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Abstract
The second order of accuracy difference scheme generated by Crank-Nicholson
difference scheme for approximately solving multipoint nonlocal boundary value
problem is considered. Well-posedness of this difference scheme in Hölder spaces is
established. Furthermore, as applications, coercivity estimates in Hölder norms for
approximate solutions of the multipoint nonlocal boundary value problems for mixed
type equations are obtained. Moreover, the method is illustrated by numerical
examples.
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1 Introduction
In recent years, more andmoremathematicians have been studying nonlocal problems for
ordinary differential equations and partial differential equations because of their existence
inmany applied problems included in applied sciences. Theory and numerical methods of
solutions of the nonlocal boundary value problems for these partial differential equations
were investigated bymany researchers (see, e.g., [–] and the references therein). Several
types of problems in fluidmechanics, other areas of physics, andmathematical biology led
to partial differential equations of elliptic-parabolic type (see, [–]). The purpose of
this paper is to study the second order of accuracy difference schemes of elliptic-parabolic
problem with nonlocal boundary value problems.
In [], we established the well-posedness of multipoint nonlocal boundary value prob-

lem ⎧⎪⎪⎨⎪⎪⎩
– du(t)

dt +Au(t) = g(t) ( ≤ t ≤ ),
du(t)
dt –Au(t) = f (t) (– ≤ t ≤ ),

u() =
∑J

i= αiu(λi) + ϕ, – ≤ λ < · · · < λJ ≤ 

()

in a Hilbert space H with the self-adjoint positive definite operator A under assumption

J∑
i=

|αi| ≤ . ()

Thewell-posedness ofmultipoint nonlocal boundary value problem () inHölder spaces
with a weight was established. In applications, coercivity inequalities for the solutions of
nonlocal boundary value problems for elliptic-parabolic equations were obtained.
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In [], we studied the well-posedness of the first order of accuracy difference scheme
for the approximate solution of boundary value problem () under assumption ().
In the present paper, we consider the second order of accuracy difference scheme gen-

erated by Crank-Nicholson difference scheme

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

–τ–(uk+ – uk + uk–) +Auk = gk ,

gk = g(tk), tk = kτ ,  ≤ k ≤ N – ,Nτ = ,

τ–(uk – uk–) – 
 (Auk– +Auk) = fk ,

fk = f (tk– 

), tk– 


= (k – 

 )τ , –(N – ) ≤ k ≤ ,

u – u + u = –u + u– – u–,

uN =
∑J

k= αi(u[ λi
τ ] + (λi – [ λi

τ
]τ )(f[ λi

τ ] +Au[ λi
τ ])) + ϕ

()

for the approximate solution of boundary value problem () under assumption ().
The well-posedness of difference scheme () in Hölder spaces is established. In appli-

cations, the stability, almost coercivity stability, coercivity stability estimates for solutions
of the second order of accuracy difference scheme for elliptic-parabolic equations are ob-
tained. Furthermore, the theoretical statements for the solution of the first and second
order of accuracy schemes for one-dimensional elliptic-parabolic differential equation are
supported by the results of a numerical example.

2 Main theorems
Let us give some auxiliary lemmas we need below. Throughout the paper, H is a Hilbert
space and we denote B = 

 (τA +
√
A( + τ A)), where A is a self-adjoint positive definite

operator. Then, it is clear that B is a self-adjoint positive definite operator and B ≥ δ

 I ,

where δ > δ > , and R = (I + τB)– which is defined on the whole space H is a bounded
operator. The following operators

P =
(
I –

τA


)
G, G =

(
I +

τA


)–

, R = (I + τB)–,

and

Tτ =

(
I + B–A

(
I + τA +

τ


G–

)
K

(
I – RN–) +K

(
I –

τ A


)
G–RN–

–K
(
I –

τ A


)
G–(I + τB)RN

[ n∑
i=

αi

(
I +

(
λi –

[
λi

τ

]
τ

)
A

)
P–[ λiτ ]u

])–

()

exist and are bounded for a self-adjoint positive operator A. Here,

B =


(
τA +

√
A

(
 + τ A

))
, K =

(
I + τA +



(τA)

)–

,

and I is the identity operator.
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Lemma . For any gk ,  ≤ k ≤ N –  and fk , –N +  ≤ k ≤ , the solution of problem ()
exists and the following formulas hold:

uk =
(
I – RN)–{[

Rk – RN–k]u + [
RN–k – RN+k]

×
[ n∑

i=

αi

[(
I +

(
λi –

[
λi

τ

]
τ

)
A

)

×
(
P–[ λiτ ]u – τ

∑
s=[ λi

τ ]+

Ps–[ λi
τ ]Gfs

)
+

(
λi –

[
λi

τ

]
τ

)
f[ λi

τ ]

]
+ ϕ

]

–
[
RN–k – RN+k](I + τB)(I + τB)–B–

N–∑
s=

[
RN–s – RN+s]gsτ}

+ (I + τB)(I + τB)–B–
N–∑
s=

[
R|k–s| – Rk+s]gsτ ,  ≤ k ≤ N , ()

uk = P–ku – τ

∑
s=k+

Ps–k–Gfs, –N ≤ k ≤ –, ()

u =


TτKG– ×

{(
I – τ A

){
( + τB)RN

[ n∑
i=

αi

(
I +

(
λi –

[
λi

τ

]
τ

)
A

)

×
(
–τ

∑
s=[ λi

τ ]+

Ps–[ λi
τ ]Gfs

)
+

(
λi –

[
λi

τ

]
τ

)
f[ λi

τ ] + ϕ

]

– RN–B–
N–∑
s=

[
RN–s – RN+s]gsτ +

(
I – RN)

B–
N–∑
s=

Rs–gsτ

}

+
(
I – RN)

(I + τB)
(
τB–g – GB–f + PGB–f +GB–f–

)}
, ()

Tτ =

(
I + B–A

(
I + τA +

τ


G–

)
K

(
I – RN–) +K

(
I –

τ A


)
G–RN–

–K
(
I –

τ A


)
G–(I + τB)RN

[ n∑
i=

αi

(
I +

(
λi –

[
λi

τ

]
τ

)
A

)
P–[ λiτ ]u

])–

.

Proof Clearly, the solution formula of the problem

τ–(uk – uk–) –


(Auk– +Auk) = fk , –(N – )≤ k ≤ ,u = γ ()

is []:

uk = P–kγ – τ

∑
s=k+

Ps–k–Gfs, –N ≤ k ≤ – ()

for any {fk}–k=–N and γ . Equation () and the fact that u = γ yield Equation ().
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The solution of the problem⎧⎨⎩–τ–(uk+ – uk + uk–) +Auk = gk ,

gk = g(tk), tk = kτ ,  ≤ k ≤ N – , u = γ , uN = ψ
()

satisfies the following formula []:

uk =
(
I – RN)–{[

Rk – RN–k]γ +
[
RN–k – RN+k]ψ

–
[
RN–k – RN+k](I + τB)(I + τB)–B–

N–∑
s=

[
RN–s – RN+s]gsτ}

+ (I + τB)(I + τB)–B–
N–∑
s=

[
R|k–s| – Rk+s]gsτ ,  ≤ k ≤ N . ()

Equation () follows from Equations () and (), initial condition u = γ , and

ψ =
J∑

k=

αi

(
u[ λi

τ ] +
(

λi –
[

λi

τ

]
τ

)
(f[ λi

τ ] +Au[ λi
τ ])

)
+ ϕ.

Finally, let us obtain formula (). Combining (), (), and the condition

u – u + u = –u + u– – u–,

we get

(
I – τ A

){(
I – RN)–{[

R – RN–]u + [
RN– – RN+][ n∑

i=

αi

(
I +

(
λi –

[
λi

τ

]
τ

)
A

)

×
(
P–[ λiτ ]u – τ

∑
s=[ λi

τ ]+

Ps–[ λi
τ ]fs

)
+

n∑
i=

αi

(
λi –

[
λi

τ

]
τ

)
f[ λi

τ ] + ϕ

]

–
[
RN– – RN+](I + τB)(I + τB)–B–

N–∑
s=

[
RN–s – RN+s]gsτ}

+ (I + τB)(I + τB)–B–
N–∑
s=

[
Rs– – R+s]gsτ}

= –τ g +G
(
I + τA +



(τA)

)
u + Gτ f – PGτ f –Gτ f–.

From Equation (), it follows that

u =


TτKG– ×

{(
I – τ A

){
( + τB)RN

×
[ n∑

i=

αi

(
I +

(
λi –

[
λi

τ

]
τ

)
A

)(
–τ

∑
s=[ λi

τ ]+

Ps–[ λi
τ ]Gfs

)
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+
(

λi –
[

λi

τ

]
τ

)
f[ λi

τ ] + ϕ

]

– RN–B–
N–∑
s=

[
RN–s – RN+s]gsτ +

(
I – RN)

B–
N–∑
s=

Rs–gsτ

}

+
(
I – RN)

(I + τB)
(
τB–g – GB–f + PGB–f +GB–f–

)}
.

This finishes the proof of Lemma .. �

Here, we study well-posedness of problem (). First, we give some necessary estimates
for Pk , Rk and Tτ .

Lemma . For a self-adjoint positive operator A, the following estimates are satisfied [,
, ]:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
‖Pk‖H→H ≤ , kτ‖APkG‖H→H ≤ M(δ), kτ‖BRk‖H→H ≤ M(δ),

‖Rk‖H→H ≤ M(δ)( + δτ )–k , ‖(I – RN )–‖H→H ≤ M(δ), ‖G‖H→H ≤ ,

‖Pk – e–kτA‖H→H ≤ M(δ)τ
kτ , ‖Rk – e–kτA


 ‖H→H ≤ M(δ)τ

kτ , k ≥ , δ > ,

()

where M(δ) is independent of τ .

From these estimates, it follows that∥∥∥∥∥
(
I + B–A

(
I + τA +

τ


G–

)
K

(
I – RN–)

+K
(
I –

τ A


)
G–RN– –K

(
I –

τ A


)
G–(I + τB)RN

×
[ n∑

i=

αi

(
I +

(
λi –

[
λi

τ

]
τ

)
A

)
P–[ λiτ ]u

])–∥∥∥∥∥
H→H

≤ M(δ). ()

Now, we study well-posedness of problem (). Let Fτ (H) = F([a,b]τ ,H) be the lin-
ear space of mesh functions ϕτ = {ϕk}˜̃N

Ñ defined on [a,b]τ = {tk = kh, Ñ ≤ k ≤ ˜̃N , Ñτ =
a, ˜̃Nτ = b} with values in the Hilbert space H . Next, on Fτ (H) we denote C([a,b]τ ,H),
Cα
,([–, ]τ ,H), Cα

,([–, ]τ ,H), Cα
 ([, ]τ ,H), C̃α

,([–, ]τ ,H), and C̃α
 ([–, ]τ ,H),  <

α <  Banach spaces with the norms

∥∥ϕτ
∥∥
C([a,b]τ ,H) = max

Na≤k≤Nb
‖ϕk‖H ,∥∥ϕτ

∥∥
Cα
,([–,]τ ,H) =

∥∥ϕτ
∥∥
C([–,]τ ,H) + sup

–N≤k<k+r≤
‖ϕk+r – ϕk‖E(–k)αr–α

+ sup
≤k<k+r≤N–

‖ϕk+r – ϕk‖E
(
(k + r)τ

)α(N – k)αr–α ,
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∥∥ϕτ
∥∥
Cα
 ([–,]τ ,H) =

∥∥ϕτ
∥∥
C([–,]τ ,H) + sup

–N≤k<k+r≤
‖ϕk+r – ϕk‖E(–k)αr–α ,

∥∥ϕτ
∥∥
Cα
,([,]τ ,H) =

∥∥ϕτ
∥∥
C([,]τ ,H)

+ sup
≤k<k+r≤N–

‖ϕk+r – ϕk‖E
(
(k + r)τ

)α(N – k)αr–α ,

∥∥ϕτ
∥∥
C̃α
,([–,]τ ,H) =

∥∥ϕτ
∥∥
C([–,]τ ,H) + sup

–N≤k<k+r≤
‖ϕk+r – ϕk‖E(–k)α(r)–α

+ sup
≤k<k+r≤N–

‖ϕk+r – ϕk‖E
(
(k + r)τ

)α(N – k)αr–α ,

∥∥ϕτ
∥∥
C̃α
 ([–,]τ ,H) =

∥∥ϕτ
∥∥
C([–,]τ ,H) + sup

–N≤k<k+r≤
‖ϕk+r – ϕk‖E(–k)α(r)–α .

Theorem . Nonlocal boundary value problem () is stable in C([–, ]τ ,H) norm.

Proof By [], we have

∥∥{uk}N–


∥∥
C([,]τ ,H) ≤ M

[∥∥gτ
∥∥
C([,]τ ,H) + ‖u‖H + ‖uN‖H

]
()

for the solution of boundary value problem ().
By [], we have

∥∥{uk}–N
∥∥
C([–,]τ ,H) ≤ M

[∥∥f τ
∥∥
C([–,]τ ,H) + ‖u‖H

]
()

for the solution of inverse Cauchy difference problem ().
Then, the proof of Theorem . is based on stability inequalities (), (), and on esti-

mates

‖u‖H ≤ M(δ)
[∥∥f τ

∥∥
C([–,]τ ,H) +

∥∥gτ
∥∥
C([,]τ ,H) + ‖ϕ‖H

]
, ()

‖uN‖H ≤ M(δ)
[∥∥f τ

∥∥
C([–,]τ ,H) +

∥∥gτ
∥∥
C([,]τ ,H) + ‖ϕ‖H

]
()

for the solution of boundary value problem (). Estimates () and () follow from formula
() and estimates (), (). Theorem . is proved. �

Theorem . Assume that ϕ ∈ D(A) and f, f–, g ∈ D(I + τB). Then, for the solution of
difference problem (), we have the following almost coercivity inequality:

∥∥{
τ–(uk+ – uk + uk–)

}N–


∥∥
C([,]τ ,H)

+
∥∥{

τ–(uk – uk–)
}
–N+

∥∥
C([–,]τ ,H)

+
∥∥{Auk}N–


∥∥
C([,]τ ,H) +

∥∥∥∥{


(Auk +Auk–)

}

–N+

∥∥∥∥
C([–,]τ ,H)

≤ M(δ)
[
min

{
ln


τ
,  +

∣∣ln‖A‖H→H
∣∣}[∥∥f τ

∥∥
C([–,]τ ,H) +

∥∥gτ
∥∥
C([,]τ ,H)

]
+ ‖Aϕ‖H +

∥∥(I + τB)f
∥∥
H +

∥∥(I + τB)g
∥∥
H +

∥∥(I + τB)f–
∥∥
H

]
,

where M(δ) is independent not only of f τ , gτ , ϕ but also of τ .
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Proof By [], we have

∥∥{
τ–(uk – uk–)

}
–N+

∥∥
C([–,]τ ,H)

+
∥∥∥∥{



(Auk +Auk–)

}

–N+

∥∥∥∥
C([–,]τ ,H)

≤ M(δ)
[
min

{
ln


τ
,  +

∣∣ln‖A‖H→H
∣∣}∥∥f τ

∥∥
C([–,]τ ,H) + ‖Au‖H

]
()

for the solution of inverse Cauchy difference problem ().
By [], we have

∥∥{
τ–(uk+ – uk + uk–)

}N–


∥∥
C([,]τ ,H) +

∥∥{Auk}N–


∥∥
C([,]τ ,H)

≤ M(δ)
[
min

{
ln


τ
,  +

∣∣ln‖A‖H→H
∣∣}∥∥gτ

∥∥
C([,]τ ,H) + ‖Au‖H + ‖AuN‖H

]
()

for the solution of boundary value problem (). Then, the proof of Theorem . is based
on almost coercivity inequalities (), (), and on the estimates

‖Au‖H ≤ M(δ)
[
‖Aϕ‖H +

∥∥(I + τB)f
∥∥
H

+min

{
ln


τ
,  +

∣∣ln‖A‖H→H
∣∣}[∥∥f τ

∥∥
C([–,]τ ,H) +

∥∥gτ
∥∥
C([,]τ ,H)

]]
,

‖AuN‖H ≤ M(δ)
[[‖Aϕ‖H +

∥∥(I + τB)f
∥∥
H

]
+min

{
ln


τ
,  +

∣∣ln‖A‖H→H
∣∣}[∥∥f τ

∥∥
C([–,]τ ,H) +

∥∥gτ
∥∥
C([,]τ ,H)

]]
for the solution of boundary value problem (). The proof of these estimates follows the
scheme of papers [, ] and relies on both formula () and estimates (), (). This
finalizes the proof of Theorem .. �

Theorem. Let the assumptions of Theorem . be satisfied. Then, boundary value prob-
lem () is well-posed in Hölder spaces Cα

,([–, ]τ ,H), C̃α
,([–, ]τ ,H) and the following

coercivity inequalities hold:

∥∥{
τ–(uk+ – uk + uk–)

}N–


∥∥
Cα
,([,]τ ,H)

+
∥∥{

τ–(uk – uk–)
}
–N+

∥∥
C̃α
 ([–,]τ ,H)

+
∥∥{Auk}N–


∥∥
Cα
,([,]τ ,H) +

∥∥∥∥{


(Auk +Auk–)

}

–N+

∥∥∥∥
C̃α
 ([–,]τ ,H)

≤ M(δ)
[


α( – α)

[∥∥f τ
∥∥
Cα
 ([–,]τ ,H) +

∥∥gτ
∥∥
Cα
,([,]τ ,H)

]
+ ‖Aϕ‖H

+
∥∥(I + τB)f

∥∥
H +

∥∥(I + τB)g
∥∥
H +

∥∥(I + τB)f–
∥∥
H

]
,

∥∥{
τ–(uk+ – uk + uk–)

}N–


∥∥
Cα
,([,]τ ,H)

http://www.boundaryvalueproblems.com/content/2012/1/80
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+
∥∥{

τ–(uk – uk–)
}
–N+

∥∥
C̃α
 ([–,]τ ,H)

+
∥∥{Auk}N–


∥∥
Cα
,([,]τ ,H) +

∥∥∥∥{


(Auk +Auk–)

}

–N+

∥∥∥∥
C̃α
 ([–,]τ ,H)

≤ M(δ)
[


α( – α)

[∥∥f τ
∥∥
C̃α
 ([–,]τ ,H) +

∥∥gτ
∥∥
Cα
,([,]τ ,H)

]
+ ‖Aϕ‖H

+
∥∥(I + τB)f

∥∥
H +

∥∥(I + τB)g
∥∥
H +

∥∥(I + τB)f–
∥∥
H

]
,

where M is independent of f τ , gτ , ϕ, τ and α.

Proof By [],

∥∥{
τ–(uk – uk–)

}
–N+

∥∥
C̃α
 ([–,]τ ,H)

+
∥∥∥∥{



(Auk +Auk–)

}

–N+

∥∥∥∥
C̃α
 ([–,]τ ,H)

≤ M(δ)
[


α( – α)

∥∥f τ
∥∥
Cα
 ([–,]τ ,H) + ‖Au‖H

]
, ()∥∥{

τ–(uk – uk–)
}
–N+

∥∥
C̃α
 ([–,]τ ,H)

+
∥∥∥∥{



(Auk +Auk–)

}

–N+

∥∥∥∥
C̃α
 ([–,]τ ,H)

≤ M(δ)
[


α( – α)

∥∥f τ
∥∥
C̃α
 ([–,]τ ,H) + ‖Au‖H

]
()

for the solution of inverse Cauchy difference problem ().
By [], we have

∥∥{
τ–(uk+ – uk + uk–)

}N–


∥∥
Cα
,([,]τ ,H) +

∥∥{Auk}N–


∥∥
Cα
,([,]τ ,H)

≤ M(δ)
[


α( – α)

∥∥gτ
∥∥
Cα
,([,]τ ,H) + ‖Au‖H + ‖AuN‖H

]
()

for the solution of boundary value problem (). Then, the proof of Theorem . is based
on coercivity inequalities ()-() and estimates

‖Au‖H ≤ M(δ)
[


α( – α)

[∥∥f τ
∥∥
C̃α
 ([–,]τ ,H) +

∥∥gτ
∥∥
Cα
,([,]τ ,H)

]
+ ‖Aϕ‖H +

∥∥(I + τB)f
∥∥
H +

∥∥(I + τB)g
∥∥
H +

∥∥(I + τB)f–
∥∥
H

]
,

‖AuN‖H ≤ M(δ)
[


α( – α)

[∥∥f τ
∥∥
C̃α
 ([–,]τ ,H) +

∥∥gτ
∥∥
Cα
,([,]τ ,H)

]
+ ‖Aϕ‖H +

∥∥(I + τB)f
∥∥
H +

∥∥(I + τB)g
∥∥
H +

∥∥(I + τB)f–
∥∥
H

]
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for the solution of difference scheme (). The proof of these estimates follows the scheme
of the papers [, ] and relies on both formula () and estimates (), (). This is the
end of the proof of Theorem .. �

3 Application
Now, the application of the abstract result is considered. In [–, ]×	, let us consider the
boundary value problem for multi-dimensional elliptic-parabolic equation

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

–utt –
∑n

r=(ar(x)uxr )xr = g(t,x),  < t < ,x ∈ 	,

ut +
∑n

r=(ar(x)uxr )xr = f (t,x), – < t < ,x ∈ 	,

u(t,x) = , x ∈ S, – ≤ t ≤ ;

u(,x) =
∑J

i= αiu(λi,x) + ϕ(x),
∑J

i= |αi| ≤ ,

– ≤ λ < λ < · · · < λi < · · · < λJ ≤ ,

u(+,x) = u(–,x), ut(+,x) = ut(–,x), x ∈ 	,

()

where ar(x) (x ∈ 	), ϕ(x) (ϕ(x) = , x ∈ S), g(t,x) (t ∈ (, ), x ∈ 	), and f (t,x) (t ∈ (–, ),
x ∈ 	) are given smooth functions. Here, 	 is the unit open cube in the n-dimensional
Euclidean space Rn ( < xk < ,  ≤ k ≤ n) with boundary S, 	 = 	 ∪ S, and ar(x)≥ a > .
The discretization of problem () is carried out in two steps. In the first step, the grid

sets

	̃h =
{
x = xm = (hm, . . . ,hnmn),m = (m, . . . ,mn),

 ≤ mr ≤Nr ,hrNr = , r = , . . . ,n
}
,

	h = 	̃h ∩ 	,Sh = 	̃h ∩ S

are defined. To the differential operator A generated by problem (), we assign the dif-
ference operator Ax

h by formula

Ax
hu

h = –
n∑
r=

(
ar(x)uhxr

)
xr ,mr

()

acting in the space of grid functions uh(x), satisfying the conditions uh(x) =  for all x ∈ Sh.
With the help of Ax

h, we arrive at the nonlocal boundary value problem

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

– duh(t,x)
dt +Ax

huh(t,x) = gh(t,x),  < t < ,x ∈ 	h,
duh(t,x)

dt –Ax
huh(t,x) = f h(t,x), – < t < ,x ∈ 	h,

uh(,x) = uh(–,x) + ϕh(x), x ∈ 	̃h,

uh(+,x) = uh(–,x), duh(+,x)
dt = duh(–,x)

dt , x ∈ 	̃h

()

for an infinite system of ordinary differential equations (see []).
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Secondly, problem () is replaced by difference scheme (), so that the following second
order of accuracy difference scheme

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

– uhk+(x)–u
h
k (x)+u

h
k–(x)

τ
+Ax

hu
h
k(x) = ghk (x),

ghk (x) = gh(tk ,x), tk = kτ ,  ≤ k ≤ N – ,Nτ = ,x ∈ 	h,
uhk (x)–u

h
k–(x)

τ
– Ax

h
 (uhk(x) + uhk–(x)) = f hk (x),

f hk (x) = f h(tk– 

,x), tk– 


= (k – 

 )τ , –N +  ≤ k ≤ ,x ∈ 	h,

–uh(x) + uh (x) – uh(x) = uh(x) – uh–(x) + uh–(x), x ∈ 	̃h,

uhN (x) =
∑J

k= αi(uh
[ λiτ ]

(x) + (λk – [ λi
τ
]τ )(f h

[ λiτ ]
+Ax

huh
[ λiτ ]

(x))) + ϕh(x), x ∈ 	̃h.

()

is obtained (see [], []).
To formulate the results, we introduce the spaces Lh = L(	h), W 

h = W 
 (	h), and

W 
h =W 

 (	h) of the grid functions ϕh(x) = {ϕ(hm, . . . ,hnmn)} defined on 	h, equipped
with the norms

∥∥ϕh∥∥
Lh

=
(∑
x∈	h

∣∣ϕh(x)
∣∣h · · ·hn)/

,

∥∥ϕh∥∥
W 

h
=

∥∥ϕh∥∥
Lh

+

(∑
x∈	h

n∑
r=

∣∣(ϕh)
xr

∣∣h · · ·hn)/

,

and

∥∥ϕh∥∥
W

h
=

∥∥ϕh∥∥
Lh

+

(∑
x∈	h

n∑
r=

∣∣(ϕh)
xr

∣∣h · · ·hn)/

+

(∑
x∈	h

n∑
r=

∣∣(ϕh)
xrxr ,mr

∣∣h · · ·hn)/

.

Theorem . Let τ and |h| =
√
h + · · · + hn be sufficiently small positive numbers. Then,

solutions of difference scheme () satisfy the following stability and almost coercivity esti-
mates:

∥∥{
uhk

}N–
–N

∥∥
C([–,]τ ,Lh)

≤ M
[∥∥{

f hk
}–
–N+

∥∥
C([–,]τ ,Lh)

+
∥∥{

ghk
}N–


∥∥
C([,]τ ,Lh)

+
∥∥ϕh∥∥

Lh

]
,∥∥{

τ–(uhk+ – uhk + uhk–
)}N–



∥∥
C([,]τ ,Lh)

+
∥∥{

uhk
}N–


∥∥
C([,]τ ,W

h)

+
∥∥{

τ–(uhk – uhk–
)}

–N+

∥∥
C([–,]τ ,Lh)

+
∥∥∥∥{

uhk + uhk–


}

–N+

∥∥∥∥
C([–,]τ ,W

h)

≤ M
[∥∥f h ∥∥

Lh
+

∥∥f h–∥∥Lh
+

∥∥gh ∥∥Lh
+

∥∥ϕh∥∥
W

h
+ τ

∥∥f h ∥∥
W 

h
+ τ

∥∥f h–∥∥W 
h

+ τ
∥∥gh ∥∥W 

h
+ ln


τ + |h|

[∥∥{
f hk

}–
–N+

∥∥
C([–,]τ ,Lh)

+
∥∥{

ghk
}N–


∥∥
C([,]τ ,Lh)

]]
,
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where M is independent not only of τ , h, ϕh(x) but also of f hk , –N +  ≤ k ≤  and ghk (x),
 ≤ k ≤ N – .

The proof of Theorem . is based on Theorem ., Theorem ., the symmetry pro-
perties of the difference operator Ax

h defined by formula () in Lh, the estimate

min

{
ln


τ
,  +

∣∣ln∥∥Ax
h
∥∥
Lh→Lh

∣∣} ≤ M ln


τ + |h| ,

and the following theorem in Lh:

Theorem . For the solution of the elliptic difference problem

Ax
hu

h(x) = ωh(x), x ∈ 	h, uh(x) = , x ∈ Sh

the following coercivity inequality holds []:

n∑
r=

∥∥(
uh

)
xrxr ,mr

∥∥
Lh

≤ M
∥∥ωh∥∥

Lh
.

Here, M is independent of h and ωh.

Theorem . Let τ and |h| be sufficiently small positive numbers. Then, the solutions of
difference scheme () satisfy the following coercivity stability estimates:

∥∥{
τ–(uhk+ – uhk + uhk–

)}N–


∥∥
Cα
,([,]τ ,Lh)

+
∥∥{

τ–(uhk – uhk–
)}

–N+

∥∥
C̃α
 ([–,]τ ,Lh)

+
∥∥{

uhk
}N–


∥∥
Cα
,([,]τ ,W


h)

+
∥∥∥∥{

uhk + uhk–


}

–N+

∥∥∥∥
C̃α
 ([–,]τ ,W


h)

≤ M
[∥∥ϕh∥∥

W
h
+ τ

∥∥f h ∥∥
W 

h
+ τ

∥∥f h–∥∥W 
h
+ τ

∥∥gh ∥∥W 
h

+


α( – α)
[∥∥{

f hk
}–
–N+

∥∥
Cα
 ([–,]τ ,Lh)

+
∥∥{

ghk
}N–


∥∥
Cα
,([,]τ ,Lh)

]]
,

∥∥{
τ–(uhk+ – uhk + uhk–

)}N–


∥∥
Cα
,([,]τ ,Lh)

+
∥∥∥∥{

uhk + uhk–


}

–N+

∥∥∥∥
C̃α
 ([–,]τ ,W


h)

+
∥∥{

τ–(uhk – uhk–
)}

–N+

∥∥
C̃α
 ([–,]τ ,Lh)

+
∥∥{

uhk
}N–


∥∥
Cα
,([,]τ ,W


h)

≤ M
[∥∥ϕh∥∥

W
h
+ τ

∥∥f h ∥∥
W 

h
+ τ

∥∥f h–∥∥W 
h
+ τ

∥∥gh ∥∥W 
h

+


α( – α)
[∥∥{

f hk
}–
–N+

∥∥
C̃α
 ([–,]τ ,Lh)

+
∥∥{

ghk
}N–


∥∥
Cα
,([,]τ ,Lh)

]]
.

Here, M is independent not only of τ , h, ϕh(x) but also of f hk , –N +  ≤ k ≤  and ghk (x),
 ≤ k ≤ N – .

http://www.boundaryvalueproblems.com/content/2012/1/80


Gercek and Ashyralyev Boundary Value Problems 2012, 2012:80 Page 12 of 13
http://www.boundaryvalueproblems.com/content/2012/1/80

Table 1 Error analysis for the solution u(t,x)

Method N =M = 30 N =M = 60 N =M = 90

1st order of accuracy d. s. 0.042169 0.021639 0.014546
2nd order of accuracy d. s. 0.000908 0.000227 0.000101

The proof of Theorem . is based on the abstract Theorem ., Theorem ., and the
symmetry properties of the difference operator Ax

h defined by formula ().

4 Numerical Analysis
The theoretical statements for the solution of these difference schemes are supported by
the results of numerical experiments of the nonlocal boundary value problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂t +

∂u
∂x (( + x) ∂u

∂x ) = f (t,x),

f (t,x) = (–e–t +  – t) sinx + (e–t + t)(cosx – x sinx),

– < t ≤ , < x < π ,
∂u
∂t + ∂u

∂x (( + x) ∂u
∂x ) = g(t,x),

g(t,x) = –t sinx + (e–t + t)(cosx – x sinx),  < t < ,  < x < π ,

u(,x) = 
u(–,x) +


u(–


 ,x) + ϕ(x),

ϕ(x) = (e– – e
 –


e


 + 

 ) sinx, ≤ x ≤ π ,

u(t, ) = u(t,π ) = , – ≤ t ≤ 

for the elliptic-parabolic equation. The exact solution of this problem is

u(t,x) =
(
e–t + t

)
sinx.

For the comparison, the errors computed by the following formula

EN
M = max

–N≤k≤N
≤n≤M–

∣∣u(tk ,xn) – ukn
∣∣

are recorded for different values of N andM, where u(tk ,xn) represents the exact solution
and ukn represents the numerical solution at (tk ,xn). The results are shown in Table  for
N =M = , and  respectively.
Therefore, the results indicate that the second order of accuracy difference scheme is

more accurate than the first order of accuracy difference scheme.
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