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Abstract
We consider nonstationary 3-D flow of a compressible viscous heat-conducting
micropolar fluid in the domain to be the subset of R3 bounded with two concentric
spheres that present solid thermoinsulated walls. In thermodynamical sense fluid is
perfect and polytropic. Assuming that the initial density and temperature are strictly
positive we will prove that for smooth enough spherically symmetric initial data there
exists a spherically symmetric generalized solution locally in time.
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1 Introduction
The theory ofmicropolar fluids is introduced in [] by Eringen. Various problemswith dif-
ferent initial and boundary conditions for incompressible micropolar fluid are presented
in [], but the theory of compressible micropolar fluid is still in the beginning. N. Mu-
jakovic in [] developed the model for one-dimensional isotropic, viscous, compressible
micropolar fluid which is in thermodynamical sense perfect and polytropic. In the same
work, the local existence of the solution for homogeneous boundary conditions is proved.
N. Mujakovic in [] and in the references cited therein proved the local and global exis-
tence of inhomogeneous boundary conditions for velocity and microrotation as well as
stabilization and regularity. In [] the Cauchy problem for the described problemwas also
considered. In the last yearswefind some interestingworkswith different kind of problems
concerning micropolar fluid, e.g., [, ], but till now the described model of compressible
micropolar fluid in three-dimensional case has not been considered.
In this work we consider the three-dimensional model with spherical symmetry. The

first article in which the problem of spherical symmetry was described is [], but for clas-
sical fluid. The spherical symmetry for classical fluid is also considered in articles [–].
In the setting of the field equations we use the Eulerian description.
In what follows we use the notation:

ρ - mass density
v - velocity
p - pressure
T - stress tensor
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Tx - an axial vector with the Cartesian components (Tx)i = εijkTjk , where εijk is
Levi-Civita alternating tensora

symT = 
 (T +TT ), skwT = 

 (T –TT )
ω - microrotation velocity
ωskw - skew tensor with Cartesian components (ωskw)ij = εkijωk

jI - microinertia density (a positive scalar field)
C - couple stress tensor
θ - absolute temperature
E - internal energy density
q - heat flux density vector
f - body force density
g - body couple density
δ - body heat density

The problemwe consider here is based on local forms of the conservation laws formass,
momentum, momentum moment and energy, which are stated respectively as follows:

ρ̇ + ρ divv = , ()

ρv̇ = divT + ρf , ()

ρjIω̇ = divC +Tx + ρg, ()

ρĖ = T :∇v +C :∇ω –Tx · ω – divq + ρδ, ()

where ȧ denotes material derivative of a field a:

ȧ =
∂a
∂t

+ (∇a) · v.

The scalar product of tensors A and B is defined by

A : B = tr
(
ATB

)
.

The linear constitutive equations for stress tensor, couple stress tensor and heat flux den-
sity vector are respectively in the forms:

T = (–p + λdivv)I + μ sym∇v – μr skw∇v – μrωskw, ()

C = c(divω)I + cd sym∇ω – ca skw∇ω, ()

q = –k∇θ , ()

where
λ, μ - coefficients of viscosity,
μr , c, cd , ca - coefficients of microviscosity,
k - heat conduction coefficient

are constants with the properties

μ ≥ , λ + μ ≥ , μr ≥ , ()

cd ≥ , c + cd ≥ , |cd – ca| ≤ cd + ca, k ≥ . ()
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Assuming that the fluid is perfect and polytropic, for pressure and internal energy we
have the equations

p = Rρθ , ()

E = cvθ , ()

where R and cv are positive constants.
Let � = {x ∈ R,a < |x| < b}, a > , denote the domain bounded by two concentric

spheres with radii a and b. The boundary of the described domain is ∂� = {x ∈ R, |x| =
a or |x| = b}. We shall consider the problem ()-() in the region QT = �× ],T[ (where
T >  is arbitrary) with the following initial conditions:

ρ(x, ) = ρ(x), v(x, ) = v(x), ω(x, ) = ω0(x), θ (x, ) = θ(x), ()

for x ∈ � and boundary conditions

v|∂� = , ω|∂� = ,
∂θ

∂ν

∣∣∣∣
∂�

= , ()

for  < t < T ; the vector ν is an exterior unit normal vector.
For simplicity we also assume that f = g =  and δ = .
The initial boundary problems for the system ()-() so far have not been considered

in three-dimensional case. The same and similar models in one-dimensional case were
considered in [, , ] and []. In [] the three-dimensional model was considered but for
an incompressible micropolar fluid.
In this paper we prove the local existence of generalized spherically symmetric solution

to the problem ()-() in the domain�, assuming that the initial functions are also spher-
ically symmetric. In the proof we use the Faedo-Galerkin method. We follow some ideas
of [] where this method was applied to a classical fluid (where microrotation is equal to
zero) in one-dimensional case as well as the ideas from [] and [] where the same result
as here was provided for one-dimensional case.
The paper is organized as follows. In the second section, we derive a spherically symmet-

ric form of ()-(), introduce Lagrangian description, and present the main result. In the
third section, we consider an approximate problem and get an approximate solution for
each n ∈ N. In the forth section, we prove uniform a priori estimates for the approximate
solutions. The proof of the main result is given in the fifth section.

2 Spherically symmetric form and themain result
We first derive the spherically symmetric form of ()-() and ()-(). A spherically sym-
metric solution of ()-() has the form:

vi(x, t) =
xi
r
v(r, t), ωi(x, t) =

xi
r

ω(r, t), i = , , ,

ρ(x, t) = ρ(r, t), θ (x, t) = θ (r, t),
()

where x = (x,x,x) ∈ R, r = |x|, v = (v, v, v) and ω = (ω,ω,ω). We assume that

ρ(x) = ρ(r), v(x) =
x
r
v(r), ω(x) =

x
r
ω(r), θ(x) = θ(r), ()
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where ρ, v, ω and θ are known real functions defined on ]a,b[, and thus we reduce
system ()-() and conditions ()-() to the following equations for ρ(r, t), v(r, t), ω(r, t)
and θ (r, t) of the form:

∂ρ

∂t
+

∂

∂r
(vρ) +

ρ
r
v = , ()

ρ

(
∂v
∂t

+ v
∂v
∂r

)
= –R

∂

∂r
(ρθ ) + (λ + μ)

∂

∂r

(
∂v
∂r

+ 
v
r

)
, ()

ρjI
(

∂ω

∂t
+ v

∂ω

∂r

)
= –μrω + (c + cd)

∂

∂r

(
∂ω

∂r
+ 

ω

r

)
, ()

ρcv
(

∂θ

∂t
+ v

∂θ

∂r

)
= k

(
∂θ

∂r
+

r

∂θ

∂r

)
– Rρθ

(
∂v
∂r

+ 
v
r

)

+ (λ + μ)
(

∂v
∂r

+ 
v
r

)

– μ
v
r

(

∂v
∂r

+
v
r

)

+ (c + cd)
(

∂ω

∂r
+ 

ω

r

)

– cd
ω

r

(

∂ω

∂r
+

ω

r

)
+ μrω



()

with the following initial and boundary conditions

ρ(r, ) = ρ(r), v(r, ) = v(r), ω(r, ) = ω(r),

θ (r, ) = θ(r), r ∈ ]a,b[,
()

v(a, t) = v(b, t) = , ω(a, t) = ω(b, t) = ,

∂θ

∂r
(a, t) =

∂θ

∂r
(b, t) = ,  < t < T .

()

To investigate the local existence, it is convenient to transform the system ()-() to
that in Lagrangian coordinates. The Eulerian coordinates (r, t) are connected to the La-
grangian coordinates (ξ , t) by the relation

r(ξ , t) = r(ξ ) +
∫ t


ṽ(ξ , t)dτ , r(ξ ) = r(ξ , ) = ξ , ()

where ṽ(ξ , t) is defined by

ṽ(ξ , t) = v
(
r(ξ , t), t

)
. ()

We introduce the new function η by

η(ξ ) =
∫ ξ

a
sρ(s)ds. ()

Note that if ρ(s) >  for s ∈ ]a,b[ (which is assumed in Theorem. later), then there exists
an inverse function η–. Let the constant L be defined as

η(b) =
∫ b

a
sρ(s)ds = L. ()

http://www.boundaryvalueproblems.com/content/2012/1/69
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From () we can easily get the equation

ρ
∂r
∂ξ

r = ρ(ξ )ξ , ()

i.e.,

∫ r(ξ ,t)

a
ρ(s, t)s ds =

∫ ξ

a
ρ(s)s ds. ()

It is useful to introduce the next coordinate

x′ = L–η(ξ ) ()

and the following functions

ρ ′(x′, t
)
= ρ̃

(
η–(x′L

)
, t

)
,

v′(x′, t
)
= ṽ

(
η–(x′L

)
, t

)
,

ω′(x′, t
)
= ω̃

(
η–(x′L

)
, t

)
,

θ ′(x′, t
)
= θ̃

(
η–(x′L

)
, t

)
,

r′
(
x′, t

)
= r

(
η–(x′L

)
, t

)
,

ρ ′

(
x′) = ρ

(
η–(x′L

))
,

v′

(
x′) = v

(
η–(x′L

))
,

ω′

(
x′) = ω

(
η–(x′L

))
,

θ ′

(
x′) = θ

(
η–(x′L

))
,

r′
(
x′) = r

(
η–(x′L

))
= η–(x′L

)
.

Similarly as in [], for a new coordinate x′ we get

 = L–η(a)≤ x′ ≤ L–η(b) = . ()

Taking into account () and (), we obtain that the functions ρ ′, v′, ω′, θ ′ and r′ satisfy
the system that we write omitting the primes for simplicity:

∂ρ

∂t
= –


L

ρ ∂

∂x
(
rv

)
, ()

∂v
∂t

= –
R
L
r

∂

∂x
(ρθ ) +

λ + μ
L

r
∂

∂x

(
ρ

∂

∂x
(
rv

))
, ()

ρ
∂ω

∂t
= –

μr

jI
ω +

c + cd
jIL

rρ
∂

∂x

(
ρ

∂

∂x
(
rω

))
, ()

ρ
∂θ

∂t
=

k
cvL

ρ
∂

∂x

(
rρ

∂θ

∂x

)
–

R
cvL

ρθ
∂

∂x
(
rv

)
+

λ + μ
cvL

[
ρ

∂

∂x
(
rv

)]

–
μ

cvL
ρ

∂

∂x
(
rv

)
+
c + cd
cvL

[
ρ

∂

∂x
(
rω

)]

–
cd
cvL

ρ
∂

∂x
(
rω) + μr

cv
ω

()
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in ], [× ],T[, where T >  is arbitrary. Now we have the following boundary and initial
conditions

v(, t) = v(, t) = , ()

ω(, t) = ω(, t) = , ()
∂θ

∂x
(, t) =

∂θ

∂x
(, t) = , ()

for t ∈ ],T[,

ρ(x, ) = ρ(x), v(x, ) = v(x), ()

ω(x, ) = ω(x), θ (x, ) = θ(x), ()

for x ∈ ], [. We also have

r(x, t) = r(x) +
∫ t


v(x, τ )dτ , (x, t) ∈ ], [× ],T[. ()

From

∂r
∂x

(x, t) =
L

ρ(x, t)r(x, t)

putting t =  and integrating over ],x[, we get

r(x) =
(
a + L

∫ x




ρ(y)

dy
) 


, x ∈ ], [, ()

where a >  is a radius of the smaller boundary sphere.
We assume the inequalities

ρ(x)≥ m, θ(x)≥ m for x ∈ ], [, ()

wherem ∈ R+.
Before stating the main result, we introduce the following definition.

Definition . A generalized solution of the problem ()-() in the domain QT =
], [× ],T[ is a function

(x, t) �→ (ρ, v,ω, θ )(x, t), (x, t) ∈QT , ()

where

ρ ∈ L∞(
,T ;H(], [)) ∩H(QT ), inf

QT
ρ > , ()

v,ω, θ ∈ L∞(
,T ;H(], [)) ∩H(QT )∩ L

(
,T ;H(], [)), ()

that satisfies Equations ()-() a.e. inQT and conditions ()-() in the sense of traces.

http://www.boundaryvalueproblems.com/content/2012/1/69


Dražić and Mujaković Boundary Value Problems 2012, 2012:69 Page 7 of 25
http://www.boundaryvalueproblems.com/content/2012/1/69

Remark . From the embedding and interpolation theorems (e.g., [] and []) one can
conclude that from () and () it follows:

ρ ∈ L∞(
,T ;C

(
[, ]

)) ∩C
(
[,T],L

(
], [

))
, ()

v,ω, θ ∈ L
(
,T ;C()([, ])) ∩C

(
[,T],H(], [)), ()

v,ω, θ ∈ C(QT ). ()

It is easy to check that the solution () with properties ()-() satisfies the condition
for a strong solution of the described problem.
The aim of this paper is to prove the following statements.

Theorem . Let the functions

ρ, θ ∈H(], [), ()

v,ω ∈H

(
], [

)
()

satisfy conditions (). Then there exists T,  < T ≤ T, such that the problem ()-()
has a generalized solution in Q =QT , having the property

θ >  in Q. ()

For the function r, it holds

r ∈ L∞(
,T ;H(], [)) ∩H(Q)∩C(Q), ()

a


≤ r ≤ M in Q. ()

Remark . Notice that the function r introduced by () belongs toH(], [). Because
of the embeddingH(], [) ⊂ C([, ]) we can conclude that there existsM ∈ R+ such that

ρ(x), v(x),ω(x), θ(x)≤ M, x ∈ [, ]. ()

From () and () we get

r ∈ C()([, ]), ()

 < a ≤ r(x)≤ M,  < a ≤ r′(x)≤ M, x ∈ [, ], ()

where a = LM– andM = L(ma)–.

The proof of Theorem . is essentially based on a careful examination of a priori es-
timates and a limit procedure. We first study, for each n ∈ N, an approximate problem
and derive the a priori estimates for approximate solutions independent of n by utilizing a
technique of Kazhikov [, ] and Mujakovic [, ] for one-dimensional case. Using the
obtained a priori estimates and results of weak compactness, we extract the subsequence
of approximate solutions, which, when n tends to infinity, has limit in the sameweak sense
on ], [× ],T[ for sufficiently small T,  < T ≤ T . Finally, we show that this limit is
the solution to our problem.

http://www.boundaryvalueproblems.com/content/2012/1/69
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3 Approximate solutions
Weshall find a local generalized solution to the problem ()-() as a limit of approximate
solutions

(
ρn, vn,ωn, θn), n ∈ N, ()

obtained in what follows. First, we introduce the approximations vn and rn of the functions
v and r by

vn(x, t) =
n∑
i=

vni (t) sin(π ix), ()

rn(x, t) = r(x) +
∫ t


vn(x, τ )dτ , ()

where r(x) is defined by () and vni , i = , , . . . ,n are unknown smooth functions defined
on an interval [,Tn], Tn ≤ T .
Then, we can write the solution ρn to the problem

∂ρn

∂t
+ L–

(
ρn) ∂

∂x
((
rn

)vn) = , ρn(x, ) = ρ(x), ()

in the similar way as in [] and [] in the form

ρn(x, t) =
Lρ(x)

L + ρ(x) ∂
∂x

∫ t
 (rn)vn dτ

. ()

Since rn and vn are sufficiently smooth functions, we can conclude that the function ρn

is continuous on the rectangle [, ] × [,Tn] with the property ρn(x, ) = ρ(x) ≥ m > .
Because of aforementioned, we can conclude that there exists such Tn,  < Tn ≤ T that

ρn(x, t) > , for (x, t) ∈ [, ]× [,Tn]. ()

We also introduce the approximations ωn and θn of the functions ω and θ respectively by

ωn(x, t) =
n∑
j=

ωn
j (t) sin(π jx), ()

θn(x, t) =
n∑

k=

θn
k (t) cos(πkx); ()

where ωn
j and θn

k are again unknown smooth functions defined on an interval [,Tn],
Tn ≤ T .
Evidently, the boundary conditions

vn(, t) = vn(, t) = ωn(, t) = ωn(, t) =
∂θn

∂x
(, t) =

∂θn

∂x
(, t) =  ()

for t ∈ ],Tn[ are satisfied.

http://www.boundaryvalueproblems.com/content/2012/1/69
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According to the Faedo-Galerkin method, we take the following approximate condi-
tions:

∫ 



[
∂vn

∂t
+
R
L

(
rn

) ∂

∂x
(
ρnθn)

–
λ + μ
L

(
rn

) ∂

∂x

(
ρn ∂

∂x
((
rn

)vn))]
sin(π ix)dx = ,

()

∫ 



[
∂ωn

∂t
+
μr

jI
ωn

ρn

–
c + cd
jIL

(
rn

) ∂

∂x

(
ρn ∂

∂x
((
rn

)
ωn))]

sin(π jx)dx = ,
()

∫ 



[
∂θn

∂t
–

k
cvL

∂

∂x

((
rn

)
ρn ∂θn

∂x

)
+

R
cvL

ρnθn ∂

∂x
((
rn

)vn)

–
λ + μ
cvL

ρn
[

∂

∂x
((
rn

)vn)]

+
μ

cvL
∂

∂x
(
rn

(
vn

))

–
c + cd
cvL

ρn
[

∂

∂x
((
rn

)
ωn)]

+
cd
cvL

∂

∂x
(
rn

(
ωn))

–
μr

cv
(ωn)

ρn

]
cos(πkx)dx = 

()

for i, j = , . . . ,n, k = , , . . . ,n.
Let vi,ωj, and θk be the Fourier coefficients of the functions v,ω, and θ respectively:

vi = 
∫ 


v(x) sin(π ix)dx, i = , . . . ,n,

ωj = 
∫ 


ω(x) sin(π jx)dx, j = , . . . ,n,

θ =
∫ 


θ(x)dx, θk = 

∫ 


θ(x) cos(πkx)dx, k = , . . . ,n.

Let vn, ωn
 and θn

 be

vn(x) =
n∑
i=

vi sin(π ix), ()

ωn
(x) =

n∑
j=

ωj sin(π jx), ()

θn
 (x) =

n∑
k=

θk cos(πkx). ()

We take the initial conditions for vn, ωn and θn in the form

vn(x, ) = vn(x), ()

ωn(x, ) = ωn
(x), ()

θn(x, ) = θn
 (x). ()

http://www.boundaryvalueproblems.com/content/2012/1/69
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Let znm, λn
pq and μn

slg be

znm(t) =
∫ t


vnm(τ )dτ , m = , . . . ,n, ()

λn
pq(t) =

∫ t


znp(τ )v

n
q(τ )dτ , p,q = , . . . ,n, ()

μn
slg(t) =

∫ t


znl (τ )z

n
s (τ )v

n
g (τ )dτ , s, l, g = , . . . ,n ()

then we have

rn(x, t) = r(x) +
n∑

m=

znm(t) sin(πmx), ()

ρn(x, t) = Lρ(x)

[
L + ρ

∂

∂x

[
r(x)

n∑
i=

zni (t) sin(π ix)

+ ro(x)
n∑

i,j=

λn
ij(t) sin(π ix) sin(π jx)

+
n∑

i,j,k=

μn
ijk(t) sin(π ix) sin(π jx) sin(πkx)

]]–

,

()

where r(x) and ρ(x) are known functions. Taking into account (), (), (), ()-
(), from ()-() we obtain for {(vni ,ωn

j , θn
k , znm,λn

pq,μn
slg) : i, j,m,p,q, s, l, g = , . . . ,n,k =

, , . . . ,n}, the following Cauchy problem:

v̇ni (t) = φn
i
(
vn , . . . , v

n
n,ω

n
 , . . . ,ω

n
n , θ

n
 , θ

n
 , . . . , θ

n
n , z

n
 , . . . ,

znn,λ
n
, . . . ,λ

n
nn,μ

n
, . . . ,μ

n
nnn

)
,

()

ω̇n
j (t) = �n

j
(
vn , . . . , v

n
n,ω

n
 , . . . ,ω

n
n , θ

n
 , θ

n
 , . . . , θ

n
n , z

n
 , . . . ,

znn,λ
n
, . . . ,λ

n
nn,μ

n
, . . . ,μ

n
nnn

)
,

()

θ̇n
k (t) = λk�

n
k
(
vn , . . . , v

n
n,ω

n
 , . . . ,ω

n
n , θ

n
 , θ

n
 , . . . , θ

n
n , z

n
 , . . . ,

znn,λ
n
, . . . ,λ

n
nn,μ

n
, . . . ,μ

n
nnn

)
,

()

żnm(t) = vnm, ()

λ̇n
pq(t) = znp · vnq , ()

μ̇n
slg(t) = zns · znl · vng , ()

vni () = vi, ωn
j () = ωj, θn

k () = θk , ()

znm() = , λn
pq() = , μn

slg() = . ()

http://www.boundaryvalueproblems.com/content/2012/1/69
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Here we have λ = , λk =  for k = , , . . . ,n and

�n
i = 

∫ 



[
λ + μ
L

(
rn

) ∂

∂x

(
ρn ∂

∂x
((
rn

)vn))

–
R
L

(
rn

) ∂

∂x
(
ρnθn)] sin(π ix)dx,

()

�n
j = 

∫ 



[
c + cd
jIL

(
rn

) ∂

∂x

(
ρn ∂

∂x
((
rn

)
ωn))

–
μr

jI
ωn

ρn

]
sin(π jx)dx,

()

�n
k =

∫ 



[
k

cvL
∂

∂x

((
rn

)
ρn ∂θn

∂x

)
–

R
cvL

ρnθn ∂

∂x
((
rn

)vn)

+
λ + μ
cvL

ρn
[

∂

∂x
((
rn

)vn)]

–
μ

cvL
∂

∂x
(
rn

(
vn

))

+
c + cd
cvL

ρn
[

∂

∂x
((
rn

)
ωn)]

–
cd
cvL

∂

∂x
(
rn

(
ωn))

+
μr

cv
(ωn)

ρn

]
cos(πkx)dx.

()

Notice that the functions on the right-hand side of ()-() satisfy the conditions of the
Cauchy-Picard theorem [, ] and we can easily conclude that the following statements
are valid.

Lemma . For each n ∈ N there exists such Tn,  < Tn ≤ T that the Cauchy problem
()-() has a unique solution defined on [,Tn]. The functions vn, ωn and θn defined by
the formulas (), () and () belong to the class C∞(Qn), Qn = ], [× ],Tn[ and satisfy
conditions ()-().

From () and () we can also easily conclude that

ρn ∈ C(Qn), ()

rn ∈ C()(Qn). ()

Lemma . There exists Tn,  < Tn ≤ T, such that the functions ρn, rn and ∂rn
∂x satisfy the

conditions

m


≤ ρn(x, t)≤ M, ()

a


≤ rn(x, t)≤ M, ()

a


≤ ∂rn

∂x
(x, t)≤ M, ()

on Qn. The constants m, a, a, M and M are introduced by (), (), () and ().

Proof The statements follow from ()-(), (), () and (). �
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4 A priori estimates
Our purpose is to find T,  < T ≤ T such that for each n ∈ N there exists a solution to
the problem ()-(), defined on [,T]. It will be sufficient to find uniform (in n ∈ N ) a
priori estimates for the solution (ρn, vn,ωn, θn) defined through Lemmas . and ..
In what follows we denote by C >  or Ci >  (i = , , . . .) a generic constant, not depend-

ing on n ∈ N, which may have different values at different places.
We also use the notation

‖f ‖ = ‖f ‖L(],[).

Some of our considerations are very similar or identical to that of [] or []. In these
cases we omit proofs or details of proofs making references to corresponding pages of the
articles [] or [].

Lemma . For t ∈ [,Tn] it holds

∥∥∥∥∂rn

∂x
(t)

∥∥∥∥


≤ C
(
 +

∫ t



∥∥∥∥∂vn

∂x
(τ )

∥∥∥∥


dτ

)
. ()

Proof From () follows

∂rn

∂x
= r′′ +

∫ t



∂vn

∂x
dτ

and using Remark . we get () immediately. �

Lemma . For t ∈ [,Tn], the following inequality holds:

∥∥ωn(t)
∥∥ +

∫ t



(∥∥ωn(τ )
∥∥ +

∥∥∥∥ ∂

∂x
(
rnω

n)(τ )∥∥∥∥


dτ

)
≤ C. ()

Proof Multiplying () by ωn
j and summing over j = , . . . ,n, after integration by parts, we

obtain



d
dt

∥∥ωn(t)
∥∥ +

μr

jI

∫ 



(ωn)

ρn dx +
c + cd
jIL

∫ 


ρn

[
∂

∂x
((
rn

)
ωn)]

dx = .

Integrating over [, t],  < t ≤ Tn, and taking into account (), we obtain



∥∥ωn(t)

∥∥ +
μr

jI

∫ t



∫ 



(ωn)

ρn dxdτ

+
c + cd
jIL

∫ t



∫ 


ρn

[
∂

∂x
((
rn

)
ωn)]

dxdτ =


∥∥ωn


∥∥ ≤ 


‖ω‖.

Using (), we get (). �

In what follows, we use the inequalities

|f | ≤ ‖f ‖
∥∥∥∥∂f
∂x

∥∥∥∥,
∣∣∣∣ ∂f∂x

∣∣∣∣


≤ 
∥∥∥∥∂f
∂x

∥∥∥∥
∥∥∥∥∂f
∂x

∥∥∥∥ ()
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(for a function f vanishing at x =  and x =  and with the first derivative vanishing at some
point x ∈ [, ]) that satisfy the functions vn, ωn and ∂θn

∂x .

Lemma . For t ∈ [,Tn], the following inequality holds:

∣∣∣∣
∫ 


θn(x, t)dx

∣∣∣∣ ≤ C
(
 +

∥∥∥∥∂vn

∂x
(t)

∥∥∥∥
)

. ()

Proof Multiplying () by c–v vni and summing over i = , . . . ,n, after integration by parts
and adding to () for k = , we have

d
dt

(

cv

∥∥vn(t)∥∥ +
∫ 


θn(x, t)dx

)

=
c + cd
cvL

∫ 


ρn

[
∂

∂x
((
rn

)
ωn)]

dx +
μr

cv

∫ 



(ωn)

ρn dx.

Integrating over [, t],  < t ≤ Tn and using () we get

(

cv

∥∥vn(t)∥∥ +
∫ 


θn(x, t)dx

)

≤ C
∫ t



(∥∥ωn(t)
∥∥ +

∥∥∥∥ ∂

∂x
((
rn

)
ωn)(τ )∥∥∥∥

)
dτ +


cv

∥∥vn(t)∥∥ +
∥∥θn

 (t)
∥∥.

Taking into account (), (), (), and () we obtain (). �

Lemma . ([], Lemma .) For (x, t) ∈ Qn, the following inequality holds:

|θn(x, t)| ≤ C
(
 +

∥∥∥∥∂θn

∂x
(t)

∥∥∥∥ +
∥∥∥∥∂vn

∂x
(t)

∥∥∥∥
)

. ()

Lemma . For t ∈ [,Tn], the following inequality holds:

∥∥∥∥∂ρn

∂x
(t)

∥∥∥∥


≤ C
(
 +

(∫ t



∥∥∥∥∂vn

∂x
(τ )

∥∥∥∥


dτ

))
. ()

Proof Taking the derivative of the function ρn with respect to x and using the estimates
()-(), we obtain

∣∣∣∣∂ρn

∂x

∣∣∣∣ ≤ C
(
 +

∫ t



(∣∣vn∣∣ + ∣∣vn∣∣∣∣∣∣∂rn

∂x

∣∣∣∣ +
∣∣∣∣∂vn∂x

∣∣∣∣ +
∣∣∣∣∂vn

∂x

∣∣∣∣
)
dτ

)
.

With the help of () applied to the function vn, the Hoelder and Young inequalities as
well as (), we get (). �
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Lemma . For t ∈ [,Tn] it holds

d
dt

(∥∥∥∥∂vn

∂x
(t)

∥∥∥∥


+
∥∥∥∥∂ωn

∂x
(t)

∥∥∥∥


+
∥∥∥∥∂θn

∂x
(t)

∥∥∥∥
)

+ B
(∥∥∥∥∂vn

∂x
(t)

∥∥∥∥


+
∥∥∥∥∂ωn

∂x
(t)

∥∥∥∥


+
∥∥∥∥∂θn

∂x
(t)

∥∥∥∥
)

≤ C
(
 +

∥∥∥∥∂vn

∂x
(t)

∥∥∥∥


+
∥∥∥∥∂ωn

∂x
(t)

∥∥∥∥


+
∥∥∥∥∂θn

∂x
(t)

∥∥∥∥


+
(
B

∫ t



∥∥∥∥∂vn

∂x
(τ )

∥∥∥∥


dτ

))
,

()

where

B =
ma


min

{
λ + μ
L

,
c + cd
jIL

,
k

cvL

}
.

Proof As in [] Lemma ., [] pp.- and in [] Lemma ., multiplying (), ()
and () respectively by (π i)vni , (π j)ωn

j and (πk)θn
k and taking into account (), ()

and (), after summation over i, j,k = , , . . . ,n and addition of the obtained equations,
we get



d
dt

(∥∥∥∥∂vn

∂x

∥∥∥∥


+
∥∥∥∥∂ωn

∂x

∥∥∥∥


+
∥∥∥∥∂θn

∂x

∥∥∥∥
)

+
λ + μ
L

∫ 


ρn(rn)(∂vn

∂x

)

dx

+
c + cd
jIL

∫ 


ρn(rn)(∂ωn

∂x

)

dx

+
k

cvL

∫ 


ρn(rn)(∂θn

∂x

)

dx =
∑
p=

Ip(t),

()

where

I = –
(λ + μ)

L

∫ 



(
rn

) ∂ρn

∂x
∂rn

∂x
vn

∂vn

∂x
dx,

I = –
(λ + μ)

L

∫ 


ρn(rn)(∂rn

∂x

)

vn
∂vn

∂x
dx,

I = –
(λ + μ)

L

∫ 


ρn(rn) ∂rn

∂x
vn

∂vn

∂x
dx,

I = –
(λ + μ)

L

∫ 


ρn(rn) ∂rn

∂x
∂vn

∂x
∂vn

∂x
dx,

I = –
λ + μ
L

∫ 



(
rn

) ∂ρn

∂x
∂vn

∂x
∂vn

∂x
dx,

I =
R
L

∫ 



(
rn

)
θn ∂ρn

∂x
∂vn

∂x
dx,

I =
R
L

∫ 



(
rn

)
ρn ∂θn

∂x
∂vn

∂x
dx,

I =
μr

jI

∫ 



ωn

ρn
∂ωn

∂x
dx,
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I = –
(c + cd)

jIL

∫ 



(
rn

) ∂ρn

∂x
∂rn

∂x
ωn ∂ωn

∂x
dx,

I = –
(c + cd)

jIL

∫ 


ρn(rn)(∂rn

∂x

)

ωn ∂ωn

∂x
dx,

I = –
(c + cd)

jIL

∫ 


ρn(rn) ∂rn

∂x
ωn ∂ωn

∂x
dx,

I = –
(c + cd)

jIL

∫ 


ρn(rn) ∂rn

∂x
∂ωn

∂x
∂ωn

∂x
dx,

I = –
c + cd
jIL

∫ 



(
rn

) ∂ρn

∂x
∂ωn

∂x
∂ωn

∂x
dx,

I = –
k
cvL

∫ 


ρn(rn) ∂rn

∂x
∂θn

∂x
∂θn

∂x
dx,

I = –
k

cvL

∫ 



(
rn

) ∂ρn

∂x
∂θn

∂x
∂θn

∂x
dx,

I =
R
cvL

∫ 


ρnrn

∂rn

∂x
vnθn ∂θn

∂x
dx,

I =
R
cvL

∫ 


ρn(rn)θn ∂vn

∂x
∂θn

∂x
dx,

I = –
(λ + μ)

cvL

∫ 


ρn(rn)(∂rn

∂x

)(
vn

) ∂θn

∂x
dx,

I = –
(λ + μ)

cvL

∫ 


ρn(rn) ∂rn

∂x
vn

∂vn

∂x
∂θn

∂x
dx,

I = –
λ + μ
cvL

∫ 


ρn(rn)(∂vn

∂x

)
∂θn

∂x
dx,

I =
μ

cvL

∫ 



(
vn

) ∂rn

∂x
∂θn

∂x
dx,

I =
μ
cvL

∫ 


rnvn

∂vn

∂x
∂θn

∂x
dx,

I = –
(c + cd)

cvL

∫ 


ρn(rn)(∂rn

∂x

)(
ωn) ∂θn

∂x
dx,

I = –
(c + cd)

cvL

∫ 


ρn(rn) ∂rn

∂x
∂ωn

∂x
ωn ∂θn

∂x
dx,

I = –
c + cd
cvL

∫ 


ρn(rn)(∂ωn

∂x

)
∂θn

∂x
dx,

I =
cd
cvL

∫ 



(
ωn) ∂rn

∂x
∂θn

∂x
dx,

I =
cd
cvL

∫ 


rnωn ∂ωn

∂x
∂θn

∂x
dx,

I = –
μr

cv

∫ 



(ωn)

ρn
∂θn

∂x
dx.
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Taking into account ()-() and ()-(), we estimate the terms on the right-hand
side of (). For instance,

|I| = (λ + μ)
L

∣∣∣∣
∫ 



(
rn

) ∂ρn

∂x
∂rn

∂x
vn

∂vn

∂x
dx

∣∣∣∣
≤ C max

x∈[,]
∣∣vn(x, t)∣∣∥∥∥∥∂ρn

∂x
(t)

∥∥∥∥
∥∥∥∥∂vn

∂x
(t)

∥∥∥∥ ≤ C
∥∥∥∥∂vn

∂x
(t)

∥∥∥∥
∥∥∥∥∂ρn

∂x
(t)

∥∥∥∥
∥∥∥∥∂vn

∂x
(t)

∥∥∥∥.
Applying the Young inequality, we get

|I| ≤ ε

∥∥∥∥∂vn

∂x
(t)

∥∥∥∥


+C
(∥∥∥∥∂vn

∂x
(t)

∥∥∥∥


+
∥∥∥∥∂ρn

∂x
(t)

∥∥∥∥
)

≤ ε

∥∥∥∥∂vn

∂x
(t)

∥∥∥∥


+C
(
 +

∥∥∥∥∂vn

∂x
(t)

∥∥∥∥


+
(∫ t



∥∥∥∥∂vn

∂x
(τ )

∥∥∥∥


dτ

))
,

where ε >  is arbitrary. In the analogous way, we obtain the following inequalities:

|I| ≤ ε

∥∥∥∥∂vn

∂x
(t)

∥∥∥∥


+C
(
 +

∥∥∥∥∂vn

∂x
(t)

∥∥∥∥
)

,

|I| ≤ ε

∥∥∥∥∂vn

∂x
(t)

∥∥∥∥


+C
(
 +

∥∥∥∥∂vn

∂x
(t)

∥∥∥∥


+
(∫ t



∥∥∥∥∂vn

∂x
(τ )

∥∥∥∥


dτ

))
,

|I| ≤ ε

∥∥∥∥∂vn

∂x
(t)

∥∥∥∥


+C
(
 +

∥∥∥∥∂vn

∂x
(t)

∥∥∥∥
)

,

|I| ≤ ε

∥∥∥∥∂vn

∂x
(t)

∥∥∥∥


+C
(
 +

∥∥∥∥∂vn

∂x
(t)

∥∥∥∥


+
(∫ t



∥∥∥∥∂vn

∂x
(τ )

∥∥∥∥dτ

))
,

|I| ≤ ε

∥∥∥∥∂vn

∂x
(t)

∥∥∥∥


+C
(
 +

∥∥∥∥∂θn

∂x
(t)

∥∥∥∥


+
∥∥∥∥∂vn

∂x
(t)

∥∥∥∥


+
(∫ t



∥∥∥∥∂vn

∂x
(τ )

∥∥∥∥


dτ

))
,

|I| ≤ ε

∥∥∥∥∂vn

∂x
(t)

∥∥∥∥


+C
(
 +

∥∥∥∥∂θn

∂x
(t)

∥∥∥∥
)

,

|I| ≤ ε

∥∥∥∥∂ωn

∂x
(t)

∥∥∥∥


+C,

|I| ≤ ε

∥∥∥∥∂ωn

∂x
(t)

∥∥∥∥


+C
(
 +

∥∥∥∥∂ωn

∂x
(t)

∥∥∥∥


+
(∫ t



∥∥∥∥∂vn

∂x
(τ )

∥∥∥∥


dτ

))
,

|I| ≤ ε

∥∥∥∥∂ωn

∂x
(t)

∥∥∥∥


+C,

|I| ≤ ε

∥∥∥∥∂ωn

∂x
(t)

∥∥∥∥


+C
(
 +

∥∥∥∥∂ωn

∂x
(t)

∥∥∥∥


+
(∫ t



∥∥∥∥∂vn

∂x
(τ )

∥∥∥∥


dτ

))
,

|I| ≤ ε

∥∥∥∥∂ωn

∂x
(t)

∥∥∥∥


+C
(
 +

∥∥∥∥∂ωn

∂x
(t)

∥∥∥∥
)

,

|I| ≤ ε

∥∥∥∥∂ωn

∂x
(t)

∥∥∥∥


+C
(
 +

∥∥∥∥∂ωn

∂x
(t)

∥∥∥∥


+
(∫ t



∥∥∥∥∂vn

∂x
(τ )

∥∥∥∥


dτ

))
,

|I| ≤ ε

∥∥∥∥∂θn

∂x
(t)

∥∥∥∥


+C
(
 +

∥∥∥∥∂θn

∂x
(t)

∥∥∥∥
)

,
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|I| ≤ ε

∥∥∥∥∂θn

∂x
(t)

∥∥∥∥


+C
(
 +

∥∥∥∥∂θn

∂x
(t)

∥∥∥∥


+
(∫ t



∥∥∥∥∂vn

∂x
(τ )

∥∥∥∥


dτ

))
,

|I| ≤ ε

∥∥∥∥∂θn

∂x
(t)

∥∥∥∥


+C
(
 +

∥∥∥∥∂θn

∂x
(t)

∥∥∥∥


+
∥∥∥∥∂vn

∂x
(t)

∥∥∥∥
)

,

|I| ≤ ε

∥∥∥∥∂θn

∂x
(t)

∥∥∥∥


+C
(
 +

∥∥∥∥∂θn

∂x
(t)

∥∥∥∥


+
∥∥∥∥∂vn

∂x
(t)

∥∥∥∥
)

,

|I| ≤ ε

∥∥∥∥∂θn

∂x
(t)

∥∥∥∥


+C
(
 +

∥∥∥∥∂vn

∂x
(t)

∥∥∥∥
)

,

|I| ≤ ε

∥∥∥∥∂θn

∂x
(t)

∥∥∥∥


+C
(
 +

∥∥∥∥∂vn

∂x
(t)

∥∥∥∥
)

,

|I| ≤ ε

∥∥∥∥∂θn

∂x
(t)

∥∥∥∥


+ ε

∥∥∥∥∂vn

∂x
(t)

∥∥∥∥


+C
(
 +

∥∥∥∥∂vn

∂x
(t)

∥∥∥∥
)

,

|I| ≤ ε

∥∥∥∥∂θn

∂x
(t)

∥∥∥∥


+C
(
 +

∥∥∥∥∂vn

∂x
(t)

∥∥∥∥
)

,

|I| ≤ ε

∥∥∥∥∂θn

∂x
(t)

∥∥∥∥


+C
(
 +

∥∥∥∥∂vn

∂x
(t)

∥∥∥∥
)

,

|I| ≤ ε

∥∥∥∥∂θn

∂x
(t)

∥∥∥∥


+C
(
 +

∥∥∥∥∂ωn

∂x
(t)

∥∥∥∥
)

,

|I| ≤ ε

∥∥∥∥∂θn

∂x
(t)

∥∥∥∥


+C
(
 +

∥∥∥∥∂ωn

∂x
(t)

∥∥∥∥
)

,

|I| ≤ ε

∥∥∥∥∂θn

∂x
(t)

∥∥∥∥


+ ε

∥∥∥∥∂ωn

∂x
(t)

∥∥∥∥


+C
(
 +

∥∥∥∥∂ωn

∂x
(t)

∥∥∥∥
)

,

|I| ≤ ε

∥∥∥∥∂θn

∂x
(t)

∥∥∥∥


+C
(
 +

∥∥∥∥∂ωn

∂x
(t)

∥∥∥∥
)

,

|I| ≤ ε

∥∥∥∥∂θn

∂x
(t)

∥∥∥∥


+C
(
 +

∥∥∥∥∂ωn

∂x
(t)

∥∥∥∥
)

,

|I| ≤ ε

∥∥∥∥∂θn

∂x
(t)

∥∥∥∥


+C
(
 +

∥∥∥∥∂ωn

∂x
(t)

∥∥∥∥
)

.

Using these inequalities with sufficiently small ε and estimates ()-(), from () we
get (). �

Lemma . There exists T, ( < T ≤ T) such that for each n ∈ N the Cauchy problem
()-() has a unique solution defined on [,T]. Moreover, the functions vn, ωn, θn, ρn

and rn satisfy the inequalities

max
t∈[,T]

(∥∥∥∥∂vn

∂x
(t)

∥∥∥∥


+
∥∥∥∥∂ωn

∂x
(t)

∥∥∥∥


+
∥∥∥∥∂θn

∂x
(t)

∥∥∥∥
)

+ B
∫ T



(∥∥∥∥∂vn

∂x
(τ )

∥∥∥∥


+
∥∥∥∥∂ωn

∂x
(τ )

∥∥∥∥


+
∥∥∥∥∂θn

∂x
(τ )

∥∥∥∥
)

dτ ≤ C,

()

a


≤ rn(x, t)≤ M,
a


≤ ∂rn

∂x
(x, t)≤ M, ()
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m


≤ ρn(x, t)≤ M, (x, t) ∈ Q,Q =QT , ()

max
t∈[,T]

∥∥∥∥∂ρn

∂x
(t)

∥∥∥∥ ≤ C, ()

max
t∈[,T]

∥∥∥∥∂rn

∂x
(t)

∥∥∥∥ ≤ C ()

(a, a, m and M are defined by () and ()-()).

Proof To get the estimate () we use an approach similar to that in [] (Lemma .) and
[] (pp.-). First, we introduce the function

yn(t) =
∥∥∥∥∂vn

∂x
(t)

∥∥∥∥


+
∥∥∥∥∂ωn

∂x
(t)

∥∥∥∥


+
∥∥∥∥∂θn

∂x
(t)

∥∥∥∥


+ B
∫ t



∥∥∥∥∂vn

∂x
(τ )

∥∥∥∥


dτ . ()

Using Lemma ., we find that the function yn satisfies the differential inequality

ẏn(t) ≤ C
(
 + yn(t)

)
. ()

There exists a constant C such that

C =
∥∥∥∥dvdx

∥∥∥∥


+
∥∥∥∥dω

dx

∥∥∥∥


+
∥∥∥∥dθ

dx

∥∥∥∥


,

and we can conclude that

yn() =
∥∥∥∥dvndx

∥∥∥∥


+
∥∥∥∥dωn


dx

∥∥∥∥


+
∥∥∥∥dθn


dx

∥∥∥∥


≤ C. ()

We compare the solution of the problem ()-() with the solution of the Cauchy prob-
lem

ẏ(t) = C
(
 + y(t)

)
, ()

y() = C. ()

Let [,T ′[,  < T ′ ≤ T be an existence interval of the solution of the problem ()-().
From ()-() we conclude that

yn(t) ≤ y(t), t ∈ [,T ′[. ()

Let T be such that  < T ≤ T ′. From () and () we obtain

max
t∈[,T]

(∥∥∥∥∂vn

∂x
(t)

∥∥∥∥


+
∥∥∥∥∂ωn

∂x
(t)

∥∥∥∥


+
∥∥∥∥∂θn

∂x
(t)

∥∥∥∥
)

+
∫ T



∥∥∥∥∂vn

∂x
(τ )

∥∥∥∥


dτ ≤ C ()

and from () it follows

d
dt

(∥∥∥∥∂vn

∂x
(t)

∥∥∥∥


+
∥∥∥∥∂ωn

∂x
(t)

∥∥∥∥


+
∥∥∥∥∂θn

∂x
(t)

∥∥∥∥
)

+ B
(∥∥∥∥∂vn

∂x
(t)

∥∥∥∥


+
∥∥∥∥∂ωn

∂x
(t)

∥∥∥∥


+
∥∥∥∥∂θn

∂x
(t)

∥∥∥∥
)

≤ C.

()
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Integrating () over [, t],  < t ≤ T and using estimates () and (), we immediately
get ().
Now, using the inequalities () for the function v, we easily get

∣∣vn(x, t)∣∣ ≤ 
∥∥∥∥∂vn

∂x
(t)

∥∥∥∥,
∥∥∥∥∂vn

∂x
(t)

∥∥∥∥ ≤ 
∥∥∥∥∂vn

∂x
(t)

∥∥∥∥,
∣∣∣∣∂vn∂x

(t)
∣∣∣∣ ≤ 

∥∥∥∥∂vn

∂x
(t)

∥∥∥∥.
()

Using (), we derive the following estimates:

∫ T



∣∣vn(x, t)∣∣dτ ≤ 
∫ T



∥∥∥∥∂vn

∂x
(t)

∥∥∥∥dτ ≤ 
(
CB–) 

T


 , ()

∫ T



∣∣∣∣∂vn∂x
(t)

∣∣∣∣dτ ≤ 
∫ T



∥∥∥∥∂vn

∂x
(t)

∥∥∥∥dτ ≤ 
(
CB–) 

T


 , ()

where C and B are from (). Assuming that

T <min

{
T ′,

aB
C

,
aB
C

,
(

LB 


M(M +M)C 


)}

and using () and () from () and (), we get ()-().
Because of (), () and (), from () and (), we easily get that for t ∈ [,T] hold

n∑
i=

(∣∣vni (t)∣∣ + ∣∣ωn
i (t)

∣∣ + ∣∣θn
i (t)

∣∣) ≤ C, ()

∣∣θn
 (t)

∣∣ ≤ C, ()

and we can conclude that the solution of the problem ()-() is defined on [,T]. �

From () and (), we can easily conclude that

max
t∈[,T]

(∥∥vn(t)∥∥ +
∥∥ωn(t)

∥∥ +
∥∥θn(t)

∥∥) ≤ C, ()

and from (), () and () it follows

max
t∈[,T]

∥∥∥∥∂rn

∂x
(t)

∥∥∥∥ ≤ C, max
t∈[,T]

∥∥∥∥∂ρn

∂x
(t)

∥∥∥∥ ≤ C, max
(x,t)∈Q

∣∣θn(t)
∣∣ ≤ C. ()

Lemma . Let T be defined by Lemma .. Then for each n ∈ N the inequalities

∫ T



(∥∥∥∥∂vn

∂t
(τ )

∥∥∥∥


+
∥∥∥∥∂ωn

∂t
(τ )

∥∥∥∥


+
∥∥∥∥∂θn

∂t
(τ )

∥∥∥∥
)

dτ ≤ C, ()

max
t∈[,T]

∥∥∥∥∂ρn

∂t
(t)

∥∥∥∥ ≤ C, ()

max
t∈[,T]

∥∥∥∥∂rn

∂t
(t)

∥∥∥∥ ≤ C, max
t∈[,T]

∥∥∥∥ ∂rn

∂x ∂t
(t)

∥∥∥∥ ≤ C,
∫ T



∥∥∥∥∂rn

∂t
(τ )

∥∥∥∥


dτ ≤ C ()

hold true.
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Proof Multiplying () by dvni
dt (t), summing over i = , , . . . ,n and using ()-(), we

obtain

∥∥∥∥∂vn

∂t
(t)

∥∥∥∥


= –
R
L

∫ 



(
rn

) ∂

∂x
(
ρnθn)∂vn

∂t
dx

+
λ + μ
L

∫ 



(
rn

) ∂

∂x

(
ρn ∂

∂x
((
rn

)vn))∂vn

∂t
dx

≤ C
(

max
(x,t)∈Q

∣∣θn(x, t)
∣∣∥∥∥∥∂ρn

∂x
(t)

∥∥∥∥
∥∥∥∥∂vn

∂t
(t)

∥∥∥∥ +
∥∥∥∥∂θn

∂x
(t)

∥∥∥∥
∥∥∥∥∂vn

∂t
(t)

∥∥∥∥
+ max

(x,t)∈Q

∣∣vn(x, t)∣∣∥∥∥∥∂ρn

∂x
(t)

∥∥∥∥
∥∥∥∥∂vn

∂t
(t)

∥∥∥∥ +
∥∥vn(t)∥∥∥∥∥∥∂vn

∂t
(t)

∥∥∥∥
+ max

(x,t)∈Q

∣∣vn(x, t)∣∣∥∥∥∥∂rn

∂x
(t)

∥∥∥∥
∥∥∥∥∂vn

∂t
(t)

∥∥∥∥ +
∥∥∥∥∂vn

∂t
(t)

∥∥∥∥
∥∥∥∥∂vn

∂x
(t)

∥∥∥∥
+ max

(x,t)∈Q

∣∣∣∣∂vn∂x
(x, t)

∣∣∣∣
∥∥∥∥∂ρn

∂x
(t)

∥∥∥∥
∥∥∥∥∂vn

∂t
(t)

∥∥∥∥ +
∥∥∥∥∂vn

∂x
(t)

∥∥∥∥
∥∥∥∥∂vn

∂x
(t)

∥∥∥∥
)
.

()

Using (), (), (), () and applying the Young inequality, we get

∥∥∥∥∂vn

∂t
(t)

∥∥∥∥


≤ C
(
 +

∥∥∥∥∂vn

∂x

∥∥∥∥
)

+ ε

∥∥∥∥∂vn

∂t
(t)

∥∥∥∥


. ()

Taking into account () for sufficiently small ε >  from (), we obtain

∫ T



∥∥∥∥∂vn

∂t
(τ )

∥∥∥∥


dτ ≤ C. ()

In the same way, from () and () we obtain the estimates for ‖ ∂ωn

∂t ‖ and ‖ ∂θn

∂t ‖ respec-
tively. The estimates () and () follow directly from () and (). �

From Lemmas . and . we easily derive the following statements.

Proposition. Let T be defined by Lemma.. Then for the sequence {(rn,ρn, vn,ωn, θn) :
n ∈N} the following properties are satisfied:

(i) {rn} is bounded in L∞(Q), L∞(,T;H(], [)) and H(Q);
(ii) { ∂rn

∂x } is bounded in L∞(Q);
(iii) {ρn} is bounded in L∞(Q), L∞(,T;H(], [)) and H(Q);
(iv) {vn}, {ωn}, {θn} are bounded in L∞(,T;H(], [)), H(Q) and

L(,T;H(], [)).

5 The proof of Theorem 2.1
In the proofs we use some well-known facts of functional analysis (e.g., []). Let T ∈ R+

be defined by Lemma .. Theorem . is a consequence of the following lemmas.

Lemma . There exists a function

r ∈ L∞(
,T;H(], [)) ∩H(Q)∩C(Q) ()
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and the subsequence of {rn} (for simplicity reasons denoted again as {rn}) such that

rn → r weakly- ∗ in L∞(
,T;H(], [)), ()

rn → r weakly in H(Q), ()

rn → r strongly in C(Q), ()
∂rn

∂x
→ ∂r

∂x
strongly in C(Q). ()

The function r satisfies the conditions

a


≤ r ≤ M in Q, ()

r(x, ) = r(x), x ∈ [, ], ()

where r is defined by ().

Proof The conclusions () and () follow immediately from Proposition .. Let (x, t),
(x′, t′) belong to Q. Then we have

∣∣rn(x, t) – rn
(
x′, t′

)∣∣ ≤ ∣∣rn(x, t) – rn
(
x′, t

)∣∣ + ∣∣rn(x′, t
)
– rn

(
x′, t′

)∣∣,∣∣∣∣∂rn∂x
(x, t) –

∂rn

∂x
(
x′, t′

)∣∣∣∣ ≤
∣∣∣∣∂rn∂x

(x, t) –
∂rn

∂x
(
x′, t

)∣∣∣∣ +
∣∣∣∣∂rn∂x

(
x′, t

)
–

∂rn

∂x
(
x′, t′

)∣∣∣∣.
Using (), (), (), () and (), we obtain

∣∣rn(x, t) – rn
(
x′, t

)∣∣ ≤
∫ x

x′

∣∣∣∣∣∂r
n

∂x
(ξ , t)

∣∣∣∣∣dξ ≤ C
∣∣x – x′∣∣, ()

∣∣rn(x′, t
)
– rn

(
x′, t′

)∣∣ ≤
∫ t

t′

∣∣∣∣∂rn∂t
(
x′, τ

)∣∣∣∣dτ =
∫ t

t′

∣∣vn(x′, τ
)∣∣dτ

≤ 
∫ t′

t

∥∥∥∥∂vn

∂x
(τ )

∥∥∥∥dτ ≤ C
∣∣t – t′

∣∣,
()

∣∣∣∣∂rn∂x
(
x′, t

)
–

∂rn

∂x
(
x′, t

)∣∣∣∣ ≤
∥∥∥∥∂rn

∂x
(t)

∥∥∥∥∣∣x – x′∣∣/ ≤ C
∣∣x – x′∣∣/, ()

∣∣∣∣∂rn∂x
(
x′, t

)
–

∂rn

∂x
(
x′, t′

)∣∣∣∣
≤ 

(∫ t′

t

∥∥∥∥∂vn

∂x
(τ )

∥∥∥∥


dτ

)/

· ∣∣t – t′
∣∣/ ≤ C

∣∣t – t′
∣∣/ ()

and we can conclude that the sequences {rn} and { ∂rn
∂x } satisfy the conditions of Arzelà-

Ascoli theorem. Applying that theorem, we get the strong convergence in () and ().
Because of () and () we have

a

– ε < rn(x, t) – ε < r(x, t) < rn(x, t) + ε < M + ε, (x, t) ∈Q ()
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for each ε >  and sufficiently big n ∈ N. From () we can easily conclude that () is
satisfied. From () it follows

lim
n→∞ max

x∈[,]
∣∣rn(x, ) – r(x, )

∣∣ = lim
n→∞ max

x∈[,]
∣∣r(x) – r(x, )

∣∣ =  ()

and because of that we have (). �

Lemma . There exists a function

ρ ∈ L∞(
,T;H(], [)) ∩H(Q)∩C(Q) ()

and the subsequence of {ρn} (denoted again as {ρn}) such that

ρn → ρ weakly- ∗ in L∞(
,T;H(], [)), ()

ρn → ρ weakly in H(Q), ()

ρn → ρ strongly in C(Q). ()

The function ρ satisfies the conditions

m


≤ ρ(x, t)≤ M in Q, ()

ρ(x, ) = ρ(x), x ∈ [, ]. ()

Proof Taking into account Proposition ., estimates ()-() and the Arzelà-Ascoli
theorem, we prove in the same way as in the previous lemma the properties ()-().�

Lemma . There exist functions

v,ω, θ ∈ L∞(
,T;H(], [)) ∩H(Q)∩ L

(
,T;H(], [))

and the subsequence of {vn,ωn, θn} (denoted again as {vn,ωn, θn}) such that

(
vn,ωn, θn) → (v,ω, θ ) weakly- ∗ in

(
L∞(

,T;H(], [))), ()(
vn,ωn, θn) → (v,ω, θ ) weakly in

(
H(Q)

), ()(
vn,ωn, θn) → (v,ω, θ ) weakly in

(
L

(
,T;H(], [))), ()(

vn,ωn, θn) → (v,ω, θ ) strongly in
(
L(Q)

). ()

The functions v, ω and θ satisfy the conditions

v(, t) = v(, t) = ω(, t) = ω(, t) = , t ∈ [,T], ()
∂θ

∂x
(, t) =

∂θ

∂x
(, t) = , a.e. in ],T[, ()

v(x, ) = v(x), ω(x, ) = ω(x) = , θ (x, ) = θ(x), x ∈ [, ]. ()
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Proof The conclusions ()-() follow from Proposition . and embedding properties
(see Remark .). For verification of the boundary and initial conditions (), () and
(), we use the Green formula as follows.
Let ϕ be a function of C∞([,T]) equal to zero in a neighborhood of T, with ϕ() �= 

and u ∈ H(], [). Using the integration by parts we have for vn and v (e.g.) the following
equalities:

∫ T



∫ 



∂vn

∂t
(x, t)u(x)ϕ(t)dxdt +

∫ T



∫ 


vn(x, t)u(x)

dϕ

dt
(t)dxdt

= –ϕ()
∫ 


vn(x)u(x)dx,

()

∫ T



∫ 



∂v
∂t

(x, t)u(x)ϕ(t)dxdt +
∫ T



∫ 


v(x, t)u(x)

dϕ

dt
(t)dxdt

= –ϕ()
∫ 


v(x, )u(x)dx.

()

Passing n→ ∞ in () and comparing () and (), we obtain

∫ 


v(x, )u(x)dx =

∫ 


v(x)u(x)dx, ∀u ∈H(], [) ()

and conclude

v(x, ) = v(x), x ∈ [, ]. ()

In the similar way, we get all the remaining properties in ()-(). �

Lemma . The functions r, ρ , v, ω, θ , defined by Lemmas ., . and . satisfy the
Equations ()-() a.e. in Q.

Proof Let {(rn,ρn, vn,ωn, θn) : n ∈ N} be subsequence defined by Lemmas ., . and ..
Taking into account (), () and strong convergencies (), (), () and () we
get that () follows immediately from (). We can write Equation () in the form

∫ T



∫ 



∂vn

∂t
(x, t) sin(π ix)ϕ(t)dxdt

–
R
L

∫ T



∫ 



[(
rn

) ∂ρn

∂x
θn +

(
rn

)
ρn ∂θn

∂x

]
sin(π ix)ϕ(t)dxdt

–
λ + μ
L

∫ T



∫ 



[

(
rn

) ∂ρn

∂x
∂rn

∂x
vn + 

(
rn

)
ρn

(
∂rn

∂x

)

vn

+ 
(
rn

)
ρn ∂rn

∂x
vn + 

(
rn

)
ρn ∂rn

∂x
∂vn

∂x

+
(
rn

) ∂ρn

∂x
∂vn

∂x
+

(
rn

)
ρn ∂vn

∂x

]
sin(π ix)ϕ(t)dxdt = 

()
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for each ϕ ∈ D(],T[), whereD denotes the space of test functions. Now we consider the
convergence of one integrand. For example, we will prove the convergence

∫ T



∫ 



(
rn

)
ρn ∂rn

∂x
vn sin(π ix)ϕ(t)dxdt →

∫ T


rρ

∂r
∂x

v sin(π ix)ϕ(t)dxdt ()

when n→ ∞. Taking into account

∣∣∣∣
∫ T



∫ 



[(
rn

)
ρn ∂rn

∂x
vn – rρ

∂r
∂x

v
]
sin(π ix)ϕ(t)dxdt

∣∣∣∣
≤ C max

(x,t)∈Q

∣∣(rn) – r
∣∣∥∥∥∥∂rn

∂x
(t)

∥∥∥∥∥∥vn(t)∥∥
+C max

(x,t)∈Q

∣∣ρn – ρ
∣∣∥∥∥∥∂rn

∂x
(t)

∥∥∥∥∥∥vn(t)∥∥
+C

∥∥vn(t)∥∥∣∣∣∣
∫ T



∫ 



(
∂rn

∂x
–

∂r
∂x

)
sin(π ix)ϕ(t)dxdt

∣∣∣∣
+C

∥∥∥∥∂r(t)
∂x

∥∥∥∥∥∥(
vn – v

)
(t)

∥∥

()

and using already mentioned convergences, we can easily conclude that () is satisfied.
In the same way, we can derive the convergences of other integrals in (). Analogously,
we get that () and () follow from () and (). �

Remark . Taking into account () and (), we can easily prove that the function r
defined by Lemma . has the form

r(x, t) = r(x) +
∫ t


v(x, t)dτ , (x, t) ∈Q, ()

where v is from Lemma ..

Lemma . There exists T,  < T ≤ T such that the function θ defined by Lemma .
satisfies the condition

θ >  in Q. ()

Proof Because of the inclusion θ ∈ C(Q) (see Remark .), in the same way as in [], we
conclude that for each ε >  there exists T, T ≤ T , such that for (x, t) ∈Q holds

∣∣θ (x, t) – θ (x, )
∣∣ = ∣∣θ (x, t) – θ(x)

∣∣ < ε,

θ (x, t) > θ(x) – ε ≥ m – ε.

The conclusions of Theorem . are an immediate consequence of the above lemmas. �
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