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1 Introduction
The purpose of this paper is to establish the existence of C[, ]-solutions to the scalar
Neumann boundary value problem (BVP)

⎧⎨
⎩
f (t,x,x′,x′′) = , t ∈ [, ],

x′() = a, x′() = b, a �= b,
(N)

where the function f (t,x,p,q) and its first derivatives are continuous only on suitable sub-
sets of the set [, ]× R.
The literature devoted to the solvability of singular and nonsingular Neumann BVPs for

second order ordinary differential equations whose main nonlinearities do not depend on
the second derivative is vast. We quote here only [–] for results and references.
The solvability of the homogeneous Neumann problem for the equation (p(t)x′)′ +

f (t,x,x′,x′′) = y(t), under appropriate conditions on f , has been studied in [–]. Re-
sults, concerning the existence of solutions to the homogeneous and nonhomogeneous
Neumann problem for the equation x′′ = f (t,x,x′,x′′) – y(t) can be found in [] and []
respectively. BVPs for the same equation with various linear boundary conditions have
been studied in [, –]. The results of [] guarantee the solvability of BVPs for the
equation x′′ = f (t,x,x′,x′′) with fully linear boundary conditions. BVPs for the equation
f (t,x,x′,x′′) =  with fully nonlinear boundary conditions have been studied in []. For
results, which guarantee the solvability of the Dirichlet BVP for the same equation, in the
scalar and in the vector cases, see [] and [] respectively.
Concerning the kind of the nonlinearity of the function f (t,x,p,q), we note that it is

assumed sublinear in [], semilinear in [] and linear with respect to x, p and q in [, ].
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Finally, in [] and [] f is a linear function with respect to q, while with respect to p, it is
a quadratic function or satisfies Nagumo type growth conditions respectively.
As in [, , , ], we use sign conditions to establish a priori bounds for x, x′ and

x′′, where x(t) ∈ C[, ] is a solution to a suitable family of BVPs similar to that in [,
]. Using these a priori bounds and applying the topological transversality theorem from
[], we prove our main existence result.

2 Basic hypotheses
To formulate our hypotheses, we use the sets

Jx =
[
min

{
,

a + b


,
a

(a – b)

}
,max

{
,

a + b


,
a

(a – b)

}]
and

Jp =
[
min{a,b},max{a,b}].

So, we assume that there are positive constants K , M and a sufficiently small ε >  such
that:
H.

f (t,x,p,q) is continuous with respect to x ∈ R for each (t,p,q) ∈ [, ]× R,

f (t,x,p,q) is continuous with respect to q ∈ R for each (t,x,p) ∈ [, ]× R,

there are constants Kx and Kq such that

fx(t,x,p,q) ≥ Kx >  for (t,x,p,q) ∈ [, ]× R,

fq(t,x,p,q) ≤ –Kq <  for (t,x,p,q) ∈ [, ]× [–M – ε,M + ε]× R,

where

M =max

{
e

e – 
(|a– be|+ |ae– b|), L

min{K ,Kx,Kq} +max

{ |a + b|


,
a

|a – b|
}}

,

f (t,x,p,b – a – ( – λ)x) is bounded for (λ, t,x,p) ∈ [, ] × Jx × Jp and
L =max{sup |f (t,x,p,b – a – ( – λ)x)|,maxK |b – a – ( – λ)x|} for
(λ, t,x,p) ∈ [, ] × Jx × Jp.

H.

f (t,x,p,q) +Kq ≥  for (t,x,p,q) ∈ [, ]× [–M – ε,M + ε]×R× (–∞, –M)

and

f (t,x,p,q) +Kq ≤  for (t,x,p,q) ∈ [, ]× [–M – ε,M + ε]× R× (M,∞),

whereM is as in H.
H. The functions f (t,x,p,q) and fq(t,x,p,q) are continuous for

(t,x,p,q) ∈ [, ]× [–M – ε,M + ε]× [–M – ε,M + ε]× [–M – ε,M + ε],
whereM =min{|a|, |b|} +M +M,M =M +M andM is as in H.
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3 Auxiliary lemmas
In order to obtain our main existence results, we use the constant K from the hypotheses
to construct the family of BVPs

⎧⎨
⎩
K(x′′ – ( – λ)x) = λ(K(x′′ – ( – λ)x) + f (t,x,x′, (x′′ – ( – λ)x))),

x′() = a, x′() = b,
(.)λ

where λ ∈ [, ] and prove the following three auxiliary results.

Lemma . Let H hold and x(t) ∈ C[, ] be a solution to (.)λ, λ ∈ [, ]. Then

∣∣x(t)∣∣ ≤ M, t ∈ [, ].

Proof For λ = , problem (.) is of the form

x′′ – x = , x′() = a, x′() = b.

The unique solution to this BVP satisfies the bound

∣∣x(t)∣∣ ≤ e
e – 

(|a – be| + |ae – b|), t ∈ [, ].

Let now λ ∈ (, ]. Then the function

y(t) = x(t) – s(t), t ∈ [, ], where s(t) =


(b – a)t + at, t ∈ [, ],

is a solution to the homogeneous boundary value problem

K
(
y′′ + b – a – ( – λ)(y + s)

)
= λ

(
K

(
y′′ + b – a – ( – λ)(y + s)

)
+ f

(
t, y + s, y′ + s′, y′′ + b – a – ( – λ)(y + s)

))
,

y′() = , y′() = .

The equation is equivalent to the following one

( – λ)Ky′′

= ( – λ)Ky – ( – λ)K
(
b – a – ( – λ)s

)
+ λf

(
t, y + s, y′ + s′, y′′ + b – a – ( – λ)(y + s)

)
– λf

(
t, s, y′ + s′, y′′ + b – a – ( – λ)(y + s)

)
+ λf

(
t, s, y′ + s′, y′′ + b – a – ( – λ)(y + s)

)
.

Hence, by the intermediate value theorem, we obtain consecutively

( – λ)Ky′′

= ( – λ)Ky – ( – λ)K
(
b – a – ( – λ)s

)

http://www.boundaryvalueproblems.com/content/2012/1/77


Palamides et al. Boundary Value Problems 2012, 2012:77 Page 4 of 11
http://www.boundaryvalueproblems.com/content/2012/1/77

+ λfx
(
t, s + θy, y′ + s′, y′′ + b – a – ( – λ)(y + s)

)
y

+ λf
(
t, s, y′ + s′, y′′ + b – a – ( – λ)(y + s)

)
– λf

(
t, s, y′ + s′, y′′ + b – a – ( – λ)s

)
+ λf

(
t, s, y′ + s′, y′′ + b – a – ( – λ)s

)
,

for any θ ∈ (, ) depending on λ ∈ [, ], t ∈ [, ] and y(t),

( – λ)Ky′′

= ( – λ)Ky – ( – λ)K
(
b – a – ( – λ)s

)
+ λfx

(
t, s + θy, y′ + s′, y′′ + b – a – ( – λ)(y + s)

)
y

+ λfq
(
t, s, y′ + s′, y′′ + b – a – ( – λ)s – θ( – λ)y

)(
(λ – )y

)
+ λf

(
t, s, y′ + s′, y′′ + b – a – ( – λ)s

)
– λf

(
t, s, y′ + s′,b – a – ( – λ)s

)
+ λf

(
t, s, y′ + s′,b – a – ( – λ)s

)

and

( – λ)Ky′′

= ( – λ)Ky – ( – λ)K
(
b – a – ( – λ)s

)
+ λfx

(
t, s + θy, y′ + s′, y′′ + b – a – ( – λ)(y + s)

)
y

+ λfq
(
t, s, y′ + s′, y′′ + b – a – ( – λ)s – θ( – λ)y

)(
–( – λ)y

)
+ λfq

(
t, s, y′ + s′,b – a – ( – λ)s + θy′′)y′′ + λf

(
t, s, y′ + s′,b – a – ( – λ)s

)
,

for any θ, θ ∈ (, ) depending on λ ∈ [, ], t ∈ [, ] and y(t),

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(( – λ)K – λfq(t, s, y′ + s′,b – a – ( – λ)s + θy′′))y′′

= {( – λ)K + λfx(t, s + θy, y′ + s′, y′′ + b – a – ( – λ)(y + s))

– λ( – λ)fq(t, s, y′ + s′, y′′ + b – a – ( – λ)s – θ( – λ)y)}y
+ λf (t, s, y′ + s′,b – a – ( – λ)s) – ( – λ)K(b – a – ( – λ)s).

(.)

Next, suppose that |y(t)| achieves its maximum at t ∈ (, ). Then the function z = y(t)
has also a maximum at t. Consequently, we have

 ≥ z′′(t) = y(t)y′′(t). (.)

Using the fact that y′(t) = , from (.) we obtain

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

{( – λ)K – λfq(t, s, s′,b – a – ( – λ)s + θ,y′′
)}y′′



= {( – λ){( – λ)K – λfq(t, s, s′, y′′
 + b – a – ( – λ)s – θ,( – λ)y)}

+ λfx(t, s + θ,y, s′, y′′
 + b – a – ( – λ)(y + s))}y

+ λf (t, s, s′,b – a – ( – λ)s) – ( – λ)K(b – a – ( – λ)s),

(.)
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where θ, = θ(t, s′, y′′
 + b – a – ( – λ)(y + s)), θ, = θ(t, s, s′), θ, = θ(t, s, s′), and

s = s(t), s′ = s′(t), y = y(t), y′′
 = y′′(t).

In view of H, from (.) we have
⎧⎨
⎩
( – λ){( – λ)K – λf q} + λf x ≥ min{( – λ)K – λf q, f x}

≥ min{K , –f q, f x} ≥ min{K ,Kx,Kq},
(.)

where

f q = fq
(
t, s, s′, y

′′
 + b – a – ( – λ)s – θ,( – λ)y

)
,

f x = fx
(
t, s + θ,y, s′, y

′′
 + b – a – ( – λ)(y + s)

)
.

Suppose now that |y(t)| > L(min{K ,Kx,Kq})–. Then, from (.) and (.) it follows that

⎧⎪⎪⎨
⎪⎪⎩

{( – λ)K – λfq(t, s, s′,b – a – ( – λ)s + θ,y′′
)}y′′



≥ min{K ,Kx,Kq}y(t)
+ λf (t, s, s′,b – a – ( – λ)s) – ( – λ)K(b – a – ( – λ)s)

(.)

if y(t) > L(min{K ,Kx,Kq})– or
⎧⎪⎪⎨
⎪⎪⎩

{( – λ)K – λfq(t, s, s′,b – a – ( – λ)s + θ,y′′
)}y′′



≤ min{K ,Kx,Kq}y(t)
+ λf (t, s, s′,b – a – ( – λ)s) – ( – λ)K(b – a – ( – λ)s)

(.)

if y(t) < –L(min{K ,Kx,Kq})–. Multiplying (.) and (.) by y(t), we obtain

{
( – λ)K – λfq

(
t, s, s′,b – a – ( – λ)s + θ,y′′


)}
y′′
y

≥ y
(
min{K ,Kx,Kq}y – L

)
> ,

{
( – λ)K – λfq

(
t, s, s′,b – a – ( – λ)s + θ,y′′


)}
y′′
y

≥ |y|
(
min{K ,Kx,Kq}|y| – L

)
> ,

respectively. Finally, since (t, s, s′,b–a–(–λ)s +θ,y′′
) ∈ [, ]× [–M –ε,M +ε]×R

we have fq(t, s, s′,b – a – ( – λ)s + θ,y′′
) < . So

y′′
y > ,

which contradicts (.). Thus, we infer that if |y(t)| achieves its maximum on (, ), then

∣∣y(t)∣∣ ≤ L
min{K ,Kx,Kq} for t ∈ [, ] and λ ∈ (, ].

Let |y()| be themaximum of |y(t)| and suppose that |y()| > L(min{K ,Kx,Kq})–. Follow-
ing the above reasoning and using the fact that y′() = , we obtain

y()y′′() > .

http://www.boundaryvalueproblems.com/content/2012/1/77
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If y() > , then y′′() >  and so y′(t) is a strictly increasing function for t ∈ U, where
U ⊂ [, ] is a sufficiently small neighbourhood of t = . So, we see that

y′(t) < y′() =  for t ∈U \ {},

i.e., y(t) is a strictly decreasing function for t ∈ U. Therefore, y() = |y()| can not be the
maximum of |y(t)| on [, ], which is a contradiction. Assume next that y() < . Then
similar to the above arguments lead again to a contradiction. Thus, we see that

∣∣y()∣∣ ≤ L
min{K ,Kx,Kq} .

The inequality

∣∣y()∣∣ ≤ L
min{K ,Kx,Kq}

can be obtained in the same manner. Consequently, the eventual solutions of (.)λ, λ ∈
(, ] satisfy the bound

∣∣x(t)∣∣ ≤ ∣∣y(t)∣∣ + ∣∣s(t)∣∣ ≤ L
min{K ,Kx,Kq} +max

{
a

|a – b| ,
|a + b|



}
, t ∈ [, ],

and the proof of the lemma is completed. �

Lemma . Let H and H hold and x(t) ∈ C[, ] be a solution to (.)λ, λ ∈ [, ]. Then:
(a) |x′′(t) – ( – λ)x(t)| ≤ M, |x′′(t)| ≤ M +M, t ∈ [, ].
(b) |x′(t)| ≤ min{|a|, |b|} +M +M, t ∈ [, ].

Proof (a) Suppose there exists a (λ, t) ∈ [, ] or a (λ, t) ∈ [, ] such that

x′′(t) – ( – λ)x(t) < –M or x′′(t) – ( – λ)x(t) >M.

By Lemma ., we have

∣∣x(t)∣∣ ≤ M for t ∈ [, ]. (.)

In particular, (.) holds for t and t. Thus, in view of H, we have

 > K
(
x′′(t) – ( – λ)x(t)

)
= λ

{
K

(
x′′(t) – ( – λ)x(t)

)
+ f

(
t,x(t),x′(t),

(
x′′(t) – ( – λ)x(t)

))} ≥ 

or

 < K
(
x′′(t) – ( – λ)x(t)

)
= λ

{
K

(
x′′(t) – ( – λ)x(t)

)
+ f

(
t,x(t),x′(t),

(
x′′(t) – ( – λ)x(t)

))} ≤ ,

http://www.boundaryvalueproblems.com/content/2012/1/77
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respectively. The obtained contradictions show that

–M ≤ x′′(t) – ( – λ)x(t)≤ M for t ∈ [, ] and λ ∈ [, ],

and therefore

–(M +M) ≤ x′′(t)≤ M +M for t ∈ [, ],

which proves (a).
(b) By the mean value theorem, for each t ∈ (, ] there is a ξ ∈ (, t) such that

x′(t) – x′() = x′′(ξ )t.

Since, in view of (a), we have |x′′(ξ )| ≤ M +M, from the last formula we find that

∣∣x′(t)
∣∣ ≤ ∣∣x′()

∣∣ + ∣∣x′′(ξ )
∣∣ ≤ min

{|a|, |b|} +M +M, t ∈ [, ],

which proves (b) and completes the proof of the lemma. �

Lemma . Let H, H and H hold. Then there exists a function G(λ, t,x,p) continuous
for (λ, t,x,p) ∈ [, ] × [–M – ε,M + ε]× [–M – ε,M + ε] and such that
(a) the BVP

x′′ – ( – λ)x =G
(
λ, t,x,x′), t ∈ [, ],

x′() = a, x′() = b,

is equivalent to BVP (.)λ.
(b) G(, t,x,p) =  for (t,x,p) ∈ �q ≡ [, ]× [–M – ε,M + ε]× [–M – ε,M + ε].

Proof (a) We write the differential equation from (.)λ as

λf
(
t,x,x′,

(
x′′ – ( – λ)x

))
– ( – λ)K

(
x′′ – ( – λ)x

)
=  (.)

and consider the function

F(λ, t,x,p,q) = λf (t,x,p,q) – ( – λ)Kq for (λ, t,x,p,q) ∈ [, ]× �,

where� = [, ]× [–M –ε,M +ε]× [–M –ε,M +ε]× [–M –ε,M +ε]. Since –M –ε <
–M andM + ε >M, we can use H to conclude that

F(λ, t,x,p, –M – ε)F(λ, t,x,p,M + ε) <  for (λ, t,x,p) ∈ [, ]× �q. (.)

On the other hand, for (λ, t,x,p,q) ∈ [, ]× � we have

Fq(λ, t,x,p,q) = λfq(t,x,p,q) – ( – λ)K ≤ max{–K , –Kq} < . (.)

http://www.boundaryvalueproblems.com/content/2012/1/77
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Finally, from H we have that

F(λ, t,x,p,q) and Fq(λ, t,x,p,q) are continuous for (λ, t,x,p,q) ∈ [, ]× �. (.)

So, (.), (.) and (.) allow us to apply a well-known theorem to conclude that there
is a unique function G(λ, t,x,p) which is continuous for (λ, t,x,p) ∈ [, ] × �q and such
that the equations

q =G(λ, t,x,p), (λ, t,x,p) ∈ [, ]× �q

and

F(λ, t,x,p,q) = , (λ, t,x,p,q) ∈ [, ]× �

are equivalent. Now from Lemma . we have

–M – ε ≤ x(t)≤ M + ε for t ∈ [, ],

and Lemma . yields

–M – ε ≤ x′(t) ≤ M + ε and –M – ε < –M ≤ x′′(t) – ( – λ)x(t)≤ M <M + ε

for t ∈ [, ] and λ ∈ [, ]. Consequently, equation (.) is equivalent to the equation

x′′ – ( – λ)x =G
(
λ, t,x,x′), t ∈ [, ],

which yields the first assertion.
(b) It follows immediately from F(, t,x,p, ) =  for (t,x,p) ∈ �q. �

4 Themain result
Our main result is the following existence theorem, the proof of which is based on the
lemmas of the previous sections and the Topological transversality theorem [].

Theorem . Let H, H and H hold. Then problem (N) has at least one solution in
C[, ].

Proof First, we observe that according to Lemma ., the family of boundary value prob-
lems

⎧⎨
⎩
x′′ – ( – λ)x =G(λ, t,x,x′) – x, t ∈ [, ],

x′() = a, x′() = b,
(.)λ

is equivalent to the family (.)λ for λ ∈ [, ]. Next define the set

U =
{
x ∈ C

B[, ] : |x| <M + ε,
∣∣x′∣∣ <M + ε,

∣∣x′′∣∣ <M + ε
}
,

http://www.boundaryvalueproblems.com/content/2012/1/77
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where C
B[, ] = {x(t) ∈ C[, ] : x′() = a,x′() = b}, and the maps

j : C
B[, ] → C[, ] by jx = x,

Gλ : C[, ]→ C[, ] by (Gλx)(t) =G
(
λ, t,x(t),x′(t)

)
– x(t),

where t ∈ [, ], λ ∈ [, ], x(t) ∈ j(U) and

Lλ : C
B[, ]→ C[, ] by Lλx = x′′ – ( – λ)x,λ ∈ [, ].

Since Lλ, λ ∈ [, ], is a continuous, linear, one-to-one map of C
B[, ] onto C[, ], the

map L–λ , λ ∈ [, ] exists and is continuous. In addition, Gλ, λ ∈ [, ], is a continuous and
j is a completely continuous embedding. Since j(U) is a compact subset of C[, ], and
Gλ, λ ∈ [, ], and L–λ , λ ∈ [, ], are continuous on j(U) and Gλ(j(U)) respectively, the
homotopy

H :U × [, ]→ C[, ] defined by H(x,λ)≡Hλ(x)≡ L–λ Gλj(x)

is compact. Besides, the equation

L–λ Gλj(x) = x for x ∈U yields Lλx =Gλj(x),

which coincides with BVP (.)λ. Thus, the fixed points of Hλ(x) are solutions to (.)λ.
But, from Lemma . and Lemma . it follows that the solutions to (.)λ are elements of
U . Consequently, Hλ(x), λ ∈ [, ], is a fixed point free on ∂U , i.e., Hλ(x) is an admissible
map for all λ ∈ [, ]. Finally, we see that the map H is a constant map, i.e., H(x) ≡ l,
where l is the unique solution to the BVP

x′′ – x = –x, x′() = a, x′() = b.

From the fact that l ∈U , it follows thatH is an essentialmap (see, []). By theTopological
transversality theorem (see, []), H = L– Gj is also essential, i.e., problem (.) has
a C[, ]-solution. It is also a solution to (.), by Lemma .. To complete the proof,
remark that problem (.) coincides with the problem (N). �

We conclude with the following example, which illustrates our main result.

Example . Consider the boundary value problem

 – (. + t)x′′ – tx′′ – cosx′ + x = ,

x′() = , x′() = –.

It is clear that for (t,x,p,q) ∈ [, ]× R the function

f (t,x,p,q) =  – (. + t)q – tq – cosp + x

is continuous and fx(t,x,p,q) =  and fq(t,x,p,q) = –.– t –tq. Thus H holds for Kx = 
and Kq = ..

http://www.boundaryvalueproblems.com/content/2012/1/77
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To verify H we choose, for example, K = ., M =  and ε =  · –. Next we need the
constants L andM. Having in mind that Jx = [,  · –] and Jp = [, –], from

 · – ≤ – – ( – λ)x≤ – for (λ,x) ∈ [, ]× Jx

it follows that maxK |b – a – ( – λ)x| = .max(– – ( – λ)x) =  · –. On the other
hand, from

–,  · – – – ≤ –(,  + t)
(
– – ( – λ)x

)
– t

(
– – ( – λ)x

) ≤ –,  · –

for (λ, t,x) ∈ [, ] × Jx and

 ≤  – cosp ≤  · – for p ∈ Jp

we have

– · – <  – (,  + t)
(
– – ( – λ)x

)
– t

(
– – ( – λ)x

) – cosp + x

≤ –,  · – +  · –

for (λ, t,x,p) ∈ [, ] × Jx × Jp, which means that for (λ, t,x,p) ∈ [, ] × Jx × Jp

max
∣∣f (t,x,p,b – a – ( – λ)x

)∣∣ =
=max

∣∣ – (,  + t)
(
– – ( – λ)x

)
– t

(
– – ( – λ)x

) – cosp + x
∣∣ ≤  · –.

So, L =max{ · –,  · –} =  · –. Then

M =max

{
e

e – 
(
–e + –

)
,

 · –
min{., , .} +  · –

}
=  · –

and we see that for (t,x,p,q) ∈ [, ]× [–M – ε,M + ε]× R× (–∞, –M)

f (t,x,p,q) +Kq = –( + t)q – tq +  – cosp + x > 

and

f (t,x,p,q) +Kq <  for (t,x,p,q) ∈ [, ]× [–M – ε,M + ε]× R× (M,∞).

Thus, H also holds.
Finally, H holds since f (t,x,p,q) and fq(t,x,p,q) are continuous for (t,x,p,q) ∈ [, ]×

R.
Thus, we can apply Theorem . to conclude that the considered problem has a solution

in C[, ].

Competing interests
The authors declare that they have no competing interests.

http://www.boundaryvalueproblems.com/content/2012/1/77


Palamides et al. Boundary Value Problems 2012, 2012:77 Page 11 of 11
http://www.boundaryvalueproblems.com/content/2012/1/77

Authors’ contributions
The authors declare that the study was realized in collaboration with the same engagement.

Author details
1Naval Academy of Greece, Piraeus, 451 10, Greece. 2Department of Mathematics, Technical University of Sliven, Sliven,
Bulgaria. 3Faculty of Mathematics and Informatics, ‘St. Kl. Ohridski’ University of Sofia, Sofia, Bulgaria.

Acknowledgements
In memory of Professor Myron K. Grammatikopoulos, 1938-2007.
This research was partially supported by Sofia University Grant N350/2012. The research of N. Popivanov was partially
supported by the Bulgarian NSF under Grants DO 02-75/2008 and DO 02-115/2008.

Received: 5 July 2012 Accepted: 6 July 2012 Published: 23 July 2012

References
1. Cabada, A, Pouso, R: Existence result for the problem (φ(u′))′ = f (t,u,u′) with periodic and Neumann boundary

conditions. Nonlinear Anal. 30, 1733-1742 (1997)
2. Chu, J, Lin, X, Jiang, D, O’Regan, D, Agarwal, RP: Positive solutions for second-order superlinear repulsive singular

Neumann boundary value problems. Positivity 12, 555-569 (2008)
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