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Abstract

In this article, we study the following m-point boundary value problem on time
scales,⎧⎪⎪⎨

⎪⎪⎩
(φp(u�(t)))∇ + h(t)f (t, u(t)) = 0, t ∈ (0,T)T,

u(0) − δu�(0) =
m−2∑
i=1

βiu
�(ξi), u�(T) = 0,

where T is a time scale such that 0,T ∈ T, δ,βi > 0, i = 1, . . . ,m − 2,
jp(s) = |s|p-2s,p > 1,h Î Cld((0, T), (0, +∞)), and f Î C([0,+∞), (0,+∞)),
0 < ξ1 < ξ2 < · · · < ξm−2 < T ∈ T. By using several well-known fixed point
theorems in a cone, the existence of at least one, two, or three positive solutions are
obtained. Examples are also given in this article.
AMS Subject Classification: 34B10; 34B18; 39A10.
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1 Introduction
The study of dynamic equations on time scales goes back to its founder Hilger [1], and

is a new area of still theoretical exploration in mathematics. Motivating the subject is

the notion that dynamic equations on time scales can build bridges between continu-

ous and discrete mathematics. Further, the study of time scales has led to several

important applications, e.g., in the study of insect population models, neural networks,

heat transfer, epidemic models, etc. [2].

Multipoint boundary value problems of ordinary differential equations (BVPs for

short) arise in a variety of different areas of applied mathematics and physics. For

example, the vibrations of a guy wire of a uniform cross section and composed of N

parts of different densities can be set up as a multi-point boundary value problem [3].

Many problems in the theory of elastic stability can be handled by the method of

multi-point problems [4]. Small size bridges are often designed with two supported

points, which leads into a standard two-point boundary value condition and large size

bridges are sometimes contrived with multi-point supports, which corresponds to a

multi-point boundary value condition [5]. The study of multi-point BVPs for linear

second-order ordinary differential equations was initiated by Il’in and Moiseev [6].

Since then many authors have studied more general nonlinear multi-point BVPs, and
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the multi-point BVP on time scales can be seen as a generalization of that in ordinary

differential equations.

Recently, the existence and multiplicity of positive solutions for nonlinear differential

equations on time scales have been studied by some authors [7-11], and there has

been some merging of existence of positive solutions to BVPs with p-Laplacian on

time scales [12-19].

He [20] studied

(φp(u�(t)))∇ + a(t)f (t) = 0, t ∈ (0,T)T, (1:1)

subject to one of the following boundary conditions{
u(0) − B0(u�(η)) = 0, u�(T) = 0,
u�(0) = 0, u(T) − B1(u�(η)) = 0,

(1:2)

where η ∈ (0,T) ∩ T. By using a double fixed-point theorem, the authors get the

existence of at least two positive solutions to BVP (1.1) and (1.2).

Anderson [21] studied

−u�∇
(t) = ηa(t)f (u(t)), t ∈ (t1, tn)T, (1:3)

subject to one of the following boundary conditions

u(t1) =
n−1∑
i=2

αiu(ti), u�(tn) = 0, (1:4)

u�(t1) = 0, u(tn) =
n−1∑
i=2

αiu(ti), (1:5)

by using a functional-type cone expansion-compression fixed-point theorem, the

author gets the existence of at least one positive solution to BVP (1.3), (1.4) and BVP

(1.3), (1.5).

However, to the best of the authors’ knowledge, up to now, there are few articles

concerned with the existence of m-point boundary value problem with p-Laplacian on

time scales. So, in this article, we try to fill this gap. Motivated by the article men-

tioned above, in this article, we consider the following m-point BVP with one-dimen-

sional p-Laplacian,⎧⎨
⎩
(φp(u�(t)))∇ + h(t)f (t, u(t)) = 0, t ∈ (0,T)T,

u(0) − δu�(0) =
m−2∑
i=1

βiu�(ξi), u�(T) = 0,
(1:6)

where jp(s) = |s|p-2s,p > 1,h Î Cld((0,T), (0, +∞)), 0 < ξ1 < ξ2 < · · · < ξm−2 < T ∈ T.

δ, bi >0, i = 1,..., m - 2.

We will assume throughout

(S1) h Î Cld ((0, T), [0, ∞)) such that ∫T
0 h(s)∇s < ∞;

(S2) f Î C([0, ∞), (0, ∞)), f ≢ 0 on f �≡ 0 on [0,T]T;

(S3) By jq we denote the inverse to jp, where
1
p +

1
q = 1;

(S4) By t Î [a, b] we mean that t ∈ [a, b] ∩ T, where 0 ≤ a ≤ b ≤ T.
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2 Preliminaries
In this section, we will give some background materials on time scales.

Definition 2.1. [7,22] For t < supT and t > infT, define the forward jump operator

s and the backward jump operator r, respectively,

σ (t) = inf{τ ∈ T|τ > t} ∈ T, ρ(r) = sup{τ ∈ T|τ < r} ∈ T

for all r, t ∈ T. If s(t) >t, t is said to be right scattered, and if r(r) <r, r is said to be

left scattered. If s(t) = t, t is said to be right dense, and if r(r) = r, r is said to be left

dense. If T has a right scattered minimum m, define Tκ = T − {m}; Otherwise set

Tκ = T. The backward graininess μb : Tκ → R+
0 is defined by

μb(t) = t − ρ(t).

If T has a left scattered maximum M, define Tκ = T − {M}; Otherwise set Tκ = T. The

forward graininess μf : Tκ → R+
0 is defined by

μf (t) = σ (t) − t.

Definition 2.2. [7,22] For x : T → R and t ∈ Tκ, we define the “Δ” derivative of x(t),

xΔ(t), to be the number (when it exists), with the property that, for any ε > 0, there is

neighborhood U of t such that∣∣[x(σ (t)) − x(s)] − x�(t)[σ (t) − s]
∣∣ < ε|σ (t) − s|

for all s Î U. For x : T → R and t ∈ Tκ, we define the “∇” derivative of x(t),xΔ (t), to

be the number(when it exists), with the property that, for any ε > 0, there is a neigh-

borhood V of t such that∣∣[x(ρ(t)) − x(s)] − x∇(t)[ρ(t) − s]
∣∣ < ε|ρ(t) − s|

for all s Î V.

Definition 2.3. [22] If FΔ (t) = f(t), then we define the “Δ” integral by∫ t

a
f (s)�s = F(t) − F(a).

If F∇ (t) = f(t), then we define the “∇” integral by∫ t

a
f (s)∇s = F(t) − F(a).

Lemma 2.1. [23]The following formulas hold:

(i) (∫t
a f (t)�s)� = f (t),

(ii) (∫t
a f (t)�s)∇ = f (ρ(t)),

(iii) (∫t
a f (t)∇s)� = f (σ (t)),

(iv) (∫t
a f (t)∇s)∇ = f (t).

Lemma 2.2. [7, Theorem 1.75 in p. 28] If f Î Crd and t ∈ Tκ, then∫ σ (t)

t
f (τ )�τ = μf (t)f (t).
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According to [23, Theorem 1.30 in p. 9], we have the following lemma, which can be

proved easily. Here, we omit it.

Lemma 2.3. Let a, b ∈ Tand f Î Cld.

(i) If T = R, then∫ b

a
f (t)∇t =

∫ b

a
f (t)dt,

where the integral on the right is the usual Riemann integral from calculus.

(ii) If [a, b] consists of only isolated points, then

∫ b

a
f (t)∇t =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
t∈(a,b]

μb(t)f (t), if a < b,

0, if a = b,
− ∑

t∈(a,b]
μb(t)f (t), if a > b.

(iii) If T = hZ = {hk : k ∈ Z}, where h > 0, then

∫ b

a
f (t)∇t =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b
h∑

k= ah +1

f (kh)h, if a < b,

0, if a = b,

−
a
h∑

k= b
h +1

f (kh)h, if a > b.

(iv) If T = Z, then

∫ b

a
f (t)∇t =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

b∑
t=a+1

f (t), if a < b,

0, if a = b,

−
a∑

t=b+1
f (t), if a > b.

In what follows, we list the fixed point theorems that will be used in this article.

Theorem 2.4. [24]Let E be a Banach space and P ⊂ E be a cone. Suppose Ω1, Ω2 ⊂
E open and bounded, 0 ∈ �1 ⊂ �1 ⊂ �2 ⊂ �2. Assume A : (�2\�1) ∩ P → Pis com-

pletely continuous. If one of the following conditions holds

(i) ∥Ax∥ ≤ ∥x∥, ∀x Î ∂Ω1 ∩ P, ∥Ax∥ ≥ ∥x∥, ∀x Î ∂Ω2 ∩ P;

(ii) ∥Ax∥ ≥ ∥x∥, ∀x Î ∂Ω1 ∩ P, ∥Ax∥ ≤ ∥x∥, ∀x Î ∂Ω2 ∩ P.

Then, A has a fixed point in (�2\�1) ∩ P.

Theorem 2.5. [25]Let P be a cone in the real Banach space E. Set

P(γ , r) = {u ∈ P, γ (u) < r}.

If a and g are increasing, nonnegative continuous functionals on P, let θ be a nonnega-

tive continuous functional on P with θ(0) = 0 such that for some positive constants r, M,

γ (u) ≤ θ(u) ≤ α(u) and ‖ u ‖≤ Mγ (u).
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for all u ∈ P(γ , r). Further, suppose there exists positive numbers a <b <r such that

θ(λu) ≤ λθ(u) for all 0 ≤ λ ≤ 1, u ∈ ∂P(θ , b).

If A : P(γ , r) → Pis completely continuous operator satisfying

(i) g(Au) >r for all u Î ∂P(g, r);
(ii) θ(Au) <b for all u Î ∂P(θ, r);

(iii) P(α, b) �=� 0and a(Au) >a for all u Î ∂P(a, a).

Then, A has at least two fixed points u1 and u2 such that

a < α(u1), with θ(u1) < b, and b < θ(u2), with γ (u1) < r,

Let a, b, c be constants, Pr = {u Î P : ∥u∥ <r}, P(ψ, b, d) = {u Î P : a ≤ ψ(u), ∥u∥ ≤ b}.

Theorem 2.6. [26]Let A : Pc → Pcbe a completely continuous map and ψ be a nonne-

gative continuous concave functional on P such that for ∀u ∈ Pc, there holds ψ(u) ≤ ∥u∥.
Suppose there exist a, b, d with 0 <a <b <d ≤ c such that

(i) {u ∈ P(ψ , b, d) : ψ(u) > b} �=� 0and ψ(Au) >b for all u Î P(ψ, b, d);

(ii) ∥Au∥ <a for all u ∈ Pa;

(iii) ψ(Au) >b for all u Î P(ψ, b, d) with ∥Au∥ >d.

Then, A has at least three fixed points u1,u2, and u3 satisfying

‖ u1 ‖< a, b < α(u2), ‖ u3 ‖ > a, and ‖ u3 ‖ < b.

Let the Banach space E = Cld[0, T] be endowed with the norm ∥u∥ = supt Î [0,T] u(t),

and cone P ⊂ E is defined as

P = {u ∈ E, u(t) ≥ 0 for t ∈ [0,T] and u�∇(t) ≤ 0 for t ∈ (0,T), u�(T) = 0}.

It is obvious that ∥u∥ = u(T) for u Î P. Define A : P ® E as

(Au)(t) =
∫ t

0
φq

(∫ T

s
h(τ )f (τ , u(τ ))∇τ

)
�s + δφq

(∫ T

0
h(s)f (s, u(s))∇s

)

+
m−2∑
i=1

βiφq

(∫ T

ξi

h(s)f (s, u(s))∇s
)

for t Î [0, T].

In what follows, we give the main lemmas which are important for getting the main

results.

Lemma 2.7. A : P ® P is completely continuous.

Proof. First, we try to prove that A : P ® P.

(Au)�(t) = φq

(∫ T

t
h(s)f (s, u(s))∇s

)
.

Thus, (Au)Δ (T) = 0 and by Lemma 2.1 we have (Au)Δ∇ (t) = -h(t)f(t, u(t)) ≤ 0 for t Î
(0, T). Consequently, A : P ® P.

By standard argument we can prove that A is completely continuous. For more

details, see [27]. The proof is complete.

Lemma 2.8. For u Î P, there holds u(t) ≥ t
T

‖ u ‖ for t ∈ [0,T]for t Î [0,T].
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Proof. For u Î P, we have uΔ∇ (t) ≤ 0, it follows that uΔ (t) is non-increasing. There-

fore, for 0 <t <T,

u(t) − u(0) =
∫ t

0
u�(s)�s ≥ tu�(t) (2:1)

and

u(T) − u(t) =
∫ T

t
u�(s)�s ≤ (T − t)u�(t), (2:2)

thus

u(T) − u(0) ≤ Tu�(t). (2:3)

Combining (2.1) and (2.3) we have

T(u(t) − u(0)) ≥ Ttu�(t) ≥ t(u(T) − u(0)),

as u(0) ≥ 0, it is immediate that

u(t) ≥ tu(T) + (T − t)u(0)
T

≥ t

T
u(T) =

t

T
‖ u ‖ .

The proof is complete.

3 Existence of at least one positive solution
First, we give some notations. Set

� =

(
δ +

m−2∑
i=1

βi + T

)
φq

(∫ T

0
h(s)∇s

)
,

B =
ξ1

T

(
δφq

(∫ T

0
h(s)∇s

)
+

m−2∑
i=1

βiφq

(∫ T

ξi

h(s)∇s
)
+

∫ T

0
φq

(∫ T

s
h(τ )∇τ

)
�s

)
.

Theorem 3.1. Assume in addition to (S1) and (S2), the following conditions are satis-

fied, there exists 0 < r <
ξ1ρ

T < ρ < ∞ such that

(H1) f (t, u) ≤ φp( u
�
), for t ∈ [0,T], u ∈ [0, r];

(H2) f (t, u) ≥ φp
( u
B

)
, for t ∈ [ξ1,T], u ∈ [ ξ1ρ

T ,ρ].

Then, BVP (1.6) has at least one positive solution.

Proof. Cone P is defined as above. By Lemma 2.7 we know that A : P ® P is comple-

tely continuous. Set Ωr = {u Î E, ∥u∥ <r}. In view of (H1), for u Î ∂ Ωr ∩ P,

‖ Au ‖ = (Au)(T) = δφq

(∫ T

0
h(s)f (s, u(s))∇s

)
+

m−2∑
i=1

βiφq

(∫ T

ξi

h(s)f (s, u(s))∇s
)

+
∫ T

0
φq

(∫ T

s
h(τ )f (τ , u(τ ))∇τ

)
�s

≤
(

δ +
m−2∑
i=1

βi + T

)
φq

(∫ T

0
φp

(
u(s)
�

)
h(s)∇s

)

≤ ‖ u ‖
�

(
δ +

m−2∑
i=1

βi + T

)
φq

(∫ T

0
h(s)∇s

)
≤ ‖ u ‖,

which means that for u Î ∂Ωr ∩ P, ||Au|| ≤ ||u||.

On the other hand, for u Î P, in view of Lemma 2.8, there holds u(t) ≥ ξ1
T ‖ u ‖, for t Î

[ξ1, T]. Denote Ωr = {u Î E, ∥u∥ <r}. Then for u Î ∂Ωr ∩ P, considering (H2), we have
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‖ Au ‖= (Au)(T) = δφq

(∫ T

0
h(s)f (s, u(s))∇s

)
+

m−2∑
i=1

βiφq

(∫ T

ξi

h(s)f (s, u(s))∇s
)

+
∫ T

0
φq

(∫ T

s
h(τ )f (τ , u(τ ))∇τ

)
�s

≥ δφq

(∫ T

0
φp

(
u(s)
B

)
h(s)∇s

)
+

m−2∑
i=1

βiφq

(∫ T

ξi

φp

(
u(s)
B

)
h(s)∇s

)

+
∫ T

0
φq

(∫ T

s
φp

(
u(τ )
B

)
h(τ )∇τ

)
�s

≥ ξ1 ‖ u ‖
TB

(
δφq

(∫ T

0
h(s)∇s

)
+

m−2∑
i=1

βiφq

(∫ T

ξi

h(s)∇s
)
+

∫ T

0
φq

(∫ T

s
h(τ )∇τ

)
�s

)

=‖ u ‖ .

which implies that for u Î ∂Ωr∩P, ∥Au∥ ≥ ∥u∥ Therefore, the immediate result of

Theorem 2.4 is that A has at least one fixed point u Î (Ωr\Ωr) ∩ P. Also, it is obvious

that the fixed point of A in cone P is equivalent to the positive solution of BVP (1.6),

this yields that BVP (1.6) has at least one positive solution u satisfies r ≤ ∥u∥ ≤ r. The
proof is complete.

Here is an example.

Example 3.2. Let T = P1,1 =
⋃∞

k=0 [2k, 2k + 1]. Consider the following four point BVP

on time scale P1,1.{
x�∇(t) + f (t, u(t)) = 0, t ∈ [0,T]T,
x(0) − 2x�(0) = x�(2) + x�(3), x�(4) = 0,

(3:1)

where

f (t, u) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

tu
128

, 0 ≤ u ≤ 100,
39t
512

(u − 100) +
25t
32

, 100 ≤ u ≤ 500,
tu
16

, u ≥ 500,

and h(t) = 1, T = 4, ξ1 = 2, ξ2 = 3, δ = 2, b1 = b2 = 1,p = q = 2. In what follows, we

try to calculate Λ, B. By Lemmas 2.2 and 2.3, we have

� =

(
δ +

m−2∑
i=1

βi + T

)
φq

(∫ T

0
h(s)∇s

)

= (2 + 1 + 1 + 4)
∫ 4

0
∇s

= 8 ×
(∫ 1

0
ds+

∫ 3

2
ds+

∫ 2

1
∇s+

∫ 4

3
∇s

)

= 8 ×
(∫ 1

0
ds+

∫ 3

2
ds + ν(2) × 1 + ν(4) × 1

)
= 8 × (1 + 1 + 1 + 1) = 32.

B =
ξ1

T

(
δφq

(∫ T

0
h(s)∇s

)
+

m−2∑
i=1

βiφq

(∫ T

ξi

h(s)∇s
)
+

∫ T

0
φq

(∫ T

s
h(τ )∇τ

)
�s

)

=
2
4

(
2

∫ 4

0
∇s+

∫ 4

2
∇s+

∫ 4

3
∇s+

∫ 4

0

∫ 4

s
∇τ�s

)

=
1
2

(
8 + 2 + 1 +

∫ 1

0

∫ 4

s
∇τ�s +

∫ 2

1

∫ 4

2
∇τ�s +

∫ 3

2

∫ 4

s
∇τ�s +

∫ 4

3

∫ 4

s
∇τ�s

)

=
1
2

(
11 +

∫ 1

0

∫ 4

s
∇τ�s+

∫ 2

1

∫ 4

s
∇τ�s+

∫ 3

2

∫ 4

s
∇τ�s+

∫ 4

3

∫ 4

s
∇τ�s

)
,
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where

∫ 1

0

∫ 4

s
∇τ�s =

∫ 1

0

(∫ 1

s
∇τ +

∫ 4

1
∇τ

)
�s

=
∫ 1

0

∫ 1

s
dτds+

∫ 1

0

(∫ 2

1
∇τ +

∫ 3

2
∇τ +

∫ 4

3
∇τ

)
�s

=
∫ 1

0

(∫ 1

s
dτ +

∫ 3

2
dτ

)
ds+

∫ 1

0

(∫ 2

1
∇τ +

∫ 4

3
∇τ

)
�s

=
1
2
+ 1 + 1 + 1 =

7
2
,∫ 3

2

∫ 4

s
∇τ�s =

∫ 3

2

(∫ 3

s
∇τ +

∫ 4

3
∇τ

)
�s

=
∫ 3

2

∫ 3

s
dτds +

∫ 3

2

∫ 4

3
∇τ�s

=
1
2
+ 1 =

3
2
,∫ 2

1

∫ 4

s
∇τ�s = σ (1) ×

∫ 4

1
∇τ = 3,

∫ 4

3

∫ 4

s
∇τ�s = σ (3) ×

∫ 4

3
∇τ = 1.

Thus, B =
1
2

(
11 +

7
2
+
3
2
+ 3 + 1

)
= 10. Let r = 100 <

2
4

ρ < ρ = 1000. Then, we have

(i) f (t, u) ≤ 4u
128 = u

32 = φp( u
�
), for t ∈ [0, 4], u ∈ [0, 100];

(ii) f (t, u) ≥ 2u
16 = u

8 > φp( uB), for t ∈ [2, 4], u ∈ [500, 1000].

Thus, if all the conditions in Theorem 3.1 satisfied, then BVP (3.1) has at least one

positive solution lies between 100 and 1000.

4 Existence of at least two positive solutions
In this section, we will apply fixed point Theorem 2.5 to prove the existence of at least

two positive solutions to the nonlinear BVP (1.6).

Fix η ∈ T such that

0 < ξm−2 ≤ η < T,

and define the increasing, nonnegative, continuous functionals g, θ,a on P by

γ (u) = min
t∈[ξ1,η]

u(t) = u(ξ1),

θ(u) = max
t∈[0,ξm−2]

u(t) = u(ξm−2),

α(u) = min
t∈[η,T]

u(t) = u(η).

We can see that, for u Î P, there holds

γ (u) ≤ θ(u) ≤ α(u).
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In addition, Lemma 2.8 implies that γ (u) = u(ξ1) ≥ ξ1
T ||u|| which means that

||u|| ≤ T

ξ1
γ (u) for u ∈ P.

We also see that

θ(λu) = λθ(u) for λ ∈ [0, 1], u ∈ ∂P(θ , b).

For convenience, we give some notations,

K =

(
δ +

m−2∑
i=1

βi + ξm−2

)
φq

(∫ T

0
h(s)∇s

)
,

M = δφq

(∫ T

0
h(s)∇s

)
+

m−2∑
i=1

βiφq

(∫ T

ξi

h(s)∇s
)
+

∫ ξ1

0
φq

(∫ T

s
h(τ )∇τ

)
�s,

L = δφq

(∫ T

0
h(s)∇s

)
+

m−2∑
i=1

βiφq

(∫ T

ξi

h(s)∇s
)
+

∫ η

0
φq

(∫ T

s
h(τ )∇τ

)
�s.

Theorem 4.1. Assume in addition to (S1), (S2) there exist positive constants

a <
T
η
a < b <

T
ξm−2

b < csuch that the following conditions hold

(H3) f(t, u) >jp(c/M) for t Î [ξ1,T] u Î [c,Tc/ξ1];

(H4) f(t, u) <jp(b/K) for t Î [0,ξm-2], u Î [b,Tb/ξm-2];

(H5) f(t, u) >jp(a/L) for t Î [h,T], u Î [a,Ta/h].
Then BVP (1.6) has at least two positive solutions u1 and u2 such that

α(u1) > a, with θ(u1) < b, and b < θ(u2), with γ (u2) < c. (4:1)

Proof. From Lemma 2.7 we know that A : P(g, c) ® P is completely continuous. In

what follows, we will prove the result step by step.

Step one: To verify (i) of theorem 2.5 holds.

We choose u Î ∂P(g,c), then γ (u) = mint∈[ξ1,η]u(t) = u(ξ1) = c. This implies that u(t)

≥ c for t Î [ξ1,T], considering that ||u|| ≤ T
ξ1

γ (u) =
T
ξ1
c, we have

c ≤ u(t) ≤ T

ξ1
c for t ∈ [ξ1,T].

As a consequence of (H3),

f (t, u(t)) > φp( c
M ) for t ∈ [ξ1,T].

Since Au Î P, we have

γ (Au) = (Au)(ξ1) = δφq

(∫ T

0
h(s)f (s, u(s))∇s

)
+

m−2∑
i=1

βiφq

(∫ T

ξi

h(s)f (s, u(s))∇s
)

+
∫ ξ1

0
φq

(∫ T

s
h(τ )f (τ , u(τ ))∇τ

)
�s

>
c
M

(
δφq

(∫ T

0
h(s)∇s

)
+

m−2∑
i=1

βiφq

(∫ T

ξi

h(s)∇s
)
+

∫ ξ1

0
φq

(∫ T

s
h(τ )∇τ

)
�s

)

= c.

Thus, (i) of Theorem 2.5 is satisfied.
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Step two: To verify (ii) of Theorem 2.5 holds.

Let u Î ∂P(θ,b), then θ(u) = maxt∈[0,ξm−2] = u(ξm−2) = b, this implies that 0 ≤ u(t) ≤ b,

t Î [0,ξm-2] and since u Î P, we have ∥u∥ = u(T), note that

||u|| ≤ T
ξm−2

u(ξm−2) =
T

ξm−2
θ(u) =

T
ξm−2

b. So,

0 ≤ u(t)
T

ξm−2
b for t ∈ [0,T].

From (H4) we know that f (t, u(t)) < φp( b
K ) for t Î [0, ξm-2] and so

θ(Au) = (Au)(ξm−2) = δφq

(∫ T

0
h(s)f (s, u(s))∇s

)
+

m−2∑
i=1

βiφq

(∫ T

ξi

h(s)f (s, u(s))∇s
)

+
∫ ξm−2

0
φq

(∫ T

s
h(τ )f

(
τ , u(τ )

)∇τ

)
�s

<
b
K

(
δφq

(∫ T

0
h(s)∇s

)
+

m−2∑
i=1

βiφq

(∫ T

ξ∫ h(s)∇s

)

+
∫ ξm−2

0
φq

(∫ T

s
h(τ )∇τ

)
�s

)

<
b
K

(
δ +

m−2∑
i=1

βi + ξm−2

)
φq

(∫ T

0
h(s)∇s

)
= b.

Thus, (ii) of Theorem 2.5 holds.

Step three: To verify (iii) of Theorem 2.5 holds.

Choose u0(t) =
a

2
, t ∈ [0,T], obviously, u0(t) Î P(a, a) and α(u0) =

a

2
< a, thus

P(α, a) �= ∅.
Now, let u Î ∂P(a, a), then, a(u) = mintÎ[h ,T] u(t) = u(h) = a. Recalling that

||u|| ≤ T
η
u(η) =

T
η

α(u) =
T
η
a. Thus, we have

a ≤ u(t) ≤ T

η
a for t ∈ [η,T].

From assumption (H5) we know that

f (t, u(t)) > φp

( a
L

)
for t ∈ [η,T],

and so

α(Au) = (Au)(η) = δφq

(∫ T

0
h(s)f (s, u(s))∇s

)
+

m−2∑
i=1

βiφq

(∫ T

ξi

h(s)f (s, u(s))∇s
)

+
∫ η

0
φq

(∫ T

s
h(τ )f (τ , u(τ ))∇τ

)
�s

>
a
L

(
δφq

(∫ T

0
h(s)∇s

)
+

m−2∑
i=1

βiφq

(∫ T

ξi

h(s)∇s
)
+

∫ η

0
φq

(∫ T

s
h(τ )∇τ

)
�s

)

= a.

Therefore, all the conditions of Theorem 2.5 are satisfied, thus A has at least two

fixed points in P(g,c), which implies that BVP (1.6) has at least two positive solutions

u1,u2 which satisfies (4.1). The proof is complete.
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Example 4.2. Let T = {2n,n ∈ Z} ∪ {0}. Consider the following four point boundary

value problem on time scale T.{
(φp(x�))∇(t) + tf (t, u(t)) = 0, t ∈ [0, 8]T,
x(0) − x�(0) = x�(1) + 2x�(2), x�(8) = 0,

(4:2)

where

f (t, u) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

| sin t| + u

105
, 0 ≤ u ≤ 9.3 × 106,

| sin t| + 93, 9.3 × 106 ≤ u ≤ 4 × 108,

| sin t| + 247u

6 × 108
− 215

3
, u ≥ 4 × 108,

and h(t) = t, T = 8, ξ1 = 1, ξ2 = 2, δ = 1, b1 = 1, b2 = 2,p = 3/2, q = 3. In what fol-

lows, we try to calculate K, M, L. By Lemmas 2.2 and 2.3, we have

K =

(
δ +

m−2∑
i=1

βi + ξm−2

)
φq

(∫ T

0
h(s)∇s

)

= (1 + 1 + 2 + 2)φq

(∫ 8

0
s∇s

)

= 6 ×
(∫ 1

0
s∇s +

∫ 2

1
s∇s +

∫ 4

2
s∇s +

∫ 8

4
s∇s

)2

= 6 × (ν(1) × 1 + ν(2) × 2 + ν(4) × 4 + ν(8) × 8)2

= 6 × (1 + 2 + 8 + 32)2 = 6 × 1849 = 11094.

M = δφq

(∫ T

0
h(s)∇s

)
+

m−2∑
i=1

βiφq

(∫ T

ξi

h(s)∇s
)
+

∫ ξi

0
φq

(∫ T

s
h(τ )∇τ

)
�s

=
(∫ 8

0
s∇s

)2

+
(∫ 8

1
s∇s

)2

+ 2
(∫ 8

2
s∇s

)2

+
∫ 1

0
φq

(∫ 8

s
τ∇τ

)
�s

= (1 + 2 + 8 + 32)2 + (2 + 8 + 32)2 + 2 × (8 + 32)2 +
(∫ 8

0
s∇s

)2

= 2 ∗ (1 + 2 + 8 + 32)2 + (2 + 8 + 32)2 + 2 × (8 + 32)2 = 8662.

L = δφq

(∫ T

0
h(s)∇s

)
+

m−2∑
i=1

βiφq

(∫ T

ξi

h(s)∇s
)
+

∫ η

0
φq

(∫ T

s
h(τ )∇τ

)
�s

=
(∫ 8

0
s∇s

)2

+
(∫ 8

1
s∇s

)2

+ 2
(∫ 8

2
s∇s

)2

+
∫ 4

0

(∫ 8

s
h(τ )∇τ

)2

�s

= (1 + 2 + 8 + 32)2 + (2 + 8 + 32)2 + 2 × (8 + 32)2

+
∫ 1

0

(∫ 8

s
h(τ )∇τ

)2

�s +
∫ 2

1

(∫ 8

s
h(τ )∇τ

)2

�s +
∫ 4

2

(∫ 8

s
h(τ )∇τ

)2

�s

= 6813 + μ(0) ×
(∫ 8

0
s∇s

)2

+ μ(1) ×
(∫ 8

0
s∇s

)2

+ μ(2) ×
(∫ 8

0
s∇s

)2

= 6813 + (1 + 2 + 8 + 32)2 + (2 + 8 + 32)2 + 2 × (8 + 32)2 = 13626.

Let a = 106, b = 108, c = 109, then we have

(i) f (t, u) ≥ 340 >

(
109

8662

)1/2

= φp

( c
M

)
, for t Î [1, 8], u Î [109, 8 × 109];

(ii) f (t, u) ≤ 94 <

(
108

11094

)1/2

= φp

(
b
K

)
, for t Î [0, 2], u Î [108, 4 × 108];
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(iii) f (t, u) > 9 >

(
106

13326

)1/2

= φp

(a
L

)
, for t Î [4, 8], u Î [106, 2 × 106].

Thus, if all the conditions in Theorem 4.1 are satisfied, then BVP (4.2) has at least

two positive solutions satisfying (4.1).

5 Existence of at least three positive solutions
Let ψ(u) = mint∈[ξ1,T]u(t), then 0 <ψ(u) ≤ ∥u∥. Denote

D = δφq

(∫ T

0
h(s)∇s

)
+

m−2∑
i=1

βiφq

(∫ T

ξi

h(s)∇s
)
+

∫ ξ1

0
φq

(∫ T

s
h(τ )∇τ

)
�s,

R =

(
δ +

m−2∑
i=1

βi + T

)
φq

(∫ T

0
h(s)∇s

)
.

In this section, we will use fixed point Theorem 2.6 to get the existence of at least

three positive solutions.

Theorem 5.1. Assume that there exists positive number d, ν, g satisfying

d < ν < min
{

ξ1

T
,
D
R

}
g < g, such that the following conditions hold.

(H6) f(t, u) <jp(d/R), t Î [0,T],u Î [0,d];

(H7) f(t, u) >jp(ν/D), t Î [ξ1, T], u Î [ν, Tυ/ξ1];

(H8) f(t, u) ≤ jp(g/R), t Î [0,T],u Î [0,g],

then BVP (1.6) has at least three positive solutions u1, u2, u3 satisfying

||u1|| < d, ψ(u2) > ν,

||u3|| > d, with ψ(u3) < ν.
(5:1)

Proof. From Lemma 2.8 we know that A : P ® P is completely continuous. Now we

only need to show that all the conditions in Theorem 2.6 are satisfied.

For u ∈ P̄g, ||u|| ≤ g. By (H8), one has

||Au|| = (Au)(T) = δφq

(∫ T

0
h(s)f (s, u(s))∇s

)
+

m−2∑
i=1

βiφq

(∫ T

ξi

h(s)f (s, u(s))∇s
)

+
∫ T

0
φq

(∫ T

s
h(τ )f (τ , u(τ ))∇τ

)
�s

≤ g
R

(
δ +

m−2∑
i=1

βi + T

)
φq

(∫ T

0
h(s)∇s

)

= g.

Thus, A : P̄g → P̄g. Similarly, by (H6), we can prove (ii) of Theorem 2.6 is satisfied.

In what follows, we try to prove that (i) of theorem 2.6 holds. Choose

u1(t) =
T
ξ1

ν, t ∈ [0,T], obviously, ψ(u1) >ν, thus {u ∈ P(ψ , ν,Tν/ξ1) : ψ(u) > ν} �= ∅. For
u Î P(ψ,ν,Tν/ξ1),
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ψ(Au) = (Au)(ξ1) = δφq

(∫ T

0
h(s)f (s, u(s))∇s

)
+

m−2∑
i=1

βiφq

(∫ T

ξi

h(s)f (s, u(s))∇s
)

+
∫ ξ1

0
φq

(∫ T

s
h(τ )f (τ , u(τ ))∇τ

)
�s

>
ν

D

(
δφq

(∫ T

0
h(s)∇s

)
+

m−2∑
i=1

βiφq

(∫ T

ξi

h(s)∇s
)
+

∫ ξ1

0
φq

(∫ T

s
h(τ )∇τ

)
�s

)

= ν.

It remains to prove (iii) of Theorem 2.6 holds. For u Î P(ψ, ν, Tυ/ξ1), with ∥Au∥
>Tν/ξ1, in view of Lemma 2.8, there holds ψ(Au) − (Au)(ξ1) ≥ ξ1

T ||Au|| > ν, which

implies that (iii) of Theorem 2.6 holds.

Therefore, all the conditions in Theorem 2.6 are satisfied. Thus, BVP (1.6) has at

least three positive solutions satisfying (5.1). The proof is complete.

Example 5.2. Let T = [0, 1] ∪ N. Consider the following four point boundary value

problem on time scale T.{
(φp(x�))∇(t) + et(t, u(t)) = 0, t ∈ [0,T]T,
x(0) − 3x�(0) = 2x�(1/2) + 3x�(1), x�(8) = 0,

(5:2)

where

f (t, u) =

⎧⎪⎨
⎪⎩

t

20
+

(
u2

840

)3

, 0 ≤ u ≤ 126,

t
20

+ 18.93, u ≥ 126,

and h(t) = et, T = 2, ξ1 = 1/2, ξ2 = 1, δ = 3, b1 = 2, b2 = 3, p = 4, q = 4/3. In what

follows, we try to calculate D, R. By Lemmas 2.2 and 2.3, we have

D = δφq

(∫ T

0
h(s)∇s

)
+

m−2∑
i=1

βiφq

(∫ T

ξi

h(s)∇s
)
+

∫ ξ1

0
φq

(∫ T

s
h(τ )∇τ

)
�s

= 3
(∫ 2

0
es∇s

)1/3

+ 2
(∫ 2

1/2
es∇s

)1/3

+ 3
(∫ 2

1
es∇s

)1/3

+
∫ 1/2

s

(∫ 2

s
eτ∇τ

)1/3

�s

= 3
(∫ 1

0
esds +

∫ 2

1
es∇s

)1/3

+ 2
(∫ 1

1/2
esds+

∫ 2

1
es∇s

)1/3

+ 3
(∫ 2

1
es∇s

)1/3

+
∫ 1/2

0

(∫ 1

s
eτdτ +

∫ 2

1
eτ∇τ

)1/2

�s

= 3(e + e2 − 1)1/3 + 2(e + e2 − e1/2)1/3 + 3e2/3 +
3
4
(e + e2 − 1)4/3 − 3

4
(e + e2 − e1/2)4/3

≈ 17.5216.

R =

(
δ +

m−2∑
i=1

βi + T

)
φq

(∫ T

0
h(s)∇s

)
= (3 + 2 + 3 + 2)

(∫ 2

0
es∇s

)1/3

= 10(e + e2 − 1)1/3 = 20.8832.

Let d = 40, ν = 50, g = 400, then we have

(i) f(t, u) < 7.027 = (40/20.8832)3 = jp(d/R), for t Î [0, 2], u Î [0, 40];

(ii) f(t, u) > 23.2375 = (50/17.5216)3 = jp(ν/D), for t Î [1/2, 2], u Î [50, 200];

(iii) f(t, u) < 7027.305 = (400/20.8832)3 = jp(g/R), for t Î [0, 2], u Î [0, 400].
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Thus, if all the conditions in Theorem 5.1 are satisfied, then BVP (5.2) has at least

three positive solutions satisfying (5.1).
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