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1 Introduction
In recent years, the fractional differential equations have received more and more atten-
tion. The fractional derivative has been occurring in many physical applications such as a
non-Markovian diffusion process with memory [], charge transport in amorphous semi-
conductors [], propagations of mechanical waves in viscoelastic media [], etc. Phenom-
ena in electromagnetics, acoustics, viscoelasticity, electrochemistry and material science
are also described by differential equations of fractional order (see [–]).
Recently, boundary value problems for fractional differential equations have been stud-

ied inmany papers (see [–]).Moreover, the existence of solutions to a coupled systems
of fractional differential equations have been studied by many authors (see [–]). But
the existence of solutions for a coupled system of fractional differential equations at reso-
nance are seldom considered. Motivated by all the works above, in this paper, we consider
the following boundary value problem (BVP for short) for a coupled system of fractional
differential equations given by

⎧⎪⎪⎨
⎪⎪⎩
Dα

+u(t) = f (t, v(t), v′(t)), t ∈ (, ),

Dβ

+v(t) = g(t,u(t),u′(t)), t ∈ (, ),

u() = v() = , u′() = u′(), v′() = v′(),

(.)

where Dα
+ , D

β

+ are the standard Caputo fractional derivatives,  < α ≤ ,  < β ≤  and
f , g : [, ]×R

 →R is continuous.
The rest of this paper is organized as follows. Section  contains some necessary no-

tations, definitions and lemmas. In Section , we establish a theorem on the existence of
solutions for BVP (.) under nonlinear growth restriction of f and g , basing on the coin-
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cidence degree theory due to Mawhin (see []). Finally, in Section , an example is given
to illustrate the main result.

2 Preliminaries
In this section, we will introduce some notations, definitions and preliminary facts which
are used throughout this paper.
Let X and Y be real Banach spaces, and let L : domL ⊂ X → Y be a Fredholm operator

with index zero, and P : X → X, Q : Y → Y be projectors such that

ImP =KerL, KerQ = ImL,

X =KerL⊕KerP, Y = ImL⊕ ImQ.

It follows that

L|domL∩KerP : domL∩KerP → ImL

is invertible. We denote the inverse by KP .
If � is an open bounded subset of X, and domL ∩ � 	= ∅, the map N : X → Y will be

called L-compact on � if QN(�) is bounded and KP(I –Q)N : � → X is compact, where
I is an identity operator.

Lemma. [] Let L : domL ⊂ X → Y be a Fredholm operator of index zero andN : X →
Y L-compact on �. Assume that the following conditions are satisfied:
() Lx 	= λNx for every (x,λ) ∈ [(domL \KerL)]∩ ∂� × (, );
() Nx /∈ ImL for every x ∈ KerL∩ ∂�;
() deg(QN |KerL,KerL∩ �, ) 	= , where Q : Y → Y is a projection such that

ImL =KerQ.
Then the equation Lx =Nx has at least one solution in domL∩ �.

Definition . The Riemann-Liouville fractional integral operator of order α >  of a
function x is given by

Iα+x(t) =


�(α)

∫ t


(t – s)α–x(s)ds,

provided that the right-hand side integral is pointwise defined on (,+∞).

Definition . The Riemann-Liouville fractional derivative of order α >  of a function x
is given by

RDα
+x(t) =

dn

dtn
In–α
+ x(t) =


�(n – α)

dn

dtn

∫ t


(t – s)n–α–x(s)ds,

where n is the smallest integer greater than or equal to α, provided that the right-hand
side integral is pointwise defined on (,+∞).
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Definition . The Caputo fractional derivative of order α >  of a function x is given by

Dα
+x(t) =

R Dα
+

[
x(t) –

n–∑
k=

x(k)()
k!

tk
]
,

where n is the smallest integer greater than or equal to α, provided that the right-hand
side integral is pointwise defined on (,+∞).

Lemma . [] Assume that x ∈ C(, ) ∩ L(, ) with a Caputo fractional derivative of
order α >  that belongs to C(, )∩ L(, ). Then

Iα+D
α
+x(t) = x(t) + c + ct + ct + · · · + cn–tn–,

where ci ∈R, i = , , , . . . ,n – , here n is the smallest integer greater than or equal to α.

Lemma . [] Assume that α >  and x ∈ C[, ]. Then

Dα
+ I

α
+x(t) = x(t).

In this paper, we denote X = C[, ] with the norm ‖x‖X =max{‖x‖∞,‖x′‖∞} and Y =
C[, ] with the norm ‖y‖Y = ‖y‖∞, where ‖x‖∞ = maxt∈[,] |x(t)|. Then we denote X =
X×X with the norm ‖(u, v)‖X =max{‖u‖X ,‖v‖X} and Y = Y ×Y with the norm ‖(x, y)‖Y =
max{‖x‖Y ,‖y‖Y }. Obviously, both X and Y are Banach spaces.
Define the operator L : domL ⊂ X → Y by

Lu =Dα
+u,

where

domL =
{
u ∈ X|Dα

+u(t) ∈ Y ,u() = ,u′() = u′()
}
.

Define the operator L : domL ⊂ X → Y by

Lv =Dβ

+v,

where

domL =
{
v ∈ X|Dβ

+v(t) ∈ Y , v() = , v′() = v′()
}
.

Define the operator L : domL ⊂ X → Y by

L(u, v) = (Lu,Lv), (.)

where

domL =
{
(u, v) ∈ X|u ∈ domL, v ∈ domL

}
.
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Let N : X → Y be the Nemytski operator

N(u, v) = (Nv,Nu),

where N : Y → X

Nv(t) = f
(
t, v(t), v′(t)

)

and N : Y → X

Nu(t) = g
(
t,u(t),u′(t)

)
.

Then BVP (.) is equivalent to the operator equation

L(u, v) =N(u, v), (u, v) ∈ domL.

3 Main result
In this section, a theorem on the existence of solutions for BVP (.) will be given.

Theorem . Let f , g : [, ]×R
 →R be continuous. Assume that

(H) there exist nonnegative functions pi,qi, ri ∈ C[, ] (i = , ) with

�(α)�(β) – (Q + R)(Q + R)
�(α)�(β)

> 

such that for all (u, v) ∈R
, t ∈ [, ]

∣∣f (t,u, v)∣∣ ≤ p(t) + q(t)|u| + r(t)|v|,

and

∣∣g(t,u, v)∣∣ ≤ p(t) + q(t)|u| + r(t)|v|,

where Pi = ‖pi‖∞, Qi = ‖qi‖∞, Ri = ‖ri‖∞ (i = , );
(H) there exists a constant B >  such that for ∀t ∈ [, ], |u| > B, v ∈R either

uf (t,u, v) > , ug(t,u, v) > ,

or

uf (t,u, v) < , ug(t,u, v) < ;

(H) there exists a constant D >  such that for every c, c ∈ R satisfying min{c, c} > D
either

cN(ct) > , cN(ct) > ,
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or

cN(ct) < , cN(ct) < .

Then BVP (.) has at least one solution.

Now, we begin with some lemmas below.

Lemma . Let L be defined by (.), then

KerL = (KerL,KerL) =
{
(u, v) ∈ X|(u, v) = (ct, ct), c, c ∈R

}
, (.)

ImL = (ImL, ImL)

=
{
(x, y) ∈ Y

∣∣∣ ∫ 


( – s)α–x(s)ds = ,

∫ 


( – s)β–y(s)ds = 

}
. (.)

Proof By Lemma ., Lu =Dα
+u(t) =  has the solution

u(t) = c + ct, c, c ∈ R.

Combining it with the boundary value conditions of BVP (.), one has

KerL = {u ∈ X|u = ct, c ∈R}.

For x ∈ ImL, there exists u ∈ domL such that x = Lu ∈ Y . By Lemma ., we have

u(t) =


�(α)

∫ t


(t – s)α–x(s)ds + c + ct.

Then, we have

u′(t) =


�(α – )

∫ t


(t – s)α–x(s)ds + c.

By the conditions of BVP (.), we can get that x satisfies

∫ 


( – s)α–x(s)ds = .

On the other hand, suppose x ∈ Y and satisfies
∫ 
 ( – s)α–x(s)ds = . Let u(t) = Iα+x(t),

then u ∈ domL. By Lemma ., we have Dα
+u(t) = x(t) so that x ∈ ImL. Then we have

ImL =
{
x ∈ Y

∣∣∣ ∫ 


( – s)α–x(s)ds = 

}
.

Similarly, we can get

KerL = {v ∈ X|v = ct, ct ∈R},

http://www.boundaryvalueproblems.com/content/2012/1/98
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ImL =
{
y ∈ Y

∣∣∣ ∫ 


( – s)β–y(s)ds = 

}
.

Then, the proof is complete. �

Lemma . Let L be defined by (.), then L is a Fredholm operator of index zero, and the
linear continuous projector operators P : X → X and Q : Y → Y can be defined as

P(u, v) = (Pu,Pv) =
(
u′()t, v′()t

)
,

Q(x, y) = (Qx,Qy) =
(
(α – )

∫ 


( – s)α–x(s)ds, (β – )

∫ 


( – s)β–y(s)ds

)
.

Furthermore, the operator KP : ImL → domL∩KerP can be written by

KP(x, y) =
(
Iα+x(t), I

β

+y(t)
)
.

Proof Obviously, ImP = KerL and P(u, v) = P(u, v). It follows from (u, v) = ((u, v) –
P(u, v))+P(u, v) thatX =KerP+KerL. By simple calculation,we can get thatKerL∩KerP =
{(, )}. Then we get

X =KerL⊕KerP.

For (x, y) ∈ Y , we have

Q(x, y) =Q(Qx,Qy) =
(
Q

x,Q

y

)
.

By the definition of Q, we can get

Q
x =Qx · (α – )

∫ 


( – s)α– ds =Qx.

Similar proof can show that Q
y =Qy. Thus, we have Q(x, y) =Q(x, y).

Let (x, y) = ((x, y) –Q(x, y)) +Q(x, y), where (x, y) –Q(x, y) ∈ KerQ = ImL,Q(x, y) ∈ ImQ.
It follows from KerQ = ImL and Q(x, y) = Q(x, y) that ImQ ∩ ImL = {(, )}. Then, we
have

Y = ImL⊕ ImQ.

Thus

dimKerL = dim ImQ = codim ImL.

This means that L is a Fredholm operator of index zero.
Now, we will prove that KP is the inverse of L|domL∩KerP . By Lemma ., for (x, y) ∈ ImL,

we have

LKP(x, y) =
(
Dα

+
(
Iα+x

)
,Dβ

+
(
Iβ+y

))
= (x, y). (.)

http://www.boundaryvalueproblems.com/content/2012/1/98
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Moreover, for (u, v) ∈ domL∩KerP, we have u′() = v′() =  and

KPL(u, v) =
(
Iα+D

α
+u(t), I

β

+D
β

+v(t)
)

=
(
u(t) + c + ct, v(t) + d + dt

)
, c, c,d,d ∈R,

which, together with u() = v() = , yields that

KPL(u, v) = (u, v). (.)

Combining (.) with (.), we know that KP = (L|domL∩KerP)–. The proof is complete. �

Lemma . Assume � ⊂ X is an open bounded subset such that domL∩ � 	=∅, then N is
L-compact on �.

Proof By the continuity of f and g , we can get thatQN(�) andKP(I–Q)N(�) are bounded.
So, in view of the Arzelá-Ascoli theorem, we need only prove that KP(I –Q)N(�) ⊂ X is
equicontinuous.
From the continuity of f and g , there exists a constantAi > , i = , , such that ∀(u, v) ∈ �

∣∣(I –Q)Nv
∣∣ ≤ A,

∣∣(I –Q)Nu
∣∣ ≤ A.

Furthermore, for  ≤ t < t ≤ , (u, v) ∈ �, we have

∣∣KP(I –Q)N
(
u(t), v(t)

)
–

(
KP(I –Q)N

(
u(t), v(t)

))∣∣
=

∣∣(Iα+(I –Q)Nv(t), Iβ+(I –Q)Nu(t)
)

–
(
Iα+(I –Q)Nv(t), Iβ+(I –Q)Nu(t)

)∣∣
=

∣∣(Iα+(I –Q)Nv(t) – Iα+(I –Q)Nv(t),

Iβ+(I –Q)Nu(t) – Iβ+(I –Q)Nu(t)
)∣∣.

By

∣∣Iα+(I –Q)Nv(t) – Iα+(I –Q)Nv(t)
∣∣

≤ 
�(α)

∣∣∣∣
∫ t


(t – s)α–(I –Q)Nv(s)ds –

∫ t


(t – s)α–(I –Q)Nv(s)ds

∣∣∣∣
≤ A

�(α)

[∫ t


(t – s)α– – (t – s)α– ds +

∫ t

t
(t – s)α– ds

]

=
A

�(α + )
(
tα – tα

)

and

∣∣(Iα+(I –Q)Nv
)′(t) –

(
Iα+(I –Q)Nv

)′(t)
∣∣

=
α – 
�(α)

∣∣∣∣
∫ t


(t – s)α–(I –Q)Nv(s)ds –

∫ t


(t – s)α–(I –Q)Nv(s)ds

∣∣∣∣

http://www.boundaryvalueproblems.com/content/2012/1/98
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≤ A

�(α – )

[∫ t


(t – s)α– – (t – s)α– ds +

∫ t

t
(t – s)α– ds

]

≤ A

�(α)
[
tα– – tα– + (t – t)α–

]
.

Similar proof can show that

∣∣Iβ+(I –Q)Nu(t) – Iβ+(I –Q)Nu(t)
∣∣ ≤ A

�(β + )
(
tβ – tβ

)
,

∣∣(Iβ+(I –Q)Nu
)′(t) –

(
Iβ+(I –Q)Nu

)′(t)
∣∣ ≤ A

�(β)
[
tβ– – tβ– + (t – t)β–

]
.

Since tα , tα–, tβ and tβ– are uniformly continuous on [, ], we can get that KP(I –
Q)N(�) ⊂ X is equicontinuous.
Thus, we get that KP(I –Q)N :� → X is compact. The proof is complete. �

Lemma . Suppose (H), (H) hold, then the set

� =
{
(u, v) ∈ domL \KerL|L(u, v) = λN(u, v),λ ∈ (, )

}
is bounded.

Proof Take (u, v) ∈ �, then N(u, v) ∈ ImL. By (.), we have

∫ 


( – s)α–f

(
s, v(s), v′(s)

)
ds = ,

∫ 


( – s)β–g

(
s,u(s),u′(s)

)
ds = .

Then, by the integral mean value theorem, there exist constants ξ ,η ∈ (, ) such that
f (ξ , v(ξ ), v′(ξ )) =  and g(η,u(η),u′(η)) = . So, from (H), we get |v(ξ )| ≤ B and |u(η)| ≤ B.
From (u, v) ∈ domL, we get u() = v() = , then

∣∣u(t)∣∣ = ∣∣∣∣u() +
∫ t


u′(s)ds

∣∣∣∣ ≤ ∥∥u′∥∥∞, (.)

∣∣v(t)∣∣ = ∣∣∣∣v() +
∫ t


v′(s)ds

∣∣∣∣ ≤ ∥∥v′∥∥∞. (.)

By L(u, v) = λN(u, v) and (u, v) ∈ domL, we have

u(t) =
λ

�(α)

∫ t


(t – s)α–f

(
s, v(s), v′(s)

)
ds + u′()t

and

v(t) =
λ

�(β)

∫ t


(t – s)β–g

(
s,u(s),u′(s)

)
ds + v′()t.

Then we get

u′(t) =
λ

�(α – )

∫ t


(t – s)α–f

(
s, v(s), v′(s)

)
ds + u′()

http://www.boundaryvalueproblems.com/content/2012/1/98
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and

v′(t) =
λ

�(β – )

∫ t


(t – s)β–g

(
s,u(s),u′(s)

)
ds + v′().

Take t = η, we get

u′(η) =
λ

�(α – )

∫ η


(η – s)α–f

(
s, v(s), v′(s)

)
ds + u′().

Together with |u′(η)| ≤ B, (H) and (.), we have

∣∣u′()
∣∣ ≤ ∣∣u′(η)

∣∣ + λ

�(α – )

∫ η


(η – s)α–

∣∣f (s, v(s), v′(s)
)∣∣ds

≤ B +


�(α – )

∫ η


(η – s)α–

[
p(s) + q(s)

∣∣v(s)∣∣ + r(s)
∣∣v′(s)

∣∣]ds
≤ B +


�(α – )

∫ η


(η – s)α–

[
P +Q‖v‖∞ + R

∥∥v′∥∥∞
]
ds

≤ B +


�(α – )

∫ η


(η – s)α–

[
P + (Q + R)

∥∥v′∥∥∞
]
ds

≤ B +


�(α)
[
P + (Q + R)

∥∥v′∥∥∞
]
.

So, we have

∥∥u′∥∥∞ ≤ 
�(α – )

∫ t


(t – s)α–

∣∣f (s, v(s), v′(s)
)∣∣ds + ∣∣u′()

∣∣
≤ 

�(α – )

∫ t


(t – s)α–

[
p(s) + q(s)

∣∣v(s)∣∣ + r(s)
∣∣v′(s)

∣∣]ds + ∣∣u′()
∣∣

≤ 
�(α – )

[
P + (Q + R)

∥∥v′∥∥∞
] ∫ t


(t – s)α– ds +

∣∣u′()
∣∣

≤ B +


�(α)
[
P + (Q + R)

∥∥v′∥∥∞
]
. (.)

Similarly, we can get

∥∥v′∥∥∞ ≤ B +


�(β)
[
P + (Q + R)

∥∥u′∥∥∞
]
. (.)

Together with (.) and (.), we have

∥∥u′∥∥∞ ≤ B +


�(α)

{
P + (Q + R)

[
B +


�(β)

(
P + (Q + R)

∥∥u′∥∥∞
)]}

.

Thus, from �(α)�(β)–(Q+R)(Q+R)
�(α)�(β) > , we obtain that

∥∥u′∥∥∞ ≤ �(α)�(β)B + �(β)[P + (Q + R)B] + P(Q + R)
�(α)�(β) – (Q + R)(Q + R)

:=M

http://www.boundaryvalueproblems.com/content/2012/1/98
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and

∥∥v′∥∥∞ ≤ 
�(β)

[
P +QB + (Q + R)M

]
:=M.

Together with (.) and (.), we get

∥∥(u, v)∥∥X ≤ max{M,M} :=M.

So � is bounded. The proof is complete. �

Lemma . Suppose (H) holds, then the set

� =
{
(u, v)|(u, v) ∈KerL,N(u, v) ∈ ImL

}
is bounded.

Proof For (u, v) ∈ �, we have (u, v) = (ct, ct), c, c ∈R. Then fromN(u, v) ∈ ImL, we get

∫ 


( – s)α–f (s, cs, c)ds = ,

∫ 


( – s)β–g(s, cs, c)ds = ,

which, together with (H), implies |c|, |c| ≤ D. Thus, we have

∥∥(u, v)∥∥X ≤ D.

Hence, � is bounded. The proof is complete. �

Lemma . Suppose the first part of (H) holds, then the set

� =
{
(u, v) ∈KerL|λ(u, v) + ( – λ)QN(u, v) = (, ),λ ∈ [, ]

}
is bounded.

Proof For (u, v) ∈ �, we have (u, v) = (ct, ct), c, c ∈R and

λct + ( – λ)(α – )
∫ 


( – s)α–f (s, cs, c)ds = , (.)

λct + ( – λ)(β – )
∫ 


( – s)β–g(s, cs, c)ds = . (.)

If λ = , then |c|, |c| ≤ D because of the first part of (H). If λ = , then c = c = . For
λ ∈ (, ], we can obtain |c|, |c| ≤ D. Otherwise, if |c| or |c| >D, in view of the first part
of (H), one has

λc t + ( – λ)(α – )
∫ 


( – s)α–cf (s, cs, c)ds > ,

http://www.boundaryvalueproblems.com/content/2012/1/98
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or

λct + ( – λ)(β – )
∫ 


( – s)β–cg(s, cs, c)ds > ,

which contradicts (.) or (.). Therefore, � is bounded. The proof is complete. �

Remark . If the second part of (H) holds, then the set

�′
 =

{
(u, v) ∈KerL| – λ(u, v) + ( – λ)QN(u, v) = (, ),λ ∈ [, ]

}
is bounded.

Proof of Theorem . Set � = {(u, v) ∈ X|‖(u, v)‖X < max{M,D} + }. It follows from
Lemma . and . that L is a Fredholm operator of index zero and N is L-compact on
�. By Lemma . and ., we get that the following two conditions are satisfied:
() L(u, v) 	= λN(u, v) for every ((u, v),λ) ∈ [(domL \KerL)∩ ∂�]× (, );
() Nx /∈ ImL for every (u, v) ∈KerL∩ ∂�.

Take

H
(
(u, v),λ

)
= ±λ(u, v) + ( – λ)QN(u, v).

According to Lemma . (or Remark .), we know that H((u, v),λ) 	=  for (u, v) ∈KerL∩
∂�. Therefore,

deg
(
QN |KerL,� ∩KerL, (, )

)
= deg

(
H(·, ),� ∩KerL, (, )

)
= deg

(
H(·, ),� ∩KerL, (, )

)
= deg

(±I,� ∩KerL, (, )
) 	= .

So, the condition () of Lemma . is satisfied. By Lemma ., we can get that L(u, v) =
N(u, v) has at least one solution in domL∩�. Therefore, BVP (.) has at least one solution.
The proof is complete. �

4 Example
Example . Consider the following BVP:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
D



+u(t) =


 [v(t) – ] + t

e
–|v′(t)|, t ∈ [, ],

D


+v(t) =


 [u(t) – ] + t

 sin
 (u′(t)), t ∈ [, ],

u() = v() = , u′() = u′(), v′() = v′().

(.)

Choose p(t) = 
 , p(t) =


 , q(t) =


 , q(t) =


 , r(t) = r(t) = , B =D = .

By simple calculation, we can get that (H), (H) and the first part of (H) hold.
By Theorem ., we obtain that BVP (.) has at least one solution.
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