
expansion with Mod(·) to be finitely generated which is also true for q.p. sequences. For
more properties and details concerning q.p. functions, see, e.g., [].
In this light, since the analogy of Theorem  below holds for sequences (see Remark )

and since the discrete (i.e., restricted to Z) analogies of Examples - below can be con-
structed, one can illustrate the relationship of these classes by means of Venn’s diagram in
Figure . For more properties about s.p. sequences, see, e.g., [, , ].
On the other hand, the situation in Figure  is much simpler than in Figure  for contin-

uous functions, because under the restriction to Z, the sum of (semi-)periodic sequences
remains (semi-)periodic while Stepanov almost-periodic (a.p.) sequences were shown in
[] to coincide with Bohr a.p. sequences.
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Figure 1 Venn’s diagram: discrete case.

Figure 2 Venn’s diagram: continuous case.
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Continuous semi-periodic functions
Let C

T (R,E) be the set of continuous T-periodic functions,

Per(R,E) :=
⋃
T>

C
T (R,E)

be the set of periodic functions andBC(R,E) be the set of continuous bounded functions.
The last one is a Banach space with the uniform norm (written ‖ · ‖∞).

Definition  A continuous function f ∈ C(R,E) is said to be semi-periodic (s.p.) if

∀ε > ,∃T > ,∀n ∈ Z,∀t ∈R,
∣∣f (t + nT) – f (t)

∣∣
E

≤ ε.

Such a T will be called an ε-semi-period of f .
Let S(R,E) denote the set of semi-periodic functions.

It is easy to see from the definition that every continuous periodic function is semi-
periodic. Moreover, if f is semi-periodic, then f is uniformly (Bohr) almost-periodic (i.e.,
f ∈AP(R,E)), and so it is bounded. Thus, we can rewrite Definition  as follows.

Definition  A (bounded) continuous function f ∈ C(R,E) is said to be semi-periodic
(s.p.) if

∀ε > ,∃T > ,∀n ∈ Z,
∥∥f (· + nT) – f (·)∥∥∞ ≤ ε.

We have

Per(R,E)⊂ S(R,E)⊂AP(R,E)⊂ BC(R,E).

From this, we can consider S(R,E) as a metric space, when using

d(f , g) := sup
t∈R

∣∣f (t) – g(t)
∣∣
E
.

As we will see later, S(R,E) is not a linear space, but S(R,E) is a complete metric space.

Lemma  Let f ∈ S(R,E), ε >  and Tε be an ε-semi-period of f . Then there exists a con-
tinuous Tε-periodic function ϕ s.t.

‖f – ϕ‖∞ ≤ ε.

Proof Consider a Tε-periodic function ψ such that its restriction to [;Tε) is the same as
the one of f . For each x ∈ R, we can write x = t + nTε with n ∈ Z and t ∈ [;Tε). Thus, we
get

∣∣f (x) –ψ(x)
∣∣
E
=

∣∣f (t + nTε) –ψ(t + nTε)
∣∣
E

=
∣∣f (t + nTε) –ψ(t)

∣∣
E
=

∣∣f (t + nTε) – f (t)
∣∣
E

≤ ε.
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Since ψ is not necessarily continuous, consider still τ ∈ (;Tε) such that, for any t ∈ [Tε –
τ ,Tε], |f (t) – f (Tε)|E ≤ ε. Define a Tε-periodic continuous function ϕ which is equal to ψ

on [,Tε – τ ] and which is linear on [Tε – τ ,Tε]. For t ∈ [Tε – τ ,Tε], we obtain

∣∣f (t) – ϕ(t)
∣∣
E

≤ Tε – t
τ

∣∣f (Tε – τ ) – f (t)
∣∣
E

+
t – (Tε – τ )

τ

∣∣f (Tε) – f (t)
∣∣
E

≤ ε,

and subsequently

sup
x∈R

∣∣ϕ(x) – f (x)
∣∣
E

≤ ε. �

Remark  For E = R, unlike for semi-periodic functions in the sense of Definition  or
Definition , in fact the same lemma was already proved in [, pp.-], but for limit
periodic functions. As already pointed out in the foregoing section, these classes will be
shown to coincide by Theorem  below, whose proof is just based on Lemma .

We are ready to give the first theorem.

Theorem  S(R,E) is the closure of Per(R,E) in the sup-norm.

Proof Assume firstly that f is s.p. Taking in Lemma  εn = /n, we obtain a sequence of
periodic functions (ϕn)n s.t. ‖f – ϕn‖∞ ≤ εn → .
Reversely, assume that f is in the closure of the set of continuous T-periodic functions.

Then, for any ε > , we can find a periodic ϕ s.t. |f (t) – ϕ(t)|E ≤ ε. Let T be its period.
Then, for any t ∈ R,

∣∣f (t + nT) – f (t)
∣∣
E

≤ ∣∣f (t + nT) – ϕ(t + nT)
∣∣
E
+
∣∣ϕ(t + nT) – ϕ(t)

∣∣
E

+
∣∣ϕ(t) – f (t)

∣∣
E

≤ ε +  + ε. �

Remark  In view of Theorem , one can now also define a semi-periodic function, equiv-
alently w.r.t. Definition  and Definition , as the uniform limit of a uniformly convergent
sequence of continuous purely periodic functions. This was so done, e.g., in [, , , , ].

In the following proposition, we look for the link between s.p. sequences and functions.
Given a sequence x = (xt)t∈Z, we set fx : R → E, the function s.t. its restriction to Z is x and
which is linear on each [k,k + ], k ∈ Z, i.e.,

∀t ∈ Z, fx(u) := {u}xt+ +
(
 – {u})xt ,

where {u} is the fractional part of u, i.e., {u} ∈ [, ) and u – {u} ∈ Z.

Proposition  Let x ∈ EZ. All the following statements are equivalent:
. fx is s.p. with a semi-period in N,

http://www.boundaryvalueproblems.com/content/2012/1/141
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. there exists a s.p. function with a semi-period in N whose restriction to Z is x,
. x is s.p.

Proof For ()⇒ (), take fx in (). For ()⇒ (), takeT as an ε-semi-period for the function
f in (). Then we have

∀t ∈ Z, |xt+T – xt|E =
∣∣f (t + T) – f (t)

∣∣
E

≤ ∥∥f (· + T) – f
∥∥∞ ≤ ε.

For () ⇒ (), given T as an ε-semi-period of x, we have for all t ∈ Z

∣∣fx(t + T) – fx(t)
∣∣
E

≤ {t}|xt+T+ – xt+|E +
(
 – {t})|xt+T – xt|E ≤ ε. �

Let us now consider the Fourier expansion of a semi-periodic function. Recall that every
a.p. function has the Fourier-Bohr expansion,

f (t)∼
∞∑
j=

aλj (f )e
iλjt ,

where

aλ(f ) :=M
{
f (t)e–iλt

}
,

and

M{g} := lim
l→∞

(l)–
∫ l

–l
g(t)dt

is the mean operator (see, e.g., [, , ]). It follows from the above formula that f �→ aλ(f )
is -Lipschizian (and so it is continuous) from AP(R,E) to E.
Set�(f ) := {λ,aλ(f ) 
= } and denote byMod(f ) theZ-modulus generated by�(f ). Recall

that an a.p. function is quasi-periodic (q.p.) if Mod(f ) has a finite Z-basis, and that T is a
period of f if and only if �(f ) ⊂ π

T Z (see, e.g., [, ]).

Proposition  (for E =R, cf. [, p.]) Set Q := {rn,n ∈N} and consider

f (t) :=
∑
λ∈θQ

aλ(f )eiλt ,

for a fixed θ > , where

∑
λ∈θQ

∣∣aλ(f )
∣∣
E
< +∞.

Then f is s.p.

http://www.boundaryvalueproblems.com/content/2012/1/141
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Proof Consider

fN (t) =
N∑
n=

arnθ (f )eirnθ t .

Clearly, if rn = pn
qn , then

πqn
pnθ

is a period of the nth term. The same is obviously true for
πqn

θ
. Thus, πq···qN

θ
is a period of fN which is so periodic. Moreover,

‖f – fN‖∞ ≤
∑

n≥N+

∣∣arnθ (f )
∣∣
E → ,

which already proves that f is s.p. �

The following result is also, at least for E =R, well known (see, e.g., [], [, pp.-],
and the references therein).

Lemma  If f ∈ S(R,E), then there exists θ >  s.t.

�(f ) ⊂ θQ.

Proof Let us consider λ and μ s.t. aλ(f ) 
=  and aμ(f ) 
=  and a sequence of periodic
functions (fn)n s.t. fn → f , uniformly. It follows from the continuity that, for sufficiently
large N , aλ(fN ) 
=  and aμ(fN ) 
= , but since fN is periodic, it follows that λ/μ ∈Q. �

Remark 
. This proof also demonstrates that, for a sufficiently large n, the period Tn of fn

satisfies Tnθ ∈ πQ.
. It indicates that S(R,E) is not a linear space. For instance, a simple q.p. function

t �→ cos(t) + cos(t
√
) is not s.p. although it is a sum of two s.p. functions. On the

other hand, the sum of two a.p. functions is trivially a.p.

Example  On the basis of Proposition  and Lemma , we can easily give the following
example of a purely s.p. (i.e., not periodic) function:

f (t) =
∑
n≥

eit/n

n
.

Moreover, one can readily check that the function f can be obtained as a uniform limit of
the sequence (fN )N , where fN is a continuous πN !-periodic function,

fN (t) =
N∑
n=

eit/n

n
.

Theorem  Every s.p. function which is also q.p. is in fact periodic:

S(R,E)∩QP(R,E) = Per(R,E).

http://www.boundaryvalueproblems.com/content/2012/1/141
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Proof Let f ∈ S(R,E)∩QP(R,E). Since f is q.p., we can find ω, . . . ,ωm such that

�(f ) ⊂ Zω + · · · +Zωm.

Set G := Zω + · · · +Zωm. G is an additive subgroup of R. Since f ∈ S(R,E), we can find
θ >  s.t.�(f ) ⊂ θQ. SetG := θQ.G is another additive subgroup ofR, soG =G∩G is a
subgroup ofG which contains �(f ). SinceG is a subgroup ofG, there exist p ∈ {, . . . ,m}
and positive Z-independent real numbers ζ, . . . , ζp s.t.

G = Zζ + · · · +Zζp.

Let us show that p = . Once we have it, we can conclude that �(f ) ⊂ ζZ which proves
that π

ζ
is a period of f . Since, for each i, ζi ∈G ⊂ G, we know that, for each i, we can find

qi ∈Q s.t. ζi = qiθ . This proves that ζi/ζj ∈Q, for i 
= j, which is impossible. �

Remark  In view of Proposition  and its analogy for q.p. sequences mentioned in the
foregoing section, a discrete (i.e., restricted to Z) analogy of Theorem  holds for se-
quences.

Example  As an example of a function which is almost-periodic (a.p.) but neither quasi-
periodic nor a sum of semi-periodic functions, consider

f (t) =
∑
n≥

eiσnt

n
,

where the σk ’s are constructed by induction, say for all k,

σk+ /∈ σQ + · · · + σkQ.

We will prove that we cannot find a finite set of numbers θ, . . . , θq s.t.

�(f ) ⊂ θQ + · · · + θqQ.

Firstly, assume this has already been proved. Then if f is a sum of semi-periodic func-
tions fj, say f =

∑q
j= fj, we could find, according to Lemma , for each j a θj s.t. �(fj)⊂ θjQ.

This implies that

�(f ) ⊂ �(f)∪ · · · ∪ �(fq) ⊂ (θQ) + · · · + (θqQ),

which is not true. If f were quasi-periodic, we could find θ, . . . , θq s.t.

�(f ) ⊂ θZ + · · · + θqZ⊂ θQ + · · · + θqQ,

which is again wrong. Now, we can make the first part of the proof. So, let us assume

�(f ) ⊂ θQ + · · · + θqQ.

http://www.boundaryvalueproblems.com/content/2012/1/141


Andres and Pennequin Boundary Value Problems 2012, 2012:141 Page 9 of 16
http://www.boundaryvalueproblems.com/content/2012/1/141

We have �(f ) = {σi, i≥ }. Thus, for any i ≥ , we can find (ai, . . . ,aiq) ∈Qq \ {} s.t.

σi =
q∑
j=

aijθj.

Let us now consider the square matrix

A = (aij)≤i,j≤q.

If it is invertible, we can express θ, . . . , θq linearly (with rational coefficients) depending
on σ, . . . ,σq. This proves that σq+ should be a (rational) linear combination of σ, . . . ,σq,
which is not true.
Assuming that the matrix is singular, its rows are linearly dependent. So, we can find

(μ, . . . ,μq) ∈ Qq \ {} s.t. ∑i μiaij = , for each j. Multiplying it by θj and then summing
over j, we obtain

∑
i μiσi =  which is not possible.

Example  As an example of a function which is quasi-periodic (q.p.) but not a sum of
periodic functions, consider

f (t) =
∑
n≥

eit(+n
√
)

n
.

Here �(f ) = { + n
√
,n ∈ N}, thusMod(f ) = Z+

√
Z, i.e., f is q.p. Assume that f is a sum

of a finite number of periodic functions. Let T, . . . ,Tk be the periods. According to [],
we have


(T, . . . ,Tk)f = ,

where


(T)f (x) := f (x + T) – f (x),


(T, . . . ,Tk)f (x) :=
(T, . . . ,Tk–)
(

(Tk)f (x)

)
.

An easy calculation yields

aλ

(

(T, . . . ,Tk)f

)
= aλ(f )

k∏
j=

(
eiλTj – 

)
,

by which

∀n ∈N,∃j ∈ {, . . . ,k}, ( + n
√
)Tj ∈ πZ.

Since N is infinite, we can find two different integers m, n with the same Tj. Thus, there
exist two integers km, kn s.t.

 + n
√


kn
=
π
Tj

=
 +m

√


km
.

http://www.boundaryvalueproblems.com/content/2012/1/141
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This implies that km 
= kn, and we obtain

(km – kn) = (mkn – nkm)
√
,

which is not possible.

Remark  We know (see, e.g., [, ]) that every almost-periodic (a.p.) f is a uniform limit
of a sequence of a finite sum of periodic functions (fn)n. Writing

f = f +
∑
n
(fn+ – fn),

we can see that every a.p. function can be expressed as a series of periodic functions.
Reversely, a uniformly convergent series of periodic functions is a.p.

Summing up the above observations, we can present in Figure  Venn’s diagram for con-
tinuous functions under our investigation. The classes of almost-periodic, semi-periodic
and quasi-periodic functions are in circles, while sums of semi-periodic functions are
in the ellipse. Sums of periodic functions are in the intersection of the classes of quasi-
periodic functions and sums of semi-periodic functions. In fact, one can check by similar
arguments as in the proof of Theorem  that a sum of periodic functions is exactly the
sum of semi-periodic functions which is quasi-periodic. Periodic functions are, according
to Theorem , at the same time semi-periodic and quasi-periodic. Purely semi-periodic
functions are in the grey strip.
Now, consider the primitives of s.p. functions.

Lemma  Assume that f is a.p. and consider F(t) :=
∫ t
 f (s)ds. Assume that there exists

ϕ ∈AP(R,E) and a ∈ E s.t.,

∀t ∈ R, F(t) = ϕ(t) + at.

Then a =M{f }.

Indeed, ϕ is necessarily differentiable, and integrating the equality f = ϕ′ + a, we obtain

a =

l

∫ l

–l
f (s)ds +O

(

l

)
,

because ϕ is bounded. This already proves Lemma . It is well known that M{f } =  is
a necessary and sufficient condition for F to be periodic, provided f is so. It is, however,
not sufficient in the case of a.p. functions. For more details, see, e.g., []. Despite the
approximation by periodic functions, it is also not sufficient in the case of s.p. functions,
as demonstrated by the following example.

Example  Let us consider the s.p. function

f (t) =
∑
n≥

cos(t/n)
n

.

http://www.boundaryvalueproblems.com/content/2012/1/141
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We have a normal convergence, so the series exists and defines a s.p. function for which
M{f } = . A formal candidate to be its primitive is

F(t) =
∑
n≥

sin
(
t/n

)
.

We have a uniform convergence on each compact set, because | sin(u)| ≤ |u|. Thus, this
series also exists and defines a primitive of f . If F were s.p., it should be a.p. which is
obviously not true, because the Parseval equality does not apply.

Uniformly semi-periodic functions with respect to a parameter
Definition  Let f : R × M → Rk , where M is a subset of Rn. We say that f is uniformly
semi-periodic (u.s.p.) if for any compact set K ⊂M ⊂Rn, we have

∀ε > ,∃T > ,∀n ∈ Z,∀t ∈R,∀α ∈ K ,
∣∣f (t + nT ,α) – f (t,α)

∣∣
Rk ≤ ε.

Since such a function is u.a.p., we know that given a compact subsetK ofM, f is bounded
and uniformly continuous on R×K .

Proposition  Any u.s.p. function is a uniform limit, on each R × K , of a sequence of
continuous functions which are periodic w.r.t. their first variables.

Proof Let T be given by the definition and consider a T-periodic function ϕ(·,α) such
that its restriction to [;T) is the same as the one of f (·,α). For each x ∈ R, we can write
x = t + nT with n ∈ Z and t ∈ [;T). Thus, we get

∣∣f (x,α) – ϕ(x,α)
∣∣
Rk =

∣∣f (t + nT ,α) – ϕ(t + nT ,α)
∣∣
Rk

=
∣∣f (t + nT ,α) – ϕ(t,α)

∣∣
Rk

=
∣∣f (t + nT ,α) – f (t,α)

∣∣
Rk ≤ ε,

uniformly w.r.t. α ∈ K . Since ϕ is not necessarily continuous, consider still τ ∈ (;T) such
that, for any t ∈ [T – τ ,T] and any α ∈ K , |f (t,α) – f (T ,α)|E ≤ ε. This is possible, because
K is compact. Define a T-periodic continuous function ψ(·,α) which is equal to ϕ(·,α) on
[,T – τ ] and which is linear on [T – τ ,T]. For t ∈ [T – τ ,T], we obtain

∣∣f (t,α) –ψ(t,α)
∣∣
Rk ≤ T – t

τ

∣∣f (T – τ ,α) – f (t,α)
∣∣
Rk

+
t – (T – τ )

τ

∣∣f (T ,α) – f (t,α)
∣∣
Rk ≤ ε,

and subsequently

sup
(x,α)∈R×K

∣∣ψ(x,α) – f (x,α)
∣∣
Rk ≤ ε. �
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Remark  Assume that f is L-Lipschitzian w.r.t. its second variable. It follows from the
proof that so is ϕ, from which we can deduce the same for ψ . So, a u.s.p. function Lips-
chitzian w.r.t. its second variable can be approximated uniformly on each R×K (K com-
pact) by a sequence of functions which are periodic w.r.t. their first variables and Lips-
chitzian (with the same constant L) w.r.t. their second variables.

Remark  It is possible to define the same for the discrete case and to obtain analogous
results. This will be omitted here, because the proofs are quite similar.

Concerning the Nemytskii operator, in the continuous case, it is not true that if f is
u.s.p. and φ is s.p., then t �→ f (t,φ(t)) is s.p. As an example, take f (t,x) = sin(t) + x and
φ(t) = sin(π t). On the other hand, it is true in the discrete case.

Proposition  Assume that f : Z×M →Rp is s.p. and that x = (xt)t is s.p. with the range
in M ⊂Rn. Then the sequence (f (t,xt))t∈Z is s.p.

Proof Set K = {xt , t ∈ Z}. Since x is a.p., K is a compact subset of M. So, given ε > , we
can find η >  s.t.

sup
t∈Z,|x–y|≤η

∣∣f (t,x) – f (t, y)
∣∣
Rp ≤ ε.

Set η′ :=min{η, ε}. We know that we can find two integers T, T s.t.

∀n ∈ Z,∀t ∈ Z, |xt+nT – xt|Rn ≤ η′,

∀n ∈ Z,∀t ∈ Z,x ∈ K ,
∣∣f (t + nT,x) – f (t,x)

∣∣
Rp ≤ η′.

LetT be a commonmultiplier ofT andT (for instance,T = TT). The last inequalities
remain true, when replacing every Ti by T . Thus, for any (t,n) ∈ Z,

∣∣f (t + nT ,xt+nT ) – f (t,xt)
∣∣
Rp

≤ ∣∣f (t + nT ,xt+nT ) – f (t + nT ,xt)
∣∣
Rp

+
∣∣f (t + nT ,xt) – f (t,xt)

∣∣
Rp ≤ ε + η′ ≤ ε. �

For an alternative proof, one can employ the approximation by periodic sequences.

Semi-periodic solutions of difference equations
In this section, we are interested in semi-periodic solutions of the difference equation
in Rp,

xt+ +Axt = f (t,xt), ()

where A is a real square p× pmatrix.

Theorem  Assuming that A has no eigenvalues with modulus one and that f is u.s.p.
and Lipschitzian w.r.t. the second variable with a sufficiently small constant, there exists a
unique semi-periodic solution for the difference equation ().

http://www.boundaryvalueproblems.com/content/2012/1/141
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Proof We know (see, e.g., Proposition . in []) that, for each a.p. sequence (bt)t with
values in Rp, there exists a unique a.p. solution to

xt+ +Axt = bt . ()

Denoting by AP(Z,Rp) the Banach space of a.p. sequences (cf. []), the linear operator
T : AP(Z,Rp) →AP(Z,Rp), determined by the left-hand side of (), is obviously invertible.
Since T is continuous satisfying ‖T‖ ≤  + ‖A‖, we know from the well-known Banach
theorem that T– must be continuous as well.
Now, consider a s.p. sequence (qt)t with values inRp. We are firstly interested in the a.p.

solution to the equation

xt+ +Axt = f (t,qt). ()

By the hypothesis imposed on f and in view of Proposition , (f (t,qt))t is s.p. Therefore,
there exists a unique a.p. solution of () (see again Proposition . in []). We can now
consider T–((f (t,qt))t). Since T– maps the space of periodic sequences into itself, by the
unique solvability of () in AP(Z,Rn) and by the continuity of T–, the mapping

T : (qt)t → T–((f (t,qt))t)

maps S(Z,Rp) into itself. Denote by L the Lipschitz constant to all f (t, ·). It is easy to see
that ‖T–‖L is a Lipschitz constant for T .
Assuming that L < /‖T–‖, themappingT is a contraction in the Banach spaceS(Z,Rp).

So it has a unique fixed point representing the desired s.p. solution of (). �

Remark  Using a triangular form of –A (like Jordan’s one) (see, e.g., [, Proposition .
and Remark .]), it is possible to compute explicitly a constant c s.t. ‖T–‖ ≤ c. For such
a constant, it is sufficient to assume L < /c in order to justify Theorem .

Semi-periodic solutions of differential equations
Let us consider the equation

x′ +Ax = f (t,x). ()

We assume that a real square k × k matrix A has an exponential dichotomy property,
i.e., that there exist a projection matrix P (P = P) and constants C > , λ > , such that

∣∣X(t)PX–(s)
∣∣ ≤ C exp

(
–λ(t – s)

)
, for s≤ t,∣∣X(t)(I – P)X–(s)

∣∣ ≤ C exp
(
–λ(s – t)

)
, for t ≤ s,

where X is the fundamental matrix of x′ + Ax =  satisfying X() = I , i.e., the unit matrix
(see, e.g., [, Chapter III.]). Furthermore, let f : R×Rk →Rk be u.s.p. with respect to the
variable x.
Setting

C(A) := sup
t∈R

∣∣∣∣
∫
R

∣∣G(t – s)
∣∣ds

∣∣∣∣ ≤ sup
t∈R

∫
R

Ce–λ|t–s| ds =
C
λ
,
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where

G(t, s) :=

⎧⎨
⎩
eA(t–s)P–, for t > s,

eA(t–s)P+, for t < s

is the Green function associated to A, and P–, P+ stand for the corresponding spectral
projections on the invariant subspaces of A, we can formulate the following theorem.

Theorem  Assume still that f is L-Lipschitzian w.r.t. the second variable with L <
(λ/C≤)/C(A). Then there exists a unique semi-periodic solution of the equation ().

Proof Let (fn)n be a sequence of periodic functions w.r.t. their first variables s.t. fn → f ,
uniformly. We can assume without any loss of generality (see Remark ) that each fn is
L-Lipschitzian w.r.t. its second variable. Let xn be the unique bounded (in fact, periodic)
solution of the equation

x′ +Ax = fn(t,x)

and x̄ be the unique bounded solution of (). Such solutions exist; for more details, see,
e.g., [, Chapter III.].
It will be sufficient to show that xn → x̄, uniformly.
We have the integral representations (see again, e.g., [, Chapter III.])

xn(t) =
∫
R

G(t – s)fn
(
s,xn(s)

)
ds,

x̄(t) =
∫
R

G(t – s)f
(
s, x̄(s)

)
ds.

It can be easily checked that, in view of uniqueness of bounded solutions, the periods Tn

of fn are also periods of xn. It holds

∣∣xn(t) – x̄(t)
∣∣
Rk

≤
∫
R

∣∣G(t – s)
∣∣∣∣fn(s,xn(s)) – f

(
s, x̄(s)

)∣∣
Rk ds.

Now, let us prove that there exists a uniform estimate to all xn. We have

∣∣xn(t)∣∣Rk ≤
∫
R

∣∣G(t – s)
∣∣∣∣fn(s,xn(s))∣∣Rk ds,

and

∣∣fn(s,xn(s))∣∣Rk ≤ ∣∣fn(s, )∣∣Rk + L
∣∣xn(s)∣∣Rk

≤ ∥∥f (·, )∥∥∞ +
∥∥fn(·, ) – f (·, )∥∥∞ + L‖xn‖∞.

Thus,

‖xn‖∞ ≤ C(A)
(∥∥f (·, )∥∥∞ +

∥∥fn(·, ) – f (·, )∥∥∞ + L‖xn‖∞
)

http://www.boundaryvalueproblems.com/content/2012/1/141
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and, according to C(A)L < , still

‖xn‖∞ ≤ C(A)
 – C(A)L

(∥∥f (·, )∥∥∞ +
∥∥fn(·, ) – f (·, )∥∥∞

)
=: R,

where R is the desired bound. Putting K = B(,R), we arrive at

∣∣fn(s,xn(s)) – f
(
s, x̄(s)

)∣∣
Rk

≤ ∣∣fn(s,xn(s)) – fn
(
s, x̄(s)

)∣∣
Rk

+
∣∣fn(s, x̄(s)) – f

(
s, x̄(s)

)∣∣
Rk ≤ L‖xn – x̄‖∞ + εn,

where εn = supR×K ‖fn – f ‖ → . Thus, we finally get

‖xn – x‖∞ ≤ C(A)
 – C(A)L

εn → .

Since xn are Tn-periodic, we conclude that x̄ is semi-periodic. �

Concluding remarks
Remark  Because of the right-hand side f (t,x) in (), even in the scalar case, Theorem 
cannot be deduced from the results in [], where the scalar equation x′ + g(x) = f (t) was
considered.

Remark  Since Theorem  and Theorem  represent only illustrative examples, the
obtained existence and uniqueness criteria were tendentiously very simple. More sophis-
ticated situations will be considered by ourselves elsewhere.

Remark  Analogously as in [, ], where almost-periodic solutions were under con-
sideration, it would be interesting to obtain similar results concerning semi-periodic so-
lutions of monotone systems or those treated by means of variational methods.
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